Skip to main content

2013 | OriginalPaper | Buchkapitel

8. Transformation Fields

verfasst von : George J. Dvorak

Erschienen in: Micromechanics of Composite Materials

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Together with the stresses caused by mechanical loads, composite materials must withstand stresses caused by distribution of transformation strains or eigenstrains in individual phases or subvolumes of each phase. As pointed out in Sect. 3.6.1, the former term applies here to all physically based deformations not caused by mechanical loads, including actual phase transformations. Frequent sources of transformation strains are changes in temperature and/or moisture content, piezoelectric and magneto-electro-elastic and pyroelectric effects, (Benveniste 1992, 1993; Benveniste and Milton 2003), as well as diffusive and displacive transformations involved in kinetics of structural change in crystals and polycrystals (Ashby and Jones 1986), or martensitic phase transformations in steels, and shape memory alloys (Entchev and Lagudas 2002; Levitas and Javanbakh 2011). Inelastic deformations associated with plasticity, viscoelasticity and viscoplasticity will join this list in Chap.​ 12, but those will be analyzed in an entirely different setting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ashby, M. F., & Jones, D. R. H. (1986). Engineering materials 2. An introduction to microstructures, processing and design. Oxford: Pergamon Press. Ashby, M. F., & Jones, D. R. H. (1986). Engineering materials 2. An introduction to microstructures, processing and design. Oxford: Pergamon Press.
Zurück zum Zitat Bahei-El-Din, Y. A., & Dvorak, G. J. (1997). Isothermal fatigue of sigma/timetal 21S laminates: II. Modeling and numerical analysis. Mechanics of Composite Materials and Structures, 4, 131–158.CrossRef Bahei-El-Din, Y. A., & Dvorak, G. J. (1997). Isothermal fatigue of sigma/timetal 21S laminates: II. Modeling and numerical analysis. Mechanics of Composite Materials and Structures, 4, 131–158.CrossRef
Zurück zum Zitat Benveniste, Y. (1996). Thermal expansion of polycrystalline aggregates consisting of elongated crystals and containing cylindrical pores or inclusions. Journal of the Mechanics and Physics of Solids, 44, 137–153.MathSciNetCrossRefMATH Benveniste, Y. (1996). Thermal expansion of polycrystalline aggregates consisting of elongated crystals and containing cylindrical pores or inclusions. Journal of the Mechanics and Physics of Solids, 44, 137–153.MathSciNetCrossRefMATH
Zurück zum Zitat Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer. Benveniste, Y., & Dvorak, G. J. (1989). On a correspondence between mechanical and thermal effects in two-phase composites. In Micromechanics and inhomogeneity (The Toshio Mura 65th anniversary volume, pp. 65–81). New York: Springer.
Zurück zum Zitat Benveniste, Y., & Dvorak, G. J. (1992a). Uniform fields and universal relations in piezoelectric composites. Journal of the Mechanics and Physics of Solids, 40, 1295–1312.MathSciNetCrossRefMATH Benveniste, Y., & Dvorak, G. J. (1992a). Uniform fields and universal relations in piezoelectric composites. Journal of the Mechanics and Physics of Solids, 40, 1295–1312.MathSciNetCrossRefMATH
Zurück zum Zitat Benveniste, Y., & Dvorak, G. J. (1992b). Some remarks on a class of uniform fields in fibrous composites. Journal of Applied Mechanics, 59, 1030–1032.CrossRefMATH Benveniste, Y., & Dvorak, G. J. (1992b). Some remarks on a class of uniform fields in fibrous composites. Journal of Applied Mechanics, 59, 1030–1032.CrossRefMATH
Zurück zum Zitat Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7, 305–317.CrossRef Benveniste, Y., Dvorak, G. J., & Chen, T. (1989). Stress fields in composites with coated inclusions. Mechanics of Materials, 7, 305–317.CrossRef
Zurück zum Zitat Benveniste, Y., Dvorak, G. J., & Chen, T. (1991a). On the effective properties of composites with coated cylindrically orthotropic fibers. Mechanics of Materials, 12, 289–297.CrossRef Benveniste, Y., Dvorak, G. J., & Chen, T. (1991a). On the effective properties of composites with coated cylindrically orthotropic fibers. Mechanics of Materials, 12, 289–297.CrossRef
