Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.08.2017 | Original Article | Ausgabe 5/2017

Chinese Journal of Mechanical Engineering 5/2017

Transforming Multidisciplinary Customer Requirements to Product Design Specifications

Zeitschrift:
Chinese Journal of Mechanical Engineering > Ausgabe 5/2017
Autoren:
Xiao-Jie Ma, Guo-Fu Ding, Sheng-Feng Qin, Rong Li, Kai-Yin Yan, Shou-Ne Xiao, Guang-Wu Yang
Wichtige Hinweise
Supported by Open Outreach Project of A New Biomimicry and Crowdsourcing Based Digital Design Platform for High Speed Train from State Key Laboratory of Traction Power, and National Natural Science Foundation of China (Grant No. 51575461).

Abstract

With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers’ requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 5/2017

Chinese Journal of Mechanical Engineering 5/2017Zur Ausgabe

Premium Partner

in-adhesivesMKVSNeuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Künstliche Intelligenz und die Potenziale des maschinellen Lernens für die Industrie

Maschinelles Lernen ist die Schlüsseltechnologie für intelligente Systeme. Besonders erfolgreich ist in den letzten Jahren das Lernen tiefer Modelle aus großen Datenmengen – „Deep Learning“. Mit dem Internet der Dinge rollt die nächste, noch größere Datenwelle auf uns zu. Hier bietet die Künstliche Intelligenz besondere Chancen für die deutsche Industrie, wenn sie schnell genug in die Digitalisierung einsteigt.
Jetzt gratis downloaden!

Marktübersichten

Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

Bildnachweise