Skip to main content
Erschienen in: Microsystem Technologies 12/2017

07.08.2017 | Technical Paper

Transient behavior and dynamic pull-in instability of electrostatically-actuated fluid-conveying microbeams

verfasst von: Maedeh Lotfi, Mahdi Moghimi Zand, Imman Isaac Hosseini, Mostafa Baghani, Roozbeh Dargazany

Erschienen in: Microsystem Technologies | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fluid-conveying microelectromechanical systems (MEMS) are indispensable components of many sensors/actuators used in many systems ranging from resonators to atomic force microscopy. Due to their low cost, minimal power consumption, and uncomplicated architecture, electrostatically-actuated fluid-conveying microbeams have become a popular choice of MEMS in many industries. In this work, the dynamic behavior and pull-in instability of fluid-conveying micro-bridges and micro-cantilevers are modeled and validated. The microbeams are actuated through application of abrupt electrostatic forces. The equation of motion is derived with respect to a non-uniform profile for the fluid flow and nonlinear electrostatic actuation. The developed model is then implemented into a nonlinear finite-element model. Equation of motion is solved by employing Newmark’s time discretization method. The static pull-in behavior is investigated to validate the model. The static pull-in results are then compared and validated with different results in literature. The dynamic pull-in behavior of the aforementioned systems is examined through a parameter study on the applied voltage, fluid flow velocity, midplane stretching, and axial force. The results of this study are applicable in design and modeling of MEMS in sensing and resonators applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abderezaei J, Moghimi Zand M. Transient behavior of electrostatically-actuated micro systems considering squeeze film damping and mechanical shock. Sci Iran (in press) Abderezaei J, Moghimi Zand M. Transient behavior of electrostatically-actuated micro systems considering squeeze film damping and mechanical shock. Sci Iran (in press)
Zurück zum Zitat Alipour A, Moghimi Zand M, Daneshpajooh H (2015) Analytical solution to nonlinear behavior of electrostatically actuated nanobeams incorporating van der Waals and Casimir forces. Sci Iran 22:1322–1329 Alipour A, Moghimi Zand M, Daneshpajooh H (2015) Analytical solution to nonlinear behavior of electrostatically actuated nanobeams incorporating van der Waals and Casimir forces. Sci Iran 22:1322–1329
Zurück zum Zitat Baohui L, Hangshan G, Yongshou L et al (2012) Free vibration analysis of micropipe conveying fluid by wave method. Res Phys 2:104–109 Baohui L, Hangshan G, Yongshou L et al (2012) Free vibration analysis of micropipe conveying fluid by wave method. Res Phys 2:104–109
Zurück zum Zitat Batra RC, Porfiri M, Spinello D (2006) Capacitance estimate for electrostatically actuated narrow microbeams. Micro Nano Lett 1:71CrossRef Batra RC, Porfiri M, Spinello D (2006) Capacitance estimate for electrostatically actuated narrow microbeams. Micro Nano Lett 1:71CrossRef
Zurück zum Zitat Batra RC, Porfiri M, Spinello D (2007) Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater Struct 16:R23–R31CrossRef Batra RC, Porfiri M, Spinello D (2007) Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater Struct 16:R23–R31CrossRef
Zurück zum Zitat Dai HL, Wang L, Ni Q (2015) Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid Nanofluidics 18:49–55CrossRef Dai HL, Wang L, Ni Q (2015) Dynamics and pull-in instability of electrostatically actuated microbeams conveying fluid. Microfluid Nanofluidics 18:49–55CrossRef
Zurück zum Zitat Daneshpajooh H, Moghimi Zand M (2015) Semi-analytic solutions to oscillatory behavior of initially curved micro/nano systems. J Mech Sci Technol 29:3855–3863CrossRef Daneshpajooh H, Moghimi Zand M (2015) Semi-analytic solutions to oscillatory behavior of initially curved micro/nano systems. J Mech Sci Technol 29:3855–3863CrossRef
Zurück zum Zitat Dastani K, Moghimi Zand M (2016) Dynamic and static pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping. J Comput Appl Mech 47(2):219–230 Dastani K, Moghimi Zand M (2016) Dynamic and static pull-in instability of electrostatically actuated nano/micro membranes under the effects of Casimir force and squeezed film damping. J Comput Appl Mech 47(2):219–230