Zurück zum Zitat Benveniste, Y., Dvorak, G. J., & Chen, T. (1991b). On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 39, 927–946.MathSciNetCrossRefMATH Benveniste, Y., Dvorak, G. J., & Chen, T. (1991b). On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media. Journal of the Mechanics and Physics of Solids, 39, 927–946.MathSciNetCrossRefMATH
Zurück zum Zitat Boley, B. A., & Wiener, J. H. (1960). Theory of thermal stresses. New York: Wiley.MATH Boley, B. A., & Wiener, J. H. (1960). Theory of thermal stresses. New York: Wiley.MATH
Zurück zum Zitat Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9, 17–32.CrossRef Chen, T., Dvorak, G. J., & Benveniste, Y. (1990). Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mechanics of Materials, 9, 17–32.CrossRef
Zurück zum Zitat Craft, W. J., & Christensen, R. M. (1981). Coefficient of thermal expansion for composites with randomly oriented fibers. Journal of Composite Materials, 15, 2–20.CrossRef Craft, W. J., & Christensen, R. M. (1981). Coefficient of thermal expansion for composites with randomly oriented fibers. Journal of Composite Materials, 15, 2–20.CrossRef
Zurück zum Zitat Cribb, J. L. (1968). Shrinkage and thermal expansion of a two-phase material. Nature, 220, 576–577.CrossRef Cribb, J. L. (1968). Shrinkage and thermal expansion of a two-phase material. Nature, 220, 576–577.CrossRef
Zurück zum Zitat Dvorak, G. J. (1983). Metal matrix composites: Plasticity and fatigue. In Z. Hashin & C. T. Herakovich (Eds.), Mechanics of composite materials: Recent advances (pp. 73–91). New York: Pergamon Press.CrossRef Dvorak, G. J. (1983). Metal matrix composites: Plasticity and fatigue. In Z. Hashin & C. T. Herakovich (Eds.), Mechanics of composite materials: Recent advances (pp. 73–91). New York: Pergamon Press.CrossRef
Zurück zum Zitat Dvorak, G. J. (1986). Thermal expansion of elastic-plastic composite materials. ASME Journal of Applied Mechanics, 53, 737–743.CrossRefMATH Dvorak, G. J. (1986). Thermal expansion of elastic-plastic composite materials. ASME Journal of Applied Mechanics, 53, 737–743.CrossRefMATH
Zurück zum Zitat Dvorak, G. J., & Benveniste, Y. (1992). On transformation strains and uniform fields in heterogeneous media. Proceedings of the Royal Society London A, 437, 291–310.MathSciNetCrossRefMATH Dvorak, G. J., & Benveniste, Y. (1992). On transformation strains and uniform fields in heterogeneous media. Proceedings of the Royal Society London A, 437, 291–310.MathSciNetCrossRefMATH
Zurück zum Zitat Dvorak, G. J., & Chen, T. (1989). Thermal expansion of three-phase composite materials. ASME Journal of Applied Mechanics, 56, 418–422.CrossRefMATH Dvorak, G. J., & Chen, T. (1989). Thermal expansion of three-phase composite materials. ASME Journal of Applied Mechanics, 56, 418–422.CrossRefMATH
Zurück zum Zitat Entchev, P. B., & Lagudas, D. C. (2002). Modeling porous shape memory alloys using micromechanical averaging techniques. Mechanics of Materials, 34, 1–24.CrossRef Entchev, P. B., & Lagudas, D. C. (2002). Modeling porous shape memory alloys using micromechanical averaging techniques. Mechanics of Materials, 34, 1–24.CrossRef
Zurück zum Zitat Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society London A, 241, 376–396.MathSciNetCrossRefMATH
Zurück zum Zitat Hashin, Z. (1984). Thermal expansion of polycrystalline aggregates: I. Exact analysis. Journal of the Mechanics and Physics of Solids, 32, 149–157.CrossRefMATH Hashin, Z. (1984). Thermal expansion of polycrystalline aggregates: I. Exact analysis. Journal of the Mechanics and Physics of Solids, 32, 149–157.CrossRefMATH
Zurück zum Zitat Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219. Hashin, Z., & Rosen, B. W. (1964). The elastic moduli of fiber reinforced materials. ASME Journal of Applied Mechanics 31E, 223–232. Errata, 1965, ibid., 32E, 219.
Zurück zum Zitat Hatta, H., & Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. International Journal of Engineering Science, 24, 1159–1172.CrossRefMATH Hatta, H., & Taya, M. (1986). Equivalent inclusion method for steady state heat conduction in composites. International Journal of Engineering Science, 24, 1159–1172.CrossRefMATH
Zurück zum Zitat Hervé, E., & Zaoui, A. (1995). Elastic behaviour of multiply coated fibre-reinforced composites. International Journal of Engineering Science, 33, 1419–1433.CrossRefMATH Hervé, E., & Zaoui, A. (1995). Elastic behaviour of multiply coated fibre-reinforced composites. International Journal of Engineering Science, 33, 1419–1433.CrossRefMATH
Zurück zum Zitat Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef Hill, R. (1964). Theory of mechanical properties of fibre-strengthened materials: I. Elastic behavior. Journal of the Mechanics and Physics of Solids, 12, 199–212.MathSciNetCrossRef
Zurück zum Zitat Laws, N. (1973). On thermostatics of composite materials. Journal of the Mechanics and Physics of Solids, 21, 9–17.CrossRef Laws, N. (1973). On thermostatics of composite materials. Journal of the Mechanics and Physics of Solids, 21, 9–17.CrossRef
Zurück zum Zitat Laws, N. (1974). The overall thermoelastic moduli of transversely isotropic composites according to the self-consistent method. International Journal of Engineering Science, 12, 79–87.CrossRefMATH Laws, N. (1974). The overall thermoelastic moduli of transversely isotropic composites according to the self-consistent method. International Journal of Engineering Science, 12, 79–87.CrossRefMATH
Zurück zum Zitat Levin, V. M. (1967). On the coefficients of thermal expansion of heterogeneous materials (in Russian). Mekhanika Tverdogo Tela, 2, 88–94. Levin, V. M. (1967). On the coefficients of thermal expansion of heterogeneous materials (in Russian). Mekhanika Tverdogo Tela, 2, 88–94.
Zurück zum Zitat Levitas, V. I., & Javanbakh, M. (2011). Phase-field approach to martensitic phase transformations: Effect of martensite-martensite interface energy. International Journal of Materials Research (formerly Z. Metallkd.) 102, 652–665. Levitas, V. I., & Javanbakh, M. (2011). Phase-field approach to martensitic phase transformations: Effect of martensite-martensite interface energy. International Journal of Materials Research (formerly Z. Metallkd.) 102, 652–665.
Zurück zum Zitat Mikata, Y., & Taya, M. (1986). Thermal stresses in a coated short fiber composite. Journal of Applied Mechanics, 53, 681–689.CrossRef Mikata, Y., & Taya, M. (1986). Thermal stresses in a coated short fiber composite. Journal of Applied Mechanics, 53, 681–689.CrossRef
Zurück zum Zitat Milton, G. W. (2002). The theory of composites. Cambridge: Cambridge University Press.CrossRefMATH Milton, G. W. (2002). The theory of composites. Cambridge: Cambridge University Press.CrossRefMATH
Zurück zum Zitat Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.CrossRef Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574.CrossRef
Zurück zum Zitat Nye, J. F. (1957, 1985). Physical properties of crystals. Their representation by tensors and matrices. Oxford: Oxford University Press. Nye, J. F. (1957, 1985). Physical properties of crystals. Their representation by tensors and matrices. Oxford: Oxford University Press.
