Skip to main content

2016 | OriginalPaper | Buchkapitel

Transmission-Line Based Metamaterials in Antenna Engineering

verfasst von : Marco A. Antoniades, Hassan Mirzaei, George V. Eleftheriades

Erschienen in: Handbook of Antenna Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, transmission-line-based metamaterials are presented, and their application to the design of passive and active antennas is outlined. Transmission-line metamaterials, also termed negative-refractive-index transmission-line (NRI-TL) metamaterials, are formed by periodically loading a transmission line with lumped-element series capacitors and shunt inductors, and it is shown that they can support both forward and backward waves, as well as standing waves with a zero propagation constant. These rich propagation characteristics form the underlying basis for their use in many antenna applications, including leaky-wave antennas, compact resonant antennas, and multiband antennas. The resonant characteristics of the NRI-TL metamaterial structures reveal how these structures can be designed to offer multiband responses whose resonant frequencies are not harmonically related while offering large degrees of miniaturization. Design equations for rapid prototyping are presented, enabling the simple design of metamaterial antennas to a given specification using standard microwave substrates and loading elements in either fully printed form or surface-mount chip components. A number of passive metamaterial antenna applications are presented, including examples of zeroth-order resonant antennas, negative-order resonant antennas, epsilon-negative antennas, mu-negative antennas, metamaterial dipole antennas, and metamaterial-inspired antennas. Active non-Foster matching networks for small antennas are also presented using negative impedance converters (NICs) and negative impedance inverters (NIIs), and it is demonstrated how these can be applied to metamaterial-inspired antennas. Finally, a new method of implementing reactive non-Foster elements using loss-compensated negative-group-delay (NGD) networks is presented that exhibits improved stability, dispersion, and achievable bandwidth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Albee TK (1976) Broadband VLF loop antenna system. US Patent 3,953,799 Albee TK (1976) Broadband VLF loop antenna system. US Patent 3,953,799
Zurück zum Zitat Albert KP (1973) Broadband antennas systems realized by active circuit conjugate impedance matching. Master’s thesis, Naval Postgraduate School, Monterey. Acc. No. AD769800 Albert KP (1973) Broadband antennas systems realized by active circuit conjugate impedance matching. Master’s thesis, Naval Postgraduate School, Monterey. Acc. No. AD769800
Zurück zum Zitat Alu A, Bilotti F, Engheta N, Vegni L (2007) Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans Antennas Propag 55(1):13–25CrossRef Alu A, Bilotti F, Engheta N, Vegni L (2007) Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans Antennas Propag 55(1):13–25CrossRef
Zurück zum Zitat Antoniades MA (2004) Compact linear metamaterial phase shifters for broadband applications. Master’s thesis, University of Toronto, Toronto Antoniades MA (2004) Compact linear metamaterial phase shifters for broadband applications. Master’s thesis, University of Toronto, Toronto
Zurück zum Zitat Antoniades MA (2009) Microwave devices and antennas based on negative-refractive-index transmission-line metamaterials. Ph D thesis, University of Toronto, Toronto Antoniades MA (2009) Microwave devices and antennas based on negative-refractive-index transmission-line metamaterials. Ph D thesis, University of Toronto, Toronto
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2003) Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Antennas Wirel Propag Lett 2(1):103–106CrossRef Antoniades MA, Eleftheriades GV (2003) Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Antennas Wirel Propag Lett 2(1):103–106CrossRef
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2008a) A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials. IEEE Trans Antennas Propag 56(3):708–721CrossRef Antoniades MA, Eleftheriades GV (2008a) A CPS leaky-wave antenna with reduced beam squinting using NRI-TL metamaterials. IEEE Trans Antennas Propag 56(3):708–721CrossRef
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2008b) A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas Wirel Propag Lett 7:425–428CrossRef Antoniades MA, Eleftheriades GV (2008b) A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas Wirel Propag Lett 7:425–428CrossRef
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2009) A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Antennas Wirel Propag Lett 8:258–261CrossRef Antoniades MA, Eleftheriades GV (2009) A broadband dual-mode monopole antenna using NRI-TL metamaterial loading. IEEE Antennas Wirel Propag Lett 8:258–261CrossRef
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2011a) A multi-band NRI-TL metamaterial-loaded bow-tie antenna. In: Proceedings IEEE AP-S international symposium on antennas and propagation, Spokane, pp 1−4 Antoniades MA, Eleftheriades GV (2011a) A multi-band NRI-TL metamaterial-loaded bow-tie antenna. In: Proceedings IEEE AP-S international symposium on antennas and propagation, Spokane, pp 1−4
