Skip to main content
Erschienen in: Colloid and Polymer Science 3/2015

01.03.2015 | Original Contribution

Transport in droplet-hydrogel composites: response to external stimuli

Erschienen in: Colloid and Polymer Science | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Determination of effective transport properties of droplet-hydrogel composites is essential for various applications. The transport of ions through a droplet-hydrogel composite subjected to an electric field is theoretically studied as an initial step toward quantifying the effective transport properties of droplet-hydrogel composites. A three-phase electrokinetic model is used to derive the microscale characteristics of the polyelectrolyte hydrogel, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which encloses the interior fluid. The surface has the thickness of zero and the electrostatic potential ζ. Standard averaging procedures are used to derive the effective governing equation for the current density that captures the macroscopic behavior. The results show that the polymer boundary condition has a modulating impact on the electrical conductivity, and the influence of the boundary condition decreases as the interior fluid viscosity increases. At the limit of the polymer’s no-slip boundary condition, the interior and exterior fluids’ viscosities, Brinkman screening length, and ionic strength have a significant impact on the conductivity. Interestingly, it should be possible to determine the ζ-potential for a droplet-hydrogel composite from measurements of the electrical conductivity with the aid of the formula derived for the conductivity. Finally, the theoretical study for determining the response of droplet-hydrogel composites to an imposed pressure gradient is undertaken, and it is found that the polymer boundary condition has a modulating impact on the response.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kremmer T, Boross L (1979) Gel chromatography: theory, methodology, applications Wiley-Interscience publication. Wiley Kremmer T, Boross L (1979) Gel chromatography: theory, methodology, applications Wiley-Interscience publication. Wiley
2.
Zurück zum Zitat Osada Y, Gong JP, Tanaka Y (2004) Polymer gels. J Macromol Sci, Polym Rev 44(1):87–112CrossRef Osada Y, Gong JP, Tanaka Y (2004) Polymer gels. J Macromol Sci, Polym Rev 44(1):87–112CrossRef
3.
Zurück zum Zitat Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York
4.
Zurück zum Zitat Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53(3):321–339CrossRef Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53(3):321–339CrossRef
5.
Zurück zum Zitat Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28:134–146CrossRef Brandl F, Sommer F, Goepferich A (2007) Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28:134–146CrossRef
6.
Zurück zum Zitat Bar-Cohen Y (2007) Electroactive polymers as an enabling materials technology. Proc IMechE Part G: J Aerospace Eng 221:553–564CrossRef Bar-Cohen Y (2007) Electroactive polymers as an enabling materials technology. Proc IMechE Part G: J Aerospace Eng 221:553–564CrossRef
7.
Zurück zum Zitat Calvert P (2004) Electroactive polymer (EAP) actuators as artificial muscles—reality, potential and challenges chapter 5 2nd edition. SPIE Press, Bellingham, pp 151–170CrossRef Calvert P (2004) Electroactive polymer (EAP) actuators as artificial muscles—reality, potential and challenges chapter 5 2nd edition. SPIE Press, Bellingham, pp 151–170CrossRef
8.
Zurück zum Zitat Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Delivery Rev 56(2):199–210CrossRef Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Delivery Rev 56(2):199–210CrossRef
9.