Zurück zum Zitat Rosen, B. W., & Hashin, Z. (1970). Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science, 8, 157–173.CrossRef Rosen, B. W., & Hashin, Z. (1970). Effective thermal expansion coefficients and specific heats of composite materials. International Journal of Engineering Science, 8, 157–173.CrossRef
Zurück zum Zitat Schapery, R. A. (1968). Thermal expansion coefficients of composite materials based on energy pinciples. Journal of Composite Materials, 2, 380–404.CrossRef Schapery, R. A. (1968). Thermal expansion coefficients of composite materials based on energy pinciples. Journal of Composite Materials, 2, 380–404.CrossRef
Zurück zum Zitat Schulgasser, K. (1987). Thermal expansion of polycrystalline aggregates with texture. Journal of the Mechanics and Physics of Solids, 35, 35–42.CrossRef Schulgasser, K. (1987). Thermal expansion of polycrystalline aggregates with texture. Journal of the Mechanics and Physics of Solids, 35, 35–42.CrossRef
Zurück zum Zitat Sneddon, N. I. (1974). The linear theory of thermoelasticity. Berlin/Heidelberg/New York: Springer.MATH Sneddon, N. I. (1974). The linear theory of thermoelasticity. Berlin/Heidelberg/New York: Springer.MATH
Zurück zum Zitat Suvorov, A. P., & Dvorak, G. J. (2002). Rate form of the Eshelby and Hill tensors. International Journal of Solids and Structures, 39, 5659–5678.CrossRefMATH Suvorov, A. P., & Dvorak, G. J. (2002). Rate form of the Eshelby and Hill tensors. International Journal of Solids and Structures, 39, 5659–5678.CrossRefMATH
Zurück zum Zitat Takao, Y., & Taya, M. (1985). Thermal expansion coefficients and thermal stresses in a n aligned short fiber composite with application to a short carbon fiber/aluminum. Journal of Applied Mechanics, 52, 806–810.CrossRef Takao, Y., & Taya, M. (1985). Thermal expansion coefficients and thermal stresses in a n aligned short fiber composite with application to a short carbon fiber/aluminum. Journal of Applied Mechanics, 52, 806–810.CrossRef
Zurück zum Zitat Walker, K. P., Jordan, E. H., & Freed, A. D. (1990). Equivalence of Green’s function and the Fourier series representation of composites with periodic structure. In G. J. Weng, M. Taya, & H. Abé (Eds.), Micromechanics and inhomogeneity, The T. Mura 65-th aniversary volume (pp. 535–558). New York: Springer.CrossRef Walker, K. P., Jordan, E. H., & Freed, A. D. (1990). Equivalence of Green’s function and the Fourier series representation of composites with periodic structure. In G. J. Weng, M. Taya, & H. Abé (Eds.), Micromechanics and inhomogeneity, The T. Mura 65-th aniversary volume (pp. 535–558). New York: Springer.CrossRef
Zurück zum Zitat Willis, J. R. (1978). In J. W. Provan (Ed.), Continuum models of discrete systems (pp. 185–215). Waterloo: University of Waterloo Press. Willis, J. R. (1978). In J. W. Provan (Ed.), Continuum models of discrete systems (pp. 185–215). Waterloo: University of Waterloo Press.
Zurück zum Zitat Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press. Willis, J. R. (1981). Variational and related method for the overall properties of composites. In Advances in applied mechanics, 21, 1–78. Academic Press.
Zurück zum Zitat Benveniste, Y. (1993) Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. Roy. Soc. London, A441, 1–22. Benveniste, Y. (1993) Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. Roy. Soc. London, A441, 1–22.
