Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

24.07.2018 | Regular Paper | Ausgabe 4/2018

International Journal of Multimedia Information Retrieval 4/2018

Transferred Semantic Scores for Scalable Retrieval of Histopathological Breast Cancer Images

Zeitschrift:
International Journal of Multimedia Information Retrieval > Ausgabe 4/2018
Autoren:
Elaheh Mahraban Nejad, Lilly Suriani Affendey, Rohaya Binti Latip, Iskandar Bin Ishak, Rasoul Banaeeyan

Abstract

Content-based medical image retrieval (CBMIR) is an active field of research and a complementary decision support tool for the diagnosis of breast cancer. Current CBMIR systems employ hand-engineered image descriptors which are not effective enough at retrieval phase. Besides this drawback, the so-called semantic gap in the CBMIR is not still addressed leaving the room for further improvements. To fill in the two mentioned existing gaps, we proposed a new retrieval method which exploited a deep pre-trained convolutional neural network model to extract class-specific and patient-specific tumorous descriptor to firstly train a binary breast cancer classifier and then a multi-patient classifier aiming for reducing dimensions of the raw deeply transferred features and obtaining semantic scores which significantly enhanced the performance in terms of mean average precision. We evaluated the method on scalable BreakHis dataset of histopathological breast cancer images. After conducting five sets of experiments, results demonstrated the superior effectiveness of the proposed semantic-driven retrieval methods by means of increased mean average precision and decreased dimensionality and retrieval time. In overall, an improvement of 29.03% was obtained by the proposed class-driven semantic retrieval method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise