Skip to main content

2020 | OriginalPaper | Buchkapitel

Transcranial Dynamic Fluorescence Imaging for the Study of the Epileptic Seizures

verfasst von : Vyacheslav Kalchenko, Alon Harmelin, David Israeli, Babak Kateb, Igor Meglinski, Qinggong Tang, Nitish V. Thakor, Alla Ignashchenkova, Anna Volnova, Vassiliy Tsytsarev

Erschienen in: Functional Brain Mapping: Methods and Aims

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In last decade functional brain mapping has made significant strides through development of advanced methods, culminating into revolutionary diagnostic imaging and therapeutic applications of neurophotonics. Imaging technologies include intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, multi-spectral imaging, UV, yellow light, thermal and near-infrared spectroscopy. Some of these technologies are not only used in animal studies of the model of epileptic seizures but also been in clinical trials. However, translation of such basic science application of brain mapping technologies into clinical setting remains challenging. In this paper we review current advances in the field, along with one clear focus on laser speckle contrast imaging and its application in epilepsy. Our conclusion is that functional brain optical imaging could play a key role in bridging between morphology and functional activity of the brain, and thus contribute to more accurate diagnostics and improved efficacy of the therapy. Coupling brain optical imaging with measurements of disease biomarkers and adding as well as other neuroscience techniques is making early diagnosis more effective and applicable for variable clinical tasks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lenkov DN, Volnova AB, Pope ARD, Tsytsarev V (2013) Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J Neurosci Methods 212(2) Lenkov DN, Volnova AB, Pope ARD, Tsytsarev V (2013) Advantages and limitations of brain imaging methods in the research of absence epilepsy in humans and animal models. J Neurosci Methods 212(2)
2.
Zurück zum Zitat Pascual-Marqui RD et al (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans R Soc A Math Phys Eng Sci 369(1952):3768–3784 Pascual-Marqui RD et al (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans R Soc A Math Phys Eng Sci 369(1952):3768–3784
3.
Zurück zum Zitat Yoshimura M et al (2018) Hyperactivation of the frontal control network revealed by symptom provocation in obsessive-compulsive disorder using EEG microstate and sLORETA analyses. Neuropsychobiology 1–10 Yoshimura M et al (2018) Hyperactivation of the frontal control network revealed by symptom provocation in obsessive-compulsive disorder using EEG microstate and sLORETA analyses. Neuropsychobiology 1–10
4.
Zurück zum Zitat Tsytsarev V, Bernardelli C, Maslov KI (2012) Living brain optical imaging: technology, methods and applications. J Neurosci Neuroengineering 1(2):13 Tsytsarev V, Bernardelli C, Maslov KI (2012) Living brain optical imaging: technology, methods and applications. J Neurosci Neuroengineering 1(2):13
5.
Zurück zum Zitat Tsytsarev V, Premachandra K, Takeshita D, Bahar S (2008) Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes. Opt Lett 33(9) Tsytsarev V, Premachandra K, Takeshita D, Bahar S (2008) Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes. Opt Lett 33(9)
6.
Zurück zum Zitat Tsytsarev V, Rao B, Maslov KI, Li L, Wang LV (2013) Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J Neurosci Methods 216(2) Tsytsarev V, Rao B, Maslov KI, Li L, Wang LV (2013) Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J Neurosci Methods 216(2)
7.
8.
Zurück zum Zitat Patel KS, Zhao M, Ma H, Schwartz TH (2013) Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurg Focus 34(4):E10PubMedPubMedCentral Patel KS, Zhao M, Ma H, Schwartz TH (2013) Imaging preictal hemodynamic changes in neocortical epilepsy. Neurosurg Focus 34(4):E10PubMedPubMedCentral
10.
Zurück zum Zitat Schwartz TH (2007) Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr 7(4):91–94PubMedPubMedCentral Schwartz TH (2007) Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr 7(4):91–94PubMedPubMedCentral
11.
12.
Zurück zum Zitat Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21(3):195–201PubMed Dunn AK, Bolay H, Moskowitz MA, Boas DA (2001) Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab 21(3):195–201PubMed
13.
Zurück zum Zitat Yang H, Zhang T, Zhou J, Carney PR, Jiang H (2015) In vivo imaging of epileptic foci in rats using a miniature probe integrating diffuse optical tomography and electroencephalographic source localization. Epilepsia 56(1):94–100PubMed Yang H, Zhang T, Zhou J, Carney PR, Jiang H (2015) In vivo imaging of epileptic foci in rats using a miniature probe integrating diffuse optical tomography and electroencephalographic source localization. Epilepsia 56(1):94–100PubMed
14.