Zurück zum Zitat Benveniste, Y. & Milton G. W. (2003) New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages. J. Mech. Phys. Solids, 51, 1773–1813.MathSciNetCrossRefMATH Benveniste, Y. & Milton G. W. (2003) New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages. J. Mech. Phys. Solids, 51, 1773–1813.MathSciNetCrossRefMATH
Zurück zum Zitat Kunin, I. A. (1982) Elastic Media with Microstructure I. One-Dimensional Models. Springer-Verlag. Berlin. Kunin, I. A. (1982) Elastic Media with Microstructure I. One-Dimensional Models. Springer-Verlag. Berlin.
Zurück zum Zitat Kunin, I. A. (1983) Elastic Media with Microstructure II. Three-Dimensional Models. Springer-Verlag. Berlin. Kunin, I. A. (1983) Elastic Media with Microstructure II. Three-Dimensional Models. Springer-Verlag. Berlin.
Zurück zum Zitat Sigmund O. and Torquato, S, (1999) Design of smart composite materials using topology optimization. Smart Mater. Struct. 8, 365–379. Sigmund O. and Torquato, S, (1999) Design of smart composite materials using topology optimization. Smart Mater. Struct. 8, 365–379.
Zurück zum Zitat Buryachenko, V. (2007). Micromechanics of heterogeneous materials. New York: Springer Science.CrossRefMATH Buryachenko, V. (2007). Micromechanics of heterogeneous materials. New York: Springer Science.CrossRefMATH
Zurück zum Zitat Bendsoe, M. P. and Kikuchi, N. (1988) Generating optimal topologies in optimal design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224. Bendsoe, M. P. and Kikuchi, N. (1988) Generating optimal topologies in optimal design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224.
Zurück zum Zitat Bendsoe, M. P. and Sigmund, O. (2004) Topology Optimization: theory, Methods and Applications. Springer-Verlag, Berlin. Bendsoe, M. P. and Sigmund, O. (2004) Topology Optimization: theory, Methods and Applications. Springer-Verlag, Berlin.
Zurück zum Zitat Benveniste, Y., & Dvorak, G. J. (1992). Uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids, 40, 1295–1312.MathSciNetCrossRefMATH Benveniste, Y., & Dvorak, G. J. (1992). Uniform fields and universal relations in piezoelectric composites. J. Mech. Phys. Solids, 40, 1295–1312.MathSciNetCrossRefMATH
Zurück zum Zitat Benveniste, Y. (1993a) Universal relations in piezoelectric composites with eigenstress and polarization fields. I. Binary media: Local fields and effective behavior. ASME J. Appl. Mech. 60, 265–269. Benveniste, Y. (1993a) Universal relations in piezoelectric composites with eigenstress and polarization fields. I. Binary media: Local fields and effective behavior. ASME J. Appl. Mech. 60, 265–269.
Zurück zum Zitat Benveniste, Y. (1993b) Universal relations in piezoelectric composites with eigenstress and polarization fields. II. Multiphase media.: Effective behavior. ASME J. Appl. Mech., 60, 270–275. Benveniste, Y. (1993b) Universal relations in piezoelectric composites with eigenstress and polarization fields. II. Multiphase media.: Effective behavior. ASME J. Appl. Mech., 60, 270–275.
Zurück zum Zitat Benveniste, Y. (1993c) Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. R. Soc. A 441, 59–81. Benveniste, Y. (1993c) Exact results in the micromechanics of fibrous piezoelectric composites exhibiting pyroelectricity. Proc. R. Soc. A 441, 59–81.
Zurück zum Zitat Benveniste, Y. (1995) Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B., 51, 16424–16427. Benveniste, Y. (1995) Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B., 51, 16424–16427.
Zurück zum Zitat Feibig, M. (2005) Revival of the magnetoelectric effect (Topical review). J. Phys. D-Appl. Phys. 38, R123–152. Feibig, M. (2005) Revival of the magnetoelectric effect (Topical review). J. Phys. D-Appl. Phys. 38, R123–152.
Metadaten
Titel
Transformation Fields
verfasst von
George J. Dvorak
Copyright-Jahr
2013
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-4101-0_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.