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2011b) A NRI-TL metamaterial-loaded bow-tie antenna. In: Proceedings fifth European conference on antennas and propagation, Rome, pp 1−4 Antoniades MA, Eleftheriades GV (2011b) A NRI-TL metamaterial-loaded bow-tie antenna. In: Proceedings fifth European conference on antennas and propagation, Rome, pp 1−4
Zurück zum Zitat Antoniades MA, Eleftheriades GV (2012) Multiband compact printed dipole antennas using NRI-TL metamaterial loading. IEEE Trans Antennas Propag 60(12):5613–5626CrossRef Antoniades MA, Eleftheriades GV (2012) Multiband compact printed dipole antennas using NRI-TL metamaterial loading. IEEE Trans Antennas Propag 60(12):5613–5626CrossRef
Zurück zum Zitat Antoniades MA, Abbosh A, Razali AR (2013) A compact multiband NRI-TL metamaterial-loaded planar antenna for heart failure monitoring. In: Proceedings IEEE AP-S international symposium on antennas and propagation, Orlando, pp 1372−1373 Antoniades MA, Abbosh A, Razali AR (2013) A compact multiband NRI-TL metamaterial-loaded planar antenna for heart failure monitoring. In: Proceedings IEEE AP-S international symposium on antennas and propagation, Orlando, pp 1372−1373
Zurück zum Zitat Baek S, Lim S (2009) Miniaturised zeroth-order antenna on spiral slotted ground plane. Electron Lett 45(20):1012–1014CrossRef Baek S, Lim S (2009) Miniaturised zeroth-order antenna on spiral slotted ground plane. Electron Lett 45(20):1012–1014CrossRef
Zurück zum Zitat Bahr A (1977) On the use of active coupling networks with electrically small receiving antennas. IEEE Trans Antennas Propag 25(6):841–845MathSciNetCrossRef Bahr A (1977) On the use of active coupling networks with electrically small receiving antennas. IEEE Trans Antennas Propag 25(6):841–845MathSciNetCrossRef
Zurück zum Zitat Balanis CA (ed) (2008) Modern antenna handbook. Wiley, Hoboken Balanis CA (ed) (2008) Modern antenna handbook. Wiley, Hoboken
Zurück zum Zitat Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, New York Balanis CA (2012) Advanced engineering electromagnetics, 2nd edn. Wiley, New York
Zurück zum Zitat Bertin G, Bilotti F, Piovano B, Vallauri R, Vegni L (2012) Switched beam antenna employing metamaterial-inspired radiators. IEEE Trans Antennas Propag 60(8):3583–3593CrossRef Bertin G, Bilotti F, Piovano B, Vallauri R, Vegni L (2012) Switched beam antenna employing metamaterial-inspired radiators. IEEE Trans Antennas Propag 60(8):3583–3593CrossRef
Zurück zum Zitat Best SR (2005) The performance properties of electrically small resonant multiple-arm folded wire antennas. IEEE Antennas Propag Mag 47(4):13–27CrossRef Best SR (2005) The performance properties of electrically small resonant multiple-arm folded wire antennas. IEEE Antennas Propag Mag 47(4):13–27CrossRef
Zurück zum Zitat Best SR (2014) The significance of composite right/left-handed (CRLH) transmission-line theory and reactive loading in the design of small antennas. IEEE Antennas Propag Mag 56(4):15–33 Best SR (2014) The significance of composite right/left-handed (CRLH) transmission-line theory and reactive loading in the design of small antennas. IEEE Antennas Propag Mag 56(4):15–33
Zurück zum Zitat Bilotti F, Alu A, Vegni L (2008) Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Trans Antennas Propag 56(6):1640–1647CrossRef Bilotti F, Alu A, Vegni L (2008) Design of miniaturized metamaterial patch antennas with μ-negative loading. IEEE Trans Antennas Propag 56(6):1640–1647CrossRef
Zurück zum Zitat Bit-Babik G, Di Nallo C, Svigelj J, Faraone A (2007) Small wideband antenna with non-Foster loading elements. In: Proceedings International conference on electromagnetics in advanced applications (ICEAA), Torino, Italy, pp 105−107 Bit-Babik G, Di Nallo C, Svigelj J, Faraone A (2007) Small wideband antenna with non-Foster loading elements. In: Proceedings International conference on electromagnetics in advanced applications (ICEAA), Torino, Italy, pp 105−107
Zurück zum Zitat Bode HW (1947) Network analysis and feedback amplifier design. D. Van Nostrand, New York Bode HW (1947) Network analysis and feedback amplifier design. D. Van Nostrand, New York
Zurück zum Zitat Brownlie J (1966) On the stability properties of a negative impedance converter. IEEE Trans Circuit Theory 13(1):98–99CrossRef Brownlie J (1966) On the stability properties of a negative impedance converter. IEEE Trans Circuit Theory 13(1):98–99CrossRef
Zurück zum Zitat Brucher A, Meunier PH, Jarry B, Guilion P, Sussman-Fort SE (1995) Negative resistance monolithic circuits for microwave planar active filter losses compensation. In: Proceedings 25th European microwave conference (EuMC), vol 2, Bologna, Italy, pp 910−915 Brucher A, Meunier PH, Jarry B, Guilion P, Sussman-Fort SE (1995) Negative resistance monolithic circuits for microwave planar active filter losses compensation. In: Proceedings 25th European microwave conference (EuMC), vol 2, Bologna, Italy, pp 910−915
Zurück zum Zitat Caloz C, Itoh T (2003) Novel microwave devices and structures based on the transmission line approach of meta-materials. In: Proceedings IEEE MTT-S international microwave symposium, vol 1, Philadelphia, pp 195−198 Caloz C, Itoh T (2003) Novel microwave devices and structures based on the transmission line approach of meta-materials. In: Proceedings IEEE MTT-S international microwave symposium, vol 1, Philadelphia, pp 195−198
Zurück zum Zitat Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, Hoboken Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, Hoboken