Zurück zum Zitat Tsytsarev V, Maslov KI, Yao J, Parameswar AR, Demchenko AV, Wang LV (2012) In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J Neurosci Methods 203(1) Tsytsarev V, Maslov KI, Yao J, Parameswar AR, Demchenko AV, Wang LV (2012) In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J Neurosci Methods 203(1)
15.
Zurück zum Zitat Yao J et al (2013) Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage 64(1) Yao J et al (2013) Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. Neuroimage 64(1)
16.
Zurück zum Zitat Ma H et al (2014) Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. Neurophotonics 1(1):015003PubMedPubMedCentral Ma H et al (2014) Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals. Neurophotonics 1(1):015003PubMedPubMedCentral
17.
Zurück zum Zitat Chen-Bee CH, Kwon MC, Masino SA, Frostig RD (1996) Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Methods 68(1):27–37PubMed Chen-Bee CH, Kwon MC, Masino SA, Frostig RD (1996) Areal extent quantification of functional representations using intrinsic signal optical imaging. J Neurosci Methods 68(1):27–37PubMed
18.
Zurück zum Zitat Tsytsarev V, Pope D, Pumbo E, Yablonskii A, Hofmann M (2010) Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging. Neuroimage 53(1):233–238PubMed Tsytsarev V, Pope D, Pumbo E, Yablonskii A, Hofmann M (2010) Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging. Neuroimage 53(1):233–238PubMed
19.
Zurück zum Zitat Song Y et al (2016) Intraoperative optical mapping of epileptogenic cortices during non-ictal periods in pediatric patients. NeuroImage Clin 11:423–434PubMedPubMedCentral Song Y et al (2016) Intraoperative optical mapping of epileptogenic cortices during non-ictal periods in pediatric patients. NeuroImage Clin 11:423–434PubMedPubMedCentral
20.
Zurück zum Zitat Abraham T, Feng J (2011) Evolution of brain imaging instrumentation. Semin Nucl Med 41(3):202–219PubMed Abraham T, Feng J (2011) Evolution of brain imaging instrumentation. Semin Nucl Med 41(3):202–219PubMed
21.
Zurück zum Zitat Valotassiou V, Wozniak G, Sifakis N, Demakopoulos N, Georgoulias P (2008) Radiopharmaceuticals in neurological and psychiatric disorders. Curr Clin Pharmacol 3(2):99–107PubMed Valotassiou V, Wozniak G, Sifakis N, Demakopoulos N, Georgoulias P (2008) Radiopharmaceuticals in neurological and psychiatric disorders. Curr Clin Pharmacol 3(2):99–107PubMed
22.
Zurück zum Zitat Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J (2016) Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 3(3):031411PubMedPubMedCentral Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J (2016) Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics 3(3):031411PubMedPubMedCentral
23.
Zurück zum Zitat Thanos PK, Wang G-J, Volkow ND (2008) Positron emission tomography as a tool for studying alcohol abuse. Alcohol Res Health 31(3):233–237PubMedPubMedCentral Thanos PK, Wang G-J, Volkow ND (2008) Positron emission tomography as a tool for studying alcohol abuse. Alcohol Res Health 31(3):233–237PubMedPubMedCentral
24.
Zurück zum Zitat Kim MN et al (2010) Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care 12(2):173–180PubMedPubMedCentral Kim MN et al (2010) Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults. Neurocrit Care 12(2):173–180PubMedPubMedCentral
25.
Zurück zum Zitat Kalchenko V, Israeli D, Kuznetsov Y, Harmelin A (2014) Transcranial optical vascular imaging (TOVI) of cortical hemodynamics in mouse brain. Sci Rep 4(1):5839PubMedPubMedCentral Kalchenko V, Israeli D, Kuznetsov Y, Harmelin A (2014) Transcranial optical vascular imaging (TOVI) of cortical hemodynamics in mouse brain. Sci Rep 4(1):5839PubMedPubMedCentral
26.
Zurück zum Zitat Kateb B, Yamamoto V, Yu C, Grundfest W, Gruen JP (2009) Infrared thermal imaging: a review of the literature and case report. Neuroimage 47:T154–T162PubMed Kateb B, Yamamoto V, Yu C, Grundfest W, Gruen JP (2009) Infrared thermal imaging: a review of the literature and case report. Neuroimage 47:T154–T162PubMed
27.