Zurück zum Zitat Deladi S, Tas NR, Berenschot JW et al (2004) Micromachined fountain pen for atomic force microscope-based nanopatterning. Appl Phys Lett 85:5361CrossRef Deladi S, Tas NR, Berenschot JW et al (2004) Micromachined fountain pen for atomic force microscope-based nanopatterning. Appl Phys Lett 85:5361CrossRef
Zurück zum Zitat Deladi S, Berenschot JW, Tas NR et al (2005) Fabrication of micromachined fountain pen with in situ characterization possibility of nanoscale surface modification. J Micromech Microeng 15:528–534CrossRef Deladi S, Berenschot JW, Tas NR et al (2005) Fabrication of micromachined fountain pen with in situ characterization possibility of nanoscale surface modification. J Micromech Microeng 15:528–534CrossRef
Zurück zum Zitat Enoksson P, Stemme G, Stemme E (1995) Fluid density sensor based on resonance vibration. Sens Actuators A Phys 47:327–331CrossRef Enoksson P, Stemme G, Stemme E (1995) Fluid density sensor based on resonance vibration. Sens Actuators A Phys 47:327–331CrossRef
Zurück zum Zitat Fakhrabadi MM, Rastgoo A, Ahmadian MT (2013) Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory. Beilstein J Nanotechnol 4(1):771–780CrossRef Fakhrabadi MM, Rastgoo A, Ahmadian MT (2013) Size-dependent characteristics of electrostatically actuated fluid-conveying carbon nanotubes based on modified couple stress theory. Beilstein J Nanotechnol 4(1):771–780CrossRef
Zurück zum Zitat Isaac Hosseini I, Moghimi Zand M, Lotfi M (2016) Dynamic pull-in and snap-through behavior in micro/nano mechanical memories considering squeeze film damping. Microsyst Technol:1–10 Isaac Hosseini I, Moghimi Zand M, Lotfi M (2016) Dynamic pull-in and snap-through behavior in micro/nano mechanical memories considering squeeze film damping. Microsyst Technol:1–10
Zurück zum Zitat Kim K, Ke C, Moldovan N, et al (2003) Massively parallel multi-tip nanoscale writer with fluidic capabilities-Fountain Pen Nanolithography (FPN). In: Proceedings of the 4th international symposium on MEMS and nanotechnology, pp 235–238 Kim K, Ke C, Moldovan N, et al (2003) Massively parallel multi-tip nanoscale writer with fluidic capabilities-Fountain Pen Nanolithography (FPN). In: Proceedings of the 4th international symposium on MEMS and nanotechnology, pp 235–238
Zurück zum Zitat Kim K-H, Moldovan N, Espinosa HD (2005) A nanofountain probe with Sub-100 nm molecular writing resolution. Small 1:632–635CrossRef Kim K-H, Moldovan N, Espinosa HD (2005) A nanofountain probe with Sub-100 nm molecular writing resolution. Small 1:632–635CrossRef
Zurück zum Zitat Kural S, Özkaya E (2015) Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation. J Vib Control. doi:10.1177/1077546315589666 (Epub ahead of print 3 June 2015) Kural S, Özkaya E (2015) Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation. J Vib Control. doi:10.​1177/​1077546315589666​ (Epub ahead of print 3 June 2015)
Zurück zum Zitat Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRef Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64CrossRef
Zurück zum Zitat Legtenberg R, Tilmans HAC (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part I design and fabrication. Sens Actuators A Phys 45:57–66CrossRef Legtenberg R, Tilmans HAC (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators. Part I design and fabrication. Sens Actuators A Phys 45:57–66CrossRef
Zurück zum Zitat Moghimi Zand M (2012) The dynamic pull-in instability and snap-through behavior of initially curved microbeams. Mech Adv Mater Struct 19:485–491CrossRef Moghimi Zand M (2012) The dynamic pull-in instability and snap-through behavior of initially curved microbeams. Mech Adv Mater Struct 19:485–491CrossRef
Zurück zum Zitat Moghimi Zand M, Ahmadian MT (2010) Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc Inst Mech Eng Part C J Mech Eng Sci 224:2037–2047CrossRef Moghimi Zand M, Ahmadian MT (2010) Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc Inst Mech Eng Part C J Mech Eng Sci 224:2037–2047CrossRef
Zurück zum Zitat Moghimi Zand M, Ostadi Moghaddam A (2014) Pull-in instability and vibrations of a beam micro-gyroscope. J Comput Appl Mech 45(1):29–34 Moghimi Zand M, Ostadi Moghaddam A (2014) Pull-in instability and vibrations of a beam micro-gyroscope. J Comput Appl Mech 45(1):29–34
Zurück zum Zitat Moghimi Zand M, Rashidian B, Ahmadian MT (2010) Contact time study of electrostatically actuated microsystems. Sci Iran Mech Eng 17:348–357 Moghimi Zand M, Rashidian B, Ahmadian MT (2010) Contact time study of electrostatically actuated microsystems. Sci Iran Mech Eng 17:348–357