Zurück zum Zitat Capolino F (ed) (2009) Metamaterials handbook: applications of metamaterials. CRC Press, Boca Raton Capolino F (ed) (2009) Metamaterials handbook: applications of metamaterials. CRC Press, Boca Raton
Zurück zum Zitat Chu LJ (1948) Physical limitations of omni-directional antennas. J Appl Phys 19(12):1163–1175CrossRef Chu LJ (1948) Physical limitations of omni-directional antennas. J Appl Phys 19(12):1163–1175CrossRef
Zurück zum Zitat Collin RE (1992) Foundations for microwave engineering, 2nd edn. McGraw-Hill, New York Collin RE (1992) Foundations for microwave engineering, 2nd edn. McGraw-Hill, New York
Zurück zum Zitat Cui TJ, Smith DR, Liu R (eds) (2010) Metamaterials: theory, design, and applications. Springer, New York Cui TJ, Smith DR, Liu R (eds) (2010) Metamaterials: theory, design, and applications. Springer, New York
Zurück zum Zitat Di Nallo C, Bit-Babik G, Faraone A (2007) Wideband antenna using non-Foster loading elements. In: Proceedings IEEE AP-S international symposium antennas on propagation, Honolulu, HI, USA, pp 4501–4504 Di Nallo C, Bit-Babik G, Faraone A (2007) Wideband antenna using non-Foster loading elements. In: Proceedings IEEE AP-S international symposium antennas on propagation, Honolulu, HI, USA, pp 4501–4504
Zurück zum Zitat Dong Y, Itoh T (2010) Miniaturized substrate integrated waveguide slot antennas based on negative order resonance. IEEE Trans Antennas Propag 58(12):3856–3864CrossRef Dong Y, Itoh T (2010) Miniaturized substrate integrated waveguide slot antennas based on negative order resonance. IEEE Trans Antennas Propag 58(12):3856–3864CrossRef
Zurück zum Zitat Dong Y, Toyao H, Itoh T (2011) Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Trans Antennas Propag 59(11):4329–4333CrossRef Dong Y, Toyao H, Itoh T (2011) Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Trans Antennas Propag 59(11):4329–4333CrossRef
Zurück zum Zitat Eleftheriades GV (2007) Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials. IEEE Antennas Propag Mag 49(2):34–51CrossRef Eleftheriades GV (2007) Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials. IEEE Antennas Propag Mag 49(2):34–51CrossRef
Zurück zum Zitat Eleftheriades GV (2009) EM transmission-line metamaterials. Mater Today 12:30–41CrossRef Eleftheriades GV (2009) EM transmission-line metamaterials. Mater Today 12:30–41CrossRef
Zurück zum Zitat Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, Hoboken Eleftheriades GV, Balmain KG (eds) (2005) Negative-refraction metamaterials: fundamental principles and applications. Wiley, Hoboken
Zurück zum Zitat Eleftheriades GV, Iyer AK, Kremer PC (2002) Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans Microw Theory Tech 50(12):2702–2712CrossRef Eleftheriades GV, Iyer AK, Kremer PC (2002) Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans Microw Theory Tech 50(12):2702–2712CrossRef
Zurück zum Zitat Eleftheriades GV, Grbic A, Antoniades MA (2004) Negative-refractive-index transmission-line metamaterials and enabling electromagnetic applications. In: Proceedings IEEE AP-S international symposium antennas on propagation, vol 2, Monterey, pp 1399−1402 Eleftheriades GV, Grbic A, Antoniades MA (2004) Negative-refractive-index transmission-line metamaterials and enabling electromagnetic applications. In: Proceedings IEEE AP-S international symposium antennas on propagation, vol 2, Monterey, pp 1399−1402
Zurück zum Zitat Eleftheriades GV, Antoniades MA, Qureshi F (2007) Antenna applications of negative-refractive-index transmission-line structures. IET Microw Antennas Propag 1(1):12–22CrossRef Eleftheriades GV, Antoniades MA, Qureshi F (2007) Antenna applications of negative-refractive-index transmission-line structures. IET Microw Antennas Propag 1(1):12–22CrossRef
Zurück zum Zitat Elek F, Eleftheriades GV (2005) A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction. New J Phys 7(163):1–18MathSciNet Elek F, Eleftheriades GV (2005) A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction. New J Phys 7(163):1–18MathSciNet
Zurück zum Zitat Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, Hoboken Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. Wiley, Hoboken
Zurück zum Zitat Fano RM (1950) Theoretical limitations on the broadband matching of arbitrary impedances. J Franklin Inst 249(1):57–83CrossRef Fano RM (1950) Theoretical limitations on the broadband matching of arbitrary impedances. J Franklin Inst 249(1):57–83CrossRef
Zurück zum Zitat Goubau G (1976) Multi-element monopole antennas. In: Proceedings ECOM-ARO workshop on electrically small antennas, Ft. Monmouth, pp 63−67 Goubau G (1976) Multi-element monopole antennas. In: Proceedings ECOM-ARO workshop on electrically small antennas, Ft. Monmouth, pp 63−67
Zurück zum Zitat Grbic A, Eleftheriades GV (2002) A backward-wave antenna based on negative refractive index L-C networks. In: Proceedings IEEE AP-S international symposium antennas on propagation, vol 4, San Antonio, pp 340−343 Grbic A, Eleftheriades GV (2002) A backward-wave antenna based on negative refractive index L-C networks. In: Proceedings IEEE AP-S international symposium antennas on propagation, vol 4, San Antonio, pp 340−343
Zurück zum Zitat Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 92(11):117403CrossRef Grbic A, Eleftheriades GV (2004) Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys Rev Lett 92(11):117403CrossRef