Zurück zum Zitat Kuo J-R, Chang M-H, Wang C-C, Chio C-C, Wang J-J, Lin B-S (2013) Wireless near-infrared spectroscopy system for determining brain hemoglobin levels in laboratory animals. J Neurosci Methods 214(2):204–209PubMed Kuo J-R, Chang M-H, Wang C-C, Chio C-C, Wang J-J, Lin B-S (2013) Wireless near-infrared spectroscopy system for determining brain hemoglobin levels in laboratory animals. J Neurosci Methods 214(2):204–209PubMed
28.
Zurück zum Zitat Ma H, Zhao M, Suh M, Schwartz TH (2009) Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex. J Neurophysiol 101(5):2550–2562PubMedPubMedCentral Ma H, Zhao M, Suh M, Schwartz TH (2009) Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex. J Neurophysiol 101(5):2550–2562PubMedPubMedCentral
29.
Zurück zum Zitat Grandy TH, Greenfield SA, Devonshire IM (2012) An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. J Neurophysiol 108(11):2931–2945PubMed Grandy TH, Greenfield SA, Devonshire IM (2012) An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. J Neurophysiol 108(11):2931–2945PubMed
30.
Zurück zum Zitat Devonshire IM, Dommett EJ, Grandy TH, Halliday AC, Greenfield SA (2010) Environmental enrichment differentially modifies specific components of sensory-evoked activity in rat barrel cortex as revealed by simultaneous electrophysiological recordings and optical imaging in vivo. Neuroscience 170(2):662–669PubMed Devonshire IM, Dommett EJ, Grandy TH, Halliday AC, Greenfield SA (2010) Environmental enrichment differentially modifies specific components of sensory-evoked activity in rat barrel cortex as revealed by simultaneous electrophysiological recordings and optical imaging in vivo. Neuroscience 170(2):662–669PubMed
31.
Zurück zum Zitat Ringuette D, Nauenberg J, Monnier PP, Carlen PL, Levi O (2018) Data compression and improved registration for laser speckle contrast imaging of rodent brains. Biomed Opt Express 9(11):5615–5634PubMedPubMedCentral Ringuette D, Nauenberg J, Monnier PP, Carlen PL, Levi O (2018) Data compression and improved registration for laser speckle contrast imaging of rodent brains. Biomed Opt Express 9(11):5615–5634PubMedPubMedCentral
32.
Zurück zum Zitat Wang L, Li Y, Li Y, Li K (2018) Improved speckle contrast optical coherence tomography angiography. Am J Transl Res 10(10):3025–3035PubMedPubMedCentral Wang L, Li Y, Li Y, Li K (2018) Improved speckle contrast optical coherence tomography angiography. Am J Transl Res 10(10):3025–3035PubMedPubMedCentral
33.
Zurück zum Zitat Senarathna J, Rege A, Li N, Thakor NV (2013) Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6:99–110PubMed Senarathna J, Rege A, Li N, Thakor NV (2013) Laser speckle contrast imaging: theory, instrumentation and applications. IEEE Rev Biomed Eng 6:99–110PubMed
34.
Zurück zum Zitat Wang Z, Hughes S, Dayasundara S, Menon RS (2007) Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. J Cereb Blood Flow Metab 27(2):258–269PubMed Wang Z, Hughes S, Dayasundara S, Menon RS (2007) Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. J Cereb Blood Flow Metab 27(2):258–269PubMed
35.
Zurück zum Zitat Men J et al (2016) Optical coherence tomography for brain imaging and developmental biology. IEEE J Sel Top Quantum Electron 22(4):1–13 Men J et al (2016) Optical coherence tomography for brain imaging and developmental biology. IEEE J Sel Top Quantum Electron 22(4):1–13
36.
Zurück zum Zitat Roche-Labarbe N et al (2010) Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life. Hum Brain Mapp 31(3):341–352PubMed Roche-Labarbe N et al (2010) Noninvasive optical measures of CBV, StO2, CBF index, and rCMRO2 in human premature neonates’ brains in the first six weeks of life. Hum Brain Mapp 31(3):341–352PubMed
37.