Zurück zum Zitat Najmzadeh M, Haasl S, Enoksson P. Silicon straight tube fluid density sensor. In: 2007 IEEE Sensors. IEEE, pp 1185–1188 Najmzadeh M, Haasl S, Enoksson P. Silicon straight tube fluid density sensor. In: 2007 IEEE Sensors. IEEE, pp 1185–1188
Zurück zum Zitat Nielson GN, Barbastathis G (2006) Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators. J Microelectromech Syst 15:811–821CrossRef Nielson GN, Barbastathis G (2006) Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators. J Microelectromech Syst 15:811–821CrossRef
Zurück zum Zitat Osterberg PM, Senturia SD (1997) Correction To ‘M-test: a test chip for mems material property measurement using electrostatically actuated test structures’. J Microelectromech Syst 6:286CrossRef Osterberg PM, Senturia SD (1997) Correction To ‘M-test: a test chip for mems material property measurement using electrostatically actuated test structures’. J Microelectromech Syst 6:286CrossRef
Zurück zum Zitat Paidoussis MP (2014) Fluid–structure interactions: slender structures and axial flow, vol 1, 2nd edn. Academic Press, London, p 867 Paidoussis MP (2014) Fluid–structure interactions: slender structures and axial flow, vol 1, 2nd edn. Academic Press, London, p 867
Zurück zum Zitat Pamidighantam S, Puers R, Baert K et al (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. J Micromech Microeng 12:458–464CrossRef Pamidighantam S, Puers R, Baert K et al (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions. J Micromech Microeng 12:458–464CrossRef
Zurück zum Zitat Reddy JN (2004) An introduction to nonlinear finite element analysis, 1st edn. Oxford University Press, London, p 463CrossRefMATH Reddy JN (2004) An introduction to nonlinear finite element analysis, 1st edn. Oxford University Press, London, p 463CrossRefMATH
Zurück zum Zitat Rinaldi S, Prabhakar S, Vengallatore S et al (2010) Dynamics of microscale pipes containing internal fluid flow: damping, frequency shift, and stability. J Sound Vib 329:1081–1088CrossRef Rinaldi S, Prabhakar S, Vengallatore S et al (2010) Dynamics of microscale pipes containing internal fluid flow: damping, frequency shift, and stability. J Sound Vib 329:1081–1088CrossRef
Zurück zum Zitat Rochus V, Rixen DJ, Golinval J-C (2005) Electrostatic coupling of MEMS structures: transient simulations and dynamic pull-in. Nonlinear Anal Theory Methods Appl 63:e1619–e1633CrossRefMATH Rochus V, Rixen DJ, Golinval J-C (2005) Electrostatic coupling of MEMS structures: transient simulations and dynamic pull-in. Nonlinear Anal Theory Methods Appl 63:e1619–e1633CrossRefMATH
Zurück zum Zitat Roozbahani MM, Arani NH, Moghimi Zand M et al (2016) Analytical solutions to nonlinear oscillations of micro/nano beams using higher order beam theory. Sci Iran 23:2179–2193 Roozbahani MM, Arani NH, Moghimi Zand M et al (2016) Analytical solutions to nonlinear oscillations of micro/nano beams using higher order beam theory. Sci Iran 23:2179–2193
Zurück zum Zitat Sparks D, Smith R, Cruz V et al (2009) Dynamic and kinematic viscosity measurements with a resonating microtube. Sens Actuators A Phys 149:38–41CrossRef Sparks D, Smith R, Cruz V et al (2009) Dynamic and kinematic viscosity measurements with a resonating microtube. Sens Actuators A Phys 149:38–41CrossRef
Zurück zum Zitat Wang L (2010) Size-dependent vibration characteristics of fluid-conveying microtubes. J Fluids Struct 26:675–684CrossRef Wang L (2010) Size-dependent vibration characteristics of fluid-conveying microtubes. J Fluids Struct 26:675–684CrossRef
Zurück zum Zitat Wang L, Liu HT, Ni Q et al (2013) Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int J Eng Sci 71:92–101CrossRefMathSciNet Wang L, Liu HT, Ni Q et al (2013) Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int J Eng Sci 71:92–101CrossRefMathSciNet
Zurück zum Zitat Zhang J, Meguid SA (2016) Effect of surface energy on the dynamic response and instability of fluid-conveying nanobeams. Eur J Mech A Solids 58:1–9CrossRefMathSciNet Zhang J, Meguid SA (2016) Effect of surface energy on the dynamic response and instability of fluid-conveying nanobeams. Eur J Mech A Solids 58:1–9CrossRefMathSciNet
Metadaten
Titel
Transient behavior and dynamic pull-in instability of electrostatically-actuated fluid-conveying microbeams
verfasst von
Maedeh Lotfi
Mahdi Moghimi Zand
Imman Isaac Hosseini
Mostafa Baghani
Roozbeh Dargazany
Publikationsdatum
07.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 12/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3503-9

Weitere Artikel der Ausgabe 12/2017

Microsystem Technologies 12/2017 Zur Ausgabe

Neuer Inhalt