Zurück zum Zitat Hakim SS (1965) Some new negative-impedance convertors. Electron Lett 1(1):9–10CrossRef Hakim SS (1965) Some new negative-impedance convertors. Electron Lett 1(1):9–10CrossRef
Zurück zum Zitat Harrington RF (1960) Effect of antenna size on gain, bandwidth and efficiency. J Res Natl Bur Stand 64D(1):1–12MATH Harrington RF (1960) Effect of antenna size on gain, bandwidth and efficiency. J Res Natl Bur Stand 64D(1):1–12MATH
Zurück zum Zitat Harris AD, Myers GA (1968) An investigation of broadband miniature antennas. Technical report AD0677320, Naval Postgraduate School, Monterey Harris AD, Myers GA (1968) An investigation of broadband miniature antennas. Technical report AD0677320, Naval Postgraduate School, Monterey
Zurück zum Zitat Hashemi MRM, Itoh T (2011) Evolution of composite right/left-handed leaky-wave antennas. Proc IEEE 99(10):1746–1754CrossRef Hashemi MRM, Itoh T (2011) Evolution of composite right/left-handed leaky-wave antennas. Proc IEEE 99(10):1746–1754CrossRef
Zurück zum Zitat He Y, Eleftheriades GV (2012) Metamaterial-inspired wideband circular monopole antenna. In: Proceedings IEEE AP-S international symposium antennas on propagation, Chicago, pp 1−2 He Y, Eleftheriades GV (2012) Metamaterial-inspired wideband circular monopole antenna. In: Proceedings IEEE AP-S international symposium antennas on propagation, Chicago, pp 1−2
Zurück zum Zitat Herraiz-Martinez FJ, Gonzalez-Posadas V, Garcia-Munoz LE, Segovia-Vargas D (2008a) Multifrequency and dual-mode patch antennas partially filled with left-handed structures. IEEE Trans Antennas Propag 56(8):2527–2539CrossRef Herraiz-Martinez FJ, Gonzalez-Posadas V, Garcia-Munoz LE, Segovia-Vargas D (2008a) Multifrequency and dual-mode patch antennas partially filled with left-handed structures. IEEE Trans Antennas Propag 56(8):2527–2539CrossRef
Zurück zum Zitat Herraiz-Martinez FJ, Segovia-Vargas D, Garcia-Munoz LE, Gonzalez-Posadas V (2008b) Dual-frequency printed dipole loaded with meta-material particles. In: Proceedings IEEE AP-S international symposium antennas on propagation, San Diego, pp 1−4 Herraiz-Martinez FJ, Segovia-Vargas D, Garcia-Munoz LE, Gonzalez-Posadas V (2008b) Dual-frequency printed dipole loaded with meta-material particles. In: Proceedings IEEE AP-S international symposium antennas on propagation, San Diego, pp 1−4
Zurück zum Zitat Herraiz-Martinez FJ, Hall PS, Liu Q, Segovia-Vargas D (2011) Left-handed wire antennas over ground plane with wideband tuning. IEEE Trans Antennas Propag 59(5):1460–1471CrossRef Herraiz-Martinez FJ, Hall PS, Liu Q, Segovia-Vargas D (2011) Left-handed wire antennas over ground plane with wideband tuning. IEEE Trans Antennas Propag 59(5):1460–1471CrossRef
Zurück zum Zitat Iizuka H, Hall PS (2007) Left-handed dipole antennas and their implementations. IEEE Trans Antennas Propag 55(55):1246–1253CrossRef Iizuka H, Hall PS (2007) Left-handed dipole antennas and their implementations. IEEE Trans Antennas Propag 55(55):1246–1253CrossRef
Zurück zum Zitat Islam R, Eleftheriades GV (2007) Miniaturized microwave components and antennas using negative-refractive-index transmission-line (NRI-TL) metamaterials. Metamaterials (Elsevier) 1:53–61CrossRef Islam R, Eleftheriades GV (2007) Miniaturized microwave components and antennas using negative-refractive-index transmission-line (NRI-TL) metamaterials. Metamaterials (Elsevier) 1:53–61CrossRef
Zurück zum Zitat Islam R, Eleftheriades GV (2012) A review of the microstrip/negative-refractive-index transmission-line coupled-line couplers. IET Microw Antennas Propag 6(1):31–45CrossRef Islam R, Eleftheriades GV (2012) A review of the microstrip/negative-refractive-index transmission-line coupled-line couplers. IET Microw Antennas Propag 6(1):31–45CrossRef
Zurück zum Zitat Iyer AK, Eleftheriades GV (2004) Leaky-wave radiation from planar negative-refractive-index transmission-line metamaterials. In: Proceedings IEEE MTT-S international microwave symposium, vol 2, Forth Worth, pp 1411−1414 Iyer AK, Eleftheriades GV (2004) Leaky-wave radiation from planar negative-refractive-index transmission-line metamaterials. In: Proceedings IEEE MTT-S international microwave symposium, vol 2, Forth Worth, pp 1411−1414
Zurück zum Zitat Iyer AK, Kremer PC, Eleftheriades GV (2003) Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. Opt Express 11(7):696–708CrossRef Iyer AK, Kremer PC, Eleftheriades GV (2003) Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. Opt Express 11(7):696–708CrossRef
Zurück zum Zitat Jin P, Ziolkowski RW (2010) Linearly and circularly polarized, planar, electrically small, metamaterial-engineered dipole antennas. In: Proceedings IEEE AP-S international symposium antennas on propagation, Toronto, pp 1−4 Jin P, Ziolkowski RW (2010) Linearly and circularly polarized, planar, electrically small, metamaterial-engineered dipole antennas. In: Proceedings IEEE AP-S international symposium antennas on propagation, Toronto, pp 1−4
Zurück zum Zitat Kim J, Kim G, Seong W, Choi J (2009) A tunable internal antenna with an epsilon negative zeroth order resonator for DVB-H service. IEEE Trans Antennas Propag 57(12):4014–4017CrossRef Kim J, Kim G, Seong W, Choi J (2009) A tunable internal antenna with an epsilon negative zeroth order resonator for DVB-H service. IEEE Trans Antennas Propag 57(12):4014–4017CrossRef
Zurück zum Zitat Kolev S, Delacressonniere B, Gautier J-L (2001) Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Trans Microw Theory Tech 49(12):2425–2430CrossRef Kolev S, Delacressonniere B, Gautier J-L (2001) Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology. IEEE Trans Microw Theory Tech 49(12):2425–2430CrossRef