Zurück zum Zitat Roche-Labarbe N, Wallois F, Ponchel E, Kongolo G, Grebe R (2007) Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants. Neuroimage 36(3):718–727PubMed Roche-Labarbe N, Wallois F, Ponchel E, Kongolo G, Grebe R (2007) Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants. Neuroimage 36(3):718–727PubMed
38.
Zurück zum Zitat Hu S, Maslov K, Tsytsarev V, Wang LV (2009) Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J Biomed Opt 14(4) Hu S, Maslov K, Tsytsarev V, Wang LV (2009) Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. J Biomed Opt 14(4)
39.
Zurück zum Zitat Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21(7):803–806PubMed Wang X, Pang Y, Ku G, Xie X, Stoica G, Wang LV (2003) Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat Biotechnol 21(7):803–806PubMed
40.
Zurück zum Zitat Takahashi K, Hishida R, Kubota Y, Kudoh M, Takahashi S, Shibuki K (2006) Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice. Eur J Neurosci 23(5):1365–1376PubMed Takahashi K, Hishida R, Kubota Y, Kudoh M, Takahashi S, Shibuki K (2006) Transcranial fluorescence imaging of auditory cortical plasticity regulated by acoustic environments in mice. Eur J Neurosci 23(5):1365–1376PubMed
41.
Zurück zum Zitat Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K (2009) Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J Neurochem 109:3–9PubMed Tohmi M, Takahashi K, Kubota Y, Hishida R, Shibuki K (2009) Transcranial flavoprotein fluorescence imaging of mouse cortical activity and plasticity. J Neurochem 109:3–9PubMed
42.
Zurück zum Zitat Oh S et al (2011) In vivo optical properties of cortical tubers in children with tuberous sclerosis complex (TSC): a preliminary investigation. Epilepsia 52(9):1699–1704PubMed Oh S et al (2011) In vivo optical properties of cortical tubers in children with tuberous sclerosis complex (TSC): a preliminary investigation. Epilepsia 52(9):1699–1704PubMed
43.
Zurück zum Zitat Widjaja E, Wilkinson ID, Griffiths PD (2007) Magnetic resonance perfusion imaging in malformations of cortical development. Acta Radiol 48(8):907–917PubMed Widjaja E, Wilkinson ID, Griffiths PD (2007) Magnetic resonance perfusion imaging in malformations of cortical development. Acta Radiol 48(8):907–917PubMed
44.
Zurück zum Zitat Zenaro E, Rossi B, Angiari S, Constantin G (2013) Use of imaging to study leukocyte trafficking in the central nervous system. Immunol Cell Biol 91(4):271–280PubMed Zenaro E, Rossi B, Angiari S, Constantin G (2013) Use of imaging to study leukocyte trafficking in the central nervous system. Immunol Cell Biol 91(4):271–280PubMed
45.
Zurück zum Zitat Kalchenko V, Israeli D, Kuznetsov Y, Meglinski I, Harmelin A (2015) A simple approach for non-invasive transcranial optical vascular imaging (nTOVI). J Biophotonics 8(11–12):897–901PubMed Kalchenko V, Israeli D, Kuznetsov Y, Meglinski I, Harmelin A (2015) A simple approach for non-invasive transcranial optical vascular imaging (nTOVI). J Biophotonics 8(11–12):897–901PubMed
46.
Zurück zum Zitat Guevara E, Pouliot P, Nguyen DK, Lesage F (2013) Optical imaging of acute epileptic networks in mice. J Biomed Opt 18(7):076021 Guevara E, Pouliot P, Nguyen DK, Lesage F (2013) Optical imaging of acute epileptic networks in mice. J Biomed Opt 18(7):076021
47.
Zurück zum Zitat Tsytsarev V, Arakawa H, Borisov S, Pumbo E, Erzurumlu RS, Papkovsky DB (2013) In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J Neurosci Methods 216(2) Tsytsarev V, Arakawa H, Borisov S, Pumbo E, Erzurumlu RS, Papkovsky DB (2013) In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe. J Neurosci Methods 216(2)
48.
Zurück zum Zitat Hong G et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730PubMedPubMedCentral Hong G et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730PubMedPubMedCentral
49.
Zurück zum Zitat Gottschalk S, Fehm TF, Deán-Ben XL, Tsytsarev V, Razansky D (2017) Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 4(1) Gottschalk S, Fehm TF, Deán-Ben XL, Tsytsarev V, Razansky D (2017) Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics 4(1)
50.
Zurück zum Zitat Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2 Hamilton NB, Attwell D, Hall CN (2010) Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2
51.
Zurück zum Zitat Avsenik J, Bisdas S, Popovic KS (2015) Blood-brain barrier permeability imaging using perfusion computed tomography. Radiol Oncol 49(2):107–114PubMedPubMedCentral Avsenik J, Bisdas S, Popovic KS (2015) Blood-brain barrier permeability imaging using perfusion computed tomography. Radiol Oncol 49(2):107–114PubMedPubMedCentral
52.
Zurück zum Zitat Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704PubMedPubMedCentral Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443(7112):700–704PubMedPubMedCentral
53.
Zurück zum Zitat Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87(1):95–110PubMedPubMedCentral Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87(1):95–110PubMedPubMedCentral
54.
Zurück zum Zitat Hartmann MJZ (2009) Active touch, exploratory movements, and sensory prediction. Integr Comp Biol 49(6):681–690PubMed Hartmann MJZ (2009) Active touch, exploratory movements, and sensory prediction. Integr Comp Biol 49(6):681–690PubMed
55.
Zurück zum Zitat Milesi S et al (2014) Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis 71:151–158PubMed Milesi S et al (2014) Redistribution of PDGFRβ cells and NG2DsRed pericytes at the cerebrovasculature after status epilepticus. Neurobiol Dis 71:151–158PubMed
57.
Zurück zum Zitat Leal-Campanario R et al (2017) Abnormal capillary vasodynamics contribute to ictal neurodegeneration in epilepsy. Sci Rep 7(1):43276PubMedPubMedCentral Leal-Campanario R et al (2017) Abnormal capillary vasodynamics contribute to ictal neurodegeneration in epilepsy. Sci Rep 7(1):43276PubMedPubMedCentral
58.
Zurück zum Zitat Nicastro N, Assal F, Seeck M (2016) From here to epilepsy: the risk of seizure in patients with Alzheimer’s disease. Epileptic Disord 18(1):1–12PubMed Nicastro N, Assal F, Seeck M (2016) From here to epilepsy: the risk of seizure in patients with Alzheimer’s disease. Epileptic Disord 18(1):1–12PubMed
59.
Zurück zum Zitat Born HA (2015) Seizures in alzheimer’s disease. Neuroscience 286:251–263PubMed Born HA (2015) Seizures in alzheimer’s disease. Neuroscience 286:251–263PubMed
60.
Zurück zum Zitat Zhang X et al (2015) Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc Natl Acad Sci 112(31):9734–9739PubMed Zhang X et al (2015) Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proc Natl Acad Sci 112(31):9734–9739PubMed
61.
Zurück zum Zitat Kodam A et al (2018) A role for astrocyte-derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy. Brain Pathol Kodam A et al (2018) A role for astrocyte-derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy. Brain Pathol
62.
Zurück zum Zitat Obrig H (2014) NIRS in clinical neurology—a ‘promising’ tool? Neuroimage 85(Pt 1):535–546PubMed Obrig H (2014) NIRS in clinical neurology—a ‘promising’ tool? Neuroimage 85(Pt 1):535–546PubMed
63.
Zurück zum Zitat Ran C et al (2009) Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc 131(42):15257–15261PubMedPubMedCentral Ran C et al (2009) Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-β deposits. J Am Chem Soc 131(42):15257–15261PubMedPubMedCentral
64.
Zurück zum Zitat Koronyo-Hamaoui M et al (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54:S204–S217PubMed Koronyo-Hamaoui M et al (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54:S204–S217PubMed
65.
Zurück zum Zitat Kantarci K et al (2012) Ante mortem amyloid imaging and β-amyloid pathology in a case with dementia with Lewy bodies. Neurobiol Aging 33(5):878–885PubMed Kantarci K et al (2012) Ante mortem amyloid imaging and β-amyloid pathology in a case with dementia with Lewy bodies. Neurobiol Aging 33(5):878–885PubMed
66.
Zurück zum Zitat J. Noebels (Jan. 2011) A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 52 Suppl 1(suppl 1):39–46 J. Noebels (Jan. 2011) A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 52 Suppl 1(suppl 1):39–46
67.
Zurück zum Zitat Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H (2014) Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J Am Chem Soc 136(9):3388–3394PubMed Cui M, Ono M, Watanabe H, Kimura H, Liu B, Saji H (2014) Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J Am Chem Soc 136(9):3388–3394PubMed
68.