Zurück zum Zitat Lai A, Itoh T, Caloz C (2004) Composite right/left-handed transmission line metamaterials. IEEE Microw Mag 5(3):34–50CrossRef Lai A, Itoh T, Caloz C (2004) Composite right/left-handed transmission line metamaterials. IEEE Microw Mag 5(3):34–50CrossRef
Zurück zum Zitat Lai A, Leong KMKH, Itoh T (2007) Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Trans Antennas Propag 55(3):868–876CrossRef Lai A, Leong KMKH, Itoh T (2007) Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Trans Antennas Propag 55(3):868–876CrossRef
Zurück zum Zitat Larky AI (1956) Negative-impedance converter design. Ph D thesis, Stanford University Larky AI (1956) Negative-impedance converter design. Ph D thesis, Stanford University
Zurück zum Zitat Larky AI (1957) Negative-impedance converters. IRE Trans Circuit Theory 4(3):124–131CrossRef Larky AI (1957) Negative-impedance converters. IRE Trans Circuit Theory 4(3):124–131CrossRef
Zurück zum Zitat Lee H-M (2011) A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure. IEEE Antennas Wirel Propag Lett 10:1377–1380CrossRef Lee H-M (2011) A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure. IEEE Antennas Wirel Propag Lett 10:1377–1380CrossRef
Zurück zum Zitat Lee J-G, Lee J-H (2007) Zeroth order resonance loop antenna. IEEE Trans Antennas Propag 55(3):994–997CrossRef Lee J-G, Lee J-H (2007) Zeroth order resonance loop antenna. IEEE Trans Antennas Propag 55(3):994–997CrossRef
Zurück zum Zitat Lee C-J, Leong KMKH, Itoh T (2006) Composite right/left-handed transmission line based compact resonant antennas for RF module integration. IEEE Trans Antennas Propag 54(8):2283–2291CrossRef Lee C-J, Leong KMKH, Itoh T (2006) Composite right/left-handed transmission line based compact resonant antennas for RF module integration. IEEE Trans Antennas Propag 54(8):2283–2291CrossRef
Zurück zum Zitat Linvill JG (1953) Transistor negative-impedance converters. Proc IRE 41(6):725–729CrossRef Linvill JG (1953) Transistor negative-impedance converters. Proc IRE 41(6):725–729CrossRef
Zurück zum Zitat Liu Q, Hall PS, Borja AL (2009) Efficiency of electrically small dipole antennas loaded with left-handed transmission lines. IEEE Trans Antennas Propag 57(10):3009–3017CrossRef Liu Q, Hall PS, Borja AL (2009) Efficiency of electrically small dipole antennas loaded with left-handed transmission lines. IEEE Trans Antennas Propag 57(10):3009–3017CrossRef
Zurück zum Zitat Liu C-C, Chi P-L, Lin Y-D (2012) Compact zeroth-order resonant antenna based on dual-arm spiral configuration. IEEE Antennas Wirel Propag Lett 11:318–321CrossRef Liu C-C, Chi P-L, Lin Y-D (2012) Compact zeroth-order resonant antenna based on dual-arm spiral configuration. IEEE Antennas Wirel Propag Lett 11:318–321CrossRef
Zurück zum Zitat Liu W, Chen ZN, Qing X (2014) Metamaterial-based low-profile broadband mushroom antenna. IEEE Trans Antennas Propag 62(3):1165–1172CrossRef Liu W, Chen ZN, Qing X (2014) Metamaterial-based low-profile broadband mushroom antenna. IEEE Trans Antennas Propag 62(3):1165–1172CrossRef
Zurück zum Zitat Marques R, Martin F, Sorolla M (2007) Metamaterials with negative parameters: theory, design and microwave applications. Wiley, HobokenCrossRef Marques R, Martin F, Sorolla M (2007) Metamaterials with negative parameters: theory, design and microwave applications. Wiley, HobokenCrossRef
Zurück zum Zitat Mehdipour A, Eleftheriades GV (2014) Leaky-wave antennas using negative-refractive-index transmission-line metamaterial supercells. IEEE Trans Antennas Propag 62(8):3929–3942CrossRefMATH Mehdipour A, Eleftheriades GV (2014) Leaky-wave antennas using negative-refractive-index transmission-line metamaterial supercells. IEEE Trans Antennas Propag 62(8):3929–3942CrossRefMATH
Zurück zum Zitat Middlebrook RD (1975) Measurement of loop gain in feedback systems. Int J Electron 38(4):485–512CrossRef Middlebrook RD (1975) Measurement of loop gain in feedback systems. Int J Electron 38(4):485–512CrossRef
Zurück zum Zitat Mirzaei H, Eleftheriades GV (2011a) A wideband metamaterial-inspired compact antenna using embedded non-Foster matching. In: Proceedings IEEE AP-S international symposium antennas on propagation, Spokane, WA, USA, pp 1950–1953 Mirzaei H, Eleftheriades GV (2011a) A wideband metamaterial-inspired compact antenna using embedded non-Foster matching. In: Proceedings IEEE AP-S international symposium antennas on propagation, Spokane, WA, USA, pp 1950–1953
Zurück zum Zitat Mirzaei H, Eleftheriades GV (2011b) A compact frequency-reconfigurable metamaterial-inspired antenna. IEEE Antennas Wirel Propag Lett 10:1154–1157CrossRef Mirzaei H, Eleftheriades GV (2011b) A compact frequency-reconfigurable metamaterial-inspired antenna. IEEE Antennas Wirel Propag Lett 10:1154–1157CrossRef
Zurück zum Zitat Mirzaei H, Eleftheriades GV (2013a) Unilateral non-Foster elements using loss-compensated negative-group-delay networks for guided-wave applications. In: Proceedings IEEE MTT-S international microwave symposium, Seattle, WA, USA, pp 1–4 Mirzaei H, Eleftheriades GV (2013a) Unilateral non-Foster elements using loss-compensated negative-group-delay networks for guided-wave applications. In: Proceedings IEEE MTT-S international microwave symposium, Seattle, WA, USA, pp 1–4