Zurück zum Zitat Chang WM, Dakanali M, Capule CC, Sigurdson CJ, Yang J, Theodorakis EA (2011) ANCA: a family of fluorescent probes that bind and stain amyloid plaques in human tissue. ACS Chem Neurosci 2(5):249–255PubMedPubMedCentral Chang WM, Dakanali M, Capule CC, Sigurdson CJ, Yang J, Theodorakis EA (2011) ANCA: a family of fluorescent probes that bind and stain amyloid plaques in human tissue. ACS Chem Neurosci 2(5):249–255PubMedPubMedCentral
69.
Zurück zum Zitat Watanabe H, Ono M, Matsumura K, Yoshimura M, Kimura H, Saji H (2013) Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes. Mol Imaging 12(5):338–347 Watanabe H, Ono M, Matsumura K, Yoshimura M, Kimura H, Saji H (2013) Molecular imaging of β-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes. Mol Imaging 12(5):338–347
70.
Zurück zum Zitat Hillman EMC et al (2011) In vivo optical imaging and dynamic contrast methods for biomedical research. Philos Trans A Math Phys Eng Sci 369(1955):4620–4643PubMedPubMedCentral Hillman EMC et al (2011) In vivo optical imaging and dynamic contrast methods for biomedical research. Philos Trans A Math Phys Eng Sci 369(1955):4620–4643PubMedPubMedCentral
71.
Zurück zum Zitat Hillman EMC, Boas DA, Dale AM, Dunn AK (2004) Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt Lett 29(14):1650–1652PubMed Hillman EMC, Boas DA, Dale AM, Dunn AK (2004) Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt Lett 29(14):1650–1652PubMed
72.
Zurück zum Zitat Erickson SJ, Martinez SL, DeCerce J, Romero A, Caldera L, Godavarty A (2013) Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager. Phys Med Biol 58(5):1563–1579PubMedPubMedCentral Erickson SJ, Martinez SL, DeCerce J, Romero A, Caldera L, Godavarty A (2013) Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager. Phys Med Biol 58(5):1563–1579PubMedPubMedCentral
73.
Zurück zum Zitat Bukowska D et al (2012) Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography. J Biomed Opt 17(10):101515 Bukowska D et al (2012) Multi-parametric imaging of murine brain using spectral and time domain optical coherence tomography. J Biomed Opt 17(10):101515
74.
Zurück zum Zitat Issa JB, Haeffele BD, Agarwal A, Bergles DE, Young ED, Yue DT (2014) Multiscale optical Ca2+imaging of tonal organization in mouse auditory cortex. Neuron 83(4):944–959PubMedPubMedCentral Issa JB, Haeffele BD, Agarwal A, Bergles DE, Young ED, Yue DT (2014) Multiscale optical Ca2+imaging of tonal organization in mouse auditory cortex. Neuron 83(4):944–959PubMedPubMedCentral
75.
Zurück zum Zitat Baran U, Wang RK (2016) Review of optical coherence tomography based angiography in neuroscience. Neurophotonics 3(1):010902PubMedPubMedCentral Baran U, Wang RK (2016) Review of optical coherence tomography based angiography in neuroscience. Neurophotonics 3(1):010902PubMedPubMedCentral
76.
Zurück zum Zitat Tang Q et al (2017) High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT). Biomed Opt Express 8(4):2124–2137PubMedPubMedCentral Tang Q et al (2017) High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT). Biomed Opt Express 8(4):2124–2137PubMedPubMedCentral
77.
Zurück zum Zitat Tang Q et al. (2016) In vivo mesoscopic voltage-sensitive dye imaging of brain activation. Sci Rep 6 Tang Q et al. (2016) In vivo mesoscopic voltage-sensitive dye imaging of brain activation. Sci Rep 6
78.
Zurück zum Zitat Liao L-D et al (2013) Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 12(1):38PubMedPubMedCentral Liao L-D et al (2013) Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed Eng Online 12(1):38PubMedPubMedCentral
Metadaten
Titel
Transcranial Dynamic Fluorescence Imaging for the Study of the Epileptic Seizures
verfasst von
Vyacheslav Kalchenko
Alon Harmelin
David Israeli
Babak Kateb
Igor Meglinski
Qinggong Tang
Nitish V. Thakor
Alla Ignashchenkova
Anna Volnova
Vassiliy Tsytsarev
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6883-1_3