Zurück zum Zitat Mirzaei H, Eleftheriades GV (2013b) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Antennas Propag 61(11):5363–5371CrossRef Mirzaei H, Eleftheriades GV (2013b) A resonant printed monopole antenna with an embedded non-Foster matching network. IEEE Trans Antennas Propag 61(11):5363–5371CrossRef
Zurück zum Zitat Mirzaei H, Eleftheriades GV (2013c) Realizing non-Foster reactive elements using negative-group-delay networks. IEEE Trans Microw Theory Tech 61(12):4322–4332CrossRef Mirzaei H, Eleftheriades GV (2013c) Realizing non-Foster reactive elements using negative-group-delay networks. IEEE Trans Microw Theory Tech 61(12):4322–4332CrossRef
Zurück zum Zitat Mirzaei H, Eleftheriades GV (2014) Realizing non-Foster reactances using negative-group-delay networks and applications to antennas. In: Proceedings IEEE radio wireless symposium (RWS), Newport Beach, CA, USA, pp 58−60 Mirzaei H, Eleftheriades GV (2014) Realizing non-Foster reactances using negative-group-delay networks and applications to antennas. In: Proceedings IEEE radio wireless symposium (RWS), Newport Beach, CA, USA, pp 58−60
Zurück zum Zitat Myers BR (1965) New subclass of negative-impedance convertors with improved gain-product sensitivities. Electron Lett 1(3):68–70CrossRef Myers BR (1965) New subclass of negative-impedance convertors with improved gain-product sensitivities. Electron Lett 1(3):68–70CrossRef
Zurück zum Zitat Nagata M (1965) A simple negative impedance circuit with no internal bias supplies and good linearity. IEEE Trans Circuit Theory 12(3):433–434CrossRef Nagata M (1965) A simple negative impedance circuit with no internal bias supplies and good linearity. IEEE Trans Circuit Theory 12(3):433–434CrossRef
Zurück zum Zitat Niu B-J, Feng Q-Y (2013) Bandwidth enhancement of CPW-fed antenna based on epsilon negative zeroth- and first-order resonators. IEEE Antennas Wirel Propag Lett 12:1125–1128CrossRef Niu B-J, Feng Q-Y (2013) Bandwidth enhancement of CPW-fed antenna based on epsilon negative zeroth- and first-order resonators. IEEE Antennas Wirel Propag Lett 12:1125–1128CrossRef
Zurück zum Zitat Niu B-J, Feng Q-Y, Shu P-L (2013) Epsilon negative zeroth- and first-order resonant antennas with extended bandwidth and high efficiency. IEEE Trans Antennas Propag 61(12):5878–5884CrossRef Niu B-J, Feng Q-Y, Shu P-L (2013) Epsilon negative zeroth- and first-order resonant antennas with extended bandwidth and high efficiency. IEEE Trans Antennas Propag 61(12):5878–5884CrossRef
Zurück zum Zitat Park B-C, Lee J-H (2011) Omnidirectional circularly polarized antenna utilizing zeroth-order resonance of epsilon negative transmission line. IEEE Trans Antennas Propag 59(7):2717–2721CrossRef Park B-C, Lee J-H (2011) Omnidirectional circularly polarized antenna utilizing zeroth-order resonance of epsilon negative transmission line. IEEE Trans Antennas Propag 59(7):2717–2721CrossRef
Zurück zum Zitat Park J-H, Ryu Y-H, Lee J-G, Lee J-H (2007) Epsilon negative zeroth-order resonator antenna. IEEE Trans Antennas Propag 55(12):3710–3712CrossRef Park J-H, Ryu Y-H, Lee J-G, Lee J-H (2007) Epsilon negative zeroth-order resonator antenna. IEEE Trans Antennas Propag 55(12):3710–3712CrossRef
Zurück zum Zitat Park JH, Ryu Y-H, Lee J-H (2010) Mu-zero resonance antenna. IEEE Trans Antennas Propag 58(6):1865–1875CrossRef Park JH, Ryu Y-H, Lee J-H (2010) Mu-zero resonance antenna. IEEE Trans Antennas Propag 58(6):1865–1875CrossRef
Zurück zum Zitat Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969CrossRef Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969CrossRef
Zurück zum Zitat Platzker A, Struble W (1994) Rigorous determination of the stability of linear n-node circuits from network determinants and the appropriate role of the stability factor K of their reduced two-ports. In: Proceedings 3rd international workshop on integrated nonlinear microwave and millimeterwave circuits, Duisburg, Germany, pp 93−107 Platzker A, Struble W (1994) Rigorous determination of the stability of linear n-node circuits from network determinants and the appropriate role of the stability factor K of their reduced two-ports. In: Proceedings 3rd international workshop on integrated nonlinear microwave and millimeterwave circuits, Duisburg, Germany, pp 93−107
Zurück zum Zitat Qureshi F, Antoniades MA, Eleftheriades GV (2005) A compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Antennas Wirel Propag Lett 4:333–336CrossRef Qureshi F, Antoniades MA, Eleftheriades GV (2005) A compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Antennas Wirel Propag Lett 4:333–336CrossRef
Zurück zum Zitat Ryan CGM, Eleftheriades GV (2012) Two compact, wideband, and decoupled meander-line antennas based on metamaterial concepts. IEEE Antennas Wirel Propag Lett 11:1277–1280CrossRef Ryan CGM, Eleftheriades GV (2012) Two compact, wideband, and decoupled meander-line antennas based on metamaterial concepts. IEEE Antennas Wirel Propag Lett 11:1277–1280CrossRef
Zurück zum Zitat Sanada A, Caloz C, Itoh T (2004) Planar distributed structures with negative refractive index. IEEE Trans Microw Theory Tech 52(4):1252–1263CrossRef Sanada A, Caloz C, Itoh T (2004) Planar distributed structures with negative refractive index. IEEE Trans Microw Theory Tech 52(4):1252–1263CrossRef
Zurück zum Zitat Sandberg IW (1960) Synthesis of driving-point impedances with active RC networks. Bell Syst Tech J 39(4):947–962CrossRef Sandberg IW (1960) Synthesis of driving-point impedances with active RC networks. Bell Syst Tech J 39(4):947–962CrossRef
Zurück zum Zitat Schelkunoff SA, Friis HT (1952) Antennas: theory and practice. Wiley, New York, p 309MATH Schelkunoff SA, Friis HT (1952) Antennas: theory and practice. Wiley, New York, p 309MATH
Zurück zum Zitat Schussler M, Freese J, Jakoby R (2004a) Design of compact planar antennas using LH-transmission lines. In: Proceedings IEEE MTT-S international microwave symposium, vol 1, Forth Worth, pp 209−212 Schussler M, Freese J, Jakoby R (2004a) Design of compact planar antennas using LH-transmission lines. In: Proceedings IEEE MTT-S international microwave symposium, vol 1, Forth Worth, pp 209−212
Zurück zum Zitat Schussler M, Oertel M, Fritsche C, Freese J, Jakoby R (2004b) Design of periodically L-C loaded patch antennas. In: Proceedings 27th ESA antenna technology workshop on innovative periodic antennas, Santiago de Compostela Schussler M, Oertel M, Fritsche C, Freese J, Jakoby R (2004b) Design of periodically L-C loaded patch antennas. In: Proceedings 27th ESA antenna technology workshop on innovative periodic antennas, Santiago de Compostela
Zurück zum Zitat Sievenpiper D, Lijun Z, Broas RFJ, Alexopoulos NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Tech 47(11):2059–2074CrossRef Sievenpiper D, Lijun Z, Broas RFJ, Alexopoulos NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microw Theory Tech 47(11):2059–2074CrossRef
Zurück zum Zitat Skahill G, Rudish RM, Piero JA (1998) Electrically small, efficient, wideband, low-noise antenna elements. In: Proceedings antenna application symposium, Monticello, IL, USA, pp 214−231 Skahill G, Rudish RM, Piero JA (1998) Electrically small, efficient, wideband, low-noise antenna elements. In: Proceedings antenna application symposium, Monticello, IL, USA, pp 214−231
Zurück zum Zitat Stearns SD (2011) Non-Foster circuits and stability theory. In: Proceedings IEEE AP-S international symposium antennas on propagation, Spokane, WA, USA, pp 1942–1945 Stearns SD (2011) Non-Foster circuits and stability theory. In: Proceedings IEEE AP-S international symposium antennas on propagation, Spokane, WA, USA, pp 1942–1945
Zurück zum Zitat Stearns SD (2012) Incorrect stability criteria for non-Foster circuits. In: Proceedings IEEE AP-S international symposium antennas on propagation, Chicago, IL, USA, pp 1–4 Stearns SD (2012) Incorrect stability criteria for non-Foster circuits. In: Proceedings IEEE AP-S international symposium antennas on propagation, Chicago, IL, USA, pp 1–4
Zurück zum Zitat Stearns SD (2013) Circuit stability theory for non-Foster circuits. In: Proceedings IEEE MTT-S international microwave symposium, Seattle, WA, USA, pp 1–4 Stearns SD (2013) Circuit stability theory for non-Foster circuits. In: Proceedings IEEE MTT-S international microwave symposium, Seattle, WA, USA, pp 1–4
Zurück zum Zitat Struble W, Platzker A (1993) A rigorous yet simple method for determining stability of linear N-port networks [and MMIC application]. In: Proceedings GaAs IC symposium digest, San Jose, CA, USA, pp 251−254 Struble W, Platzker A (1993) A rigorous yet simple method for determining stability of linear N-port networks [and MMIC application]. In: Proceedings GaAs IC symposium digest, San Jose, CA, USA, pp 251−254
Zurück zum Zitat Sussman-Fort SE (1998) Gyrator-based biquad filters and negative impedance converters for microwaves. Int J RF Microw Comput Aided Eng 8(2):86–101CrossRef Sussman-Fort SE (1998) Gyrator-based biquad filters and negative impedance converters for microwaves. Int J RF Microw Comput Aided Eng 8(2):86–101CrossRef
Zurück zum Zitat Sussman-Fort SE, Rudish RM (2009) Non-Foster impedance matching of electrically-small antennas. IEEE Trans Antennas Propag 57(8):2230–2241CrossRef Sussman-Fort SE, Rudish RM (2009) Non-Foster impedance matching of electrically-small antennas. IEEE Trans Antennas Propag 57(8):2230–2241CrossRef
Zurück zum Zitat Tian M, Visvanathan V, Hantgan J, Kundert K (2001) Striving for small-signal stability. IEEE Circuits Devices Mag 17(1):31–41CrossRef Tian M, Visvanathan V, Hantgan J, Kundert K (2001) Striving for small-signal stability. IEEE Circuits Devices Mag 17(1):31–41CrossRef
Zurück zum Zitat Tretyakov SA, Ermutlu M (2005) Modeling of patch antennas partially loaded with dispersive backward-wave materials. IEEE Antennas Wirel Propag Lett 4:266–269CrossRef Tretyakov SA, Ermutlu M (2005) Modeling of patch antennas partially loaded with dispersive backward-wave materials. IEEE Antennas Wirel Propag Lett 4:266–269CrossRef
Zurück zum Zitat Vaughan R, Bach-Andersen J (2003) Channels, propagation and antennas for mobile communications. IEE, LondonCrossRef Vaughan R, Bach-Andersen J (2003) Channels, propagation and antennas for mobile communications. IEE, LondonCrossRef
Zurück zum Zitat Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ∈ and μ. Soviet Phys Uspekhi 10(4):509–514CrossRef Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ∈ and μ. Soviet Phys Uspekhi 10(4):509–514CrossRef
Zurück zum Zitat Volakis JL (2007) Antenna engineering handbook, 4th edn. McGraw-Hill Professional, New York Volakis JL (2007) Antenna engineering handbook, 4th edn. McGraw-Hill Professional, New York
Zurück zum Zitat Volakis JL, Chen C-C, Fujimoto K (2010) Small antennas: miniaturization techniques & applications. McGraw-Hill Professional, New York Volakis JL, Chen C-C, Fujimoto K (2010) Small antennas: miniaturization techniques & applications. McGraw-Hill Professional, New York
Zurück zum Zitat Wang C, Hu B-J, Zhang X-Y (2010) Compact triband patch antenna with large scale of frequency ratio using CRLH-TL structures. IEEE Antennas Wirel Propag Lett 9:744–747CrossRef Wang C, Hu B-J, Zhang X-Y (2010) Compact triband patch antenna with large scale of frequency ratio using CRLH-TL structures. IEEE Antennas Wirel Propag Lett 9:744–747CrossRef
Zurück zum Zitat Wei K, Zhang Z, Feng Z (2012a) Design of a wideband horizontally polarized omnidirectional printed loop antenna. IEEE Antennas Wirel Propag Lett 11:49–52CrossRef Wei K, Zhang Z, Feng Z (2012a) Design of a wideband horizontally polarized omnidirectional printed loop antenna. IEEE Antennas Wirel Propag Lett 11:49–52CrossRef
Zurück zum Zitat Wei K, Zhang Z, Feng Z, Iskander MF (2012b) A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns. IEEE Trans Antennas Propag 60(6):2702–2710CrossRef Wei K, Zhang Z, Feng Z, Iskander MF (2012b) A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns. IEEE Trans Antennas Propag 60(6):2702–2710CrossRef
Zurück zum Zitat Wheeler HA (1947) Fundamental limitations of small antennas. Proc IRE 35(12):1479–1484CrossRef Wheeler HA (1947) Fundamental limitations of small antennas. Proc IRE 35(12):1479–1484CrossRef
Zurück zum Zitat White CR, Colburn JS, Nagele RG (2012) A non-Foster VHF monopole antenna. IEEE Antennas Wirel Propag Lett 11:584–587CrossRef White CR, Colburn JS, Nagele RG (2012) A non-Foster VHF monopole antenna. IEEE Antennas Wirel Propag Lett 11:584–587CrossRef
Zurück zum Zitat Xu ZA, White CR, Yung MW, Yoon YJ, Hitko DA, Colburn JS (2012) Non-Foster circuit adaptation for stable broadband operation. IEEE Microw Wirel Compon Lett 22(11):571–573CrossRef Xu ZA, White CR, Yung MW, Yoon YJ, Hitko DA, Colburn JS (2012) Non-Foster circuit adaptation for stable broadband operation. IEEE Microw Wirel Compon Lett 22(11):571–573CrossRef
Zurück zum Zitat Yanagisawa T (1957) RC active networks using current inversion type negative impedance converters. IRE Trans Circuit Theory 4(3):140–144CrossRef Yanagisawa T (1957) RC active networks using current inversion type negative impedance converters. IRE Trans Circuit Theory 4(3):140–144CrossRef
Zurück zum Zitat Zedler M, Eleftheriades GV (2011) Anisotropic transmission-line metamaterials for 2-D transformation optics applications. Proc IEEE 99(10):1634–1645CrossRef Zedler M, Eleftheriades GV (2011) Anisotropic transmission-line metamaterials for 2-D transformation optics applications. Proc IEEE 99(10):1634–1645CrossRef
Zurück zum Zitat Zhu J, Eleftheriades GV (2009a) Dual-band metamaterial-inspired small monopole antenna for WiFi applications. Electron Lett 45(22):1104–1106CrossRef Zhu J, Eleftheriades GV (2009a) Dual-band metamaterial-inspired small monopole antenna for WiFi applications. Electron Lett 45(22):1104–1106CrossRef
Zurück zum Zitat Zhu J, Eleftheriades GV (2009b) A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Antennas Wireless Propag Lett 8:295–298CrossRef Zhu J, Eleftheriades GV (2009b) A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Antennas Wireless Propag Lett 8:295–298CrossRef
Zurück zum Zitat Zhu J, Eleftheriades GV (2010) A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas. IEEE Antennas Wireless Propag Lett 9:379–382CrossRef Zhu J, Eleftheriades GV (2010) A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas. IEEE Antennas Wireless Propag Lett 9:379–382CrossRef
Zurück zum Zitat Zhu N, Ziolkowski RW (2012a) Broad-bandwidth, electrically small antenna augmented with an internal non-Foster element. IEEE Antennas Wireless Propag Lett 11:1116–1120CrossRef Zhu N, Ziolkowski RW (2012a) Broad-bandwidth, electrically small antenna augmented with an internal non-Foster element. IEEE Antennas Wireless Propag Lett 11:1116–1120CrossRef
Zurück zum Zitat Zhu N, Ziolkowski RW (2012b) Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna. Appl Phys Lett 101(2):024107CrossRef Zhu N, Ziolkowski RW (2012b) Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna. Appl Phys Lett 101(2):024107CrossRef
Zurück zum Zitat Zhu J, Antoniades MA, Eleftheriades GV (2010) A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans Antennas Propag 58(4):1031–1038CrossRef Zhu J, Antoniades MA, Eleftheriades GV (2010) A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans Antennas Propag 58(4):1031–1038CrossRef
Zurück zum Zitat Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Antennas Propag 54(7):2113–2130CrossRef Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Antennas Propag 54(7):2113–2130CrossRef
Zurück zum Zitat Ziolkowski RW, Tang M-C, Zhu N (2013) An efficient, broad bandwidth, high directivity, electrically small antenna. Microw Opt Tech Lett 55(6):1430–1434CrossRef Ziolkowski RW, Tang M-C, Zhu N (2013) An efficient, broad bandwidth, high directivity, electrically small antenna. Microw Opt Tech Lett 55(6):1430–1434CrossRef
Zurück zum Zitat Zobel OJ (1923) Theory and design of uniform and composite electric wave-filters. Bell Syst Tech J 2(1):1–46CrossRef Zobel OJ (1923) Theory and design of uniform and composite electric wave-filters. Bell Syst Tech J 2(1):1–46CrossRef
Metadaten
Titel
Transmission-Line Based Metamaterials in Antenna Engineering
verfasst von
Marco A. Antoniades
Hassan Mirzaei
George V. Eleftheriades
Copyright-Jahr
2016
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-4560-44-3_21

Neuer Inhalt