Zurück zum Zitat Kim D, Beebe DJ (2007) Hydrogel-based reconfigurable components for microfluidic devices. Lab Chip 7(2):193–198CrossRef Kim D, Beebe DJ (2007) Hydrogel-based reconfigurable components for microfluidic devices. Lab Chip 7(2):193–198CrossRef
10.
Zurück zum Zitat Dhopeshwarkar R, Sun L, Crooks RM (2005) Electrokinetic concentration enrichment within a microfluidic microplug, device using a hydrogel. Lab Chip 5:1148–1154CrossRef Dhopeshwarkar R, Sun L, Crooks RM (2005) Electrokinetic concentration enrichment within a microfluidic microplug, device using a hydrogel. Lab Chip 5:1148–1154CrossRef
11.
Zurück zum Zitat Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(2):588– 590CrossRef Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(2):588– 590CrossRef
12.
Zurück zum Zitat Matos MA, White LA , Tilton RD (2006) Electroosmotically enhanced mass transfer through polyacrylamide gels. J Colloid Interface Sci 300:429–436CrossRef Matos MA, White LA , Tilton RD (2006) Electroosmotically enhanced mass transfer through polyacrylamide gels. J Colloid Interface Sci 300:429–436CrossRef
13.
Zurück zum Zitat Matos MA, White LR, Tilton RD (2008) Enhanced mixing in polyacrylamide gels containing embedded silica pumps, nanoparticles as internal electroosmotic. Colloid Surf B Biointerf 61(2):262–269CrossRef Matos MA, White LR, Tilton RD (2008) Enhanced mixing in polyacrylamide gels containing embedded silica pumps, nanoparticles as internal electroosmotic. Colloid Surf B Biointerf 61(2):262–269CrossRef
14.
Zurück zum Zitat Huang G, Zhang X, Xiao Z, Zhang Q, Zhou J, Xu F, Lu TJ (2012) Cell-encapsulating microfluidic stability, hydrogels with enhanced mechanical. Soft Matter 8:10687–10694CrossRef Huang G, Zhang X, Xiao Z, Zhang Q, Zhou J, Xu F, Lu TJ (2012) Cell-encapsulating microfluidic stability, hydrogels with enhanced mechanical. Soft Matter 8:10687–10694CrossRef
15.
Zurück zum Zitat Komarova GA, Starodubtsev SG, Lozinsky VV, Nasimova IR, Khokhlov AR (2013) Intelligent gels and cryogels with embedded emulsions of various oils. J Appl Polym Sci 127(4):2703– 2709CrossRef Komarova GA, Starodubtsev SG, Lozinsky VV, Nasimova IR, Khokhlov AR (2013) Intelligent gels and cryogels with embedded emulsions of various oils. J Appl Polym Sci 127(4):2703– 2709CrossRef
16.
Zurück zum Zitat Sala G, van Vliet T, Cohen Stuart MA, van Aken GA, van de Velde F (2009) Deformation and fracture of emulsion-filled gels: effect of oil content and deformation speed. Food Hydrocolloid 23(5):1381–1393CrossRef Sala G, van Vliet T, Cohen Stuart MA, van Aken GA, van de Velde F (2009) Deformation and fracture of emulsion-filled gels: effect of oil content and deformation speed. Food Hydrocolloid 23(5):1381–1393CrossRef
17.
Zurück zum Zitat Shingel K, Roberge C, Zabeida O, Robert M, Klemberg-Sapieha JE (2009) Solid emulsion gel as a novel construct for topical applications: synthesis, morphology and mechanical properties. J Mater Sci - Mater Med 20:681–689CrossRef Shingel K, Roberge C, Zabeida O, Robert M, Klemberg-Sapieha JE (2009) Solid emulsion gel as a novel construct for topical applications: synthesis, morphology and mechanical properties. J Mater Sci - Mater Med 20:681–689CrossRef
18.
Zurück zum Zitat Sala G, van Aken GA, Stuart MAC, van de Velde F (2007) Effect of droplet-matrix interactions on large deformation properties of emulsion-filled gels. J Texture Stud 38(4):511–535CrossRef Sala G, van Aken GA, Stuart MAC, van de Velde F (2007) Effect of droplet-matrix interactions on large deformation properties of emulsion-filled gels. J Texture Stud 38(4):511–535CrossRef
19.
Zurück zum Zitat Chojnicka A, Sala G, de Kruif CG, van de Velde F (2009) The interactions between oil droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels. Food Hydrocolloid 23(3):1038–1046CrossRef Chojnicka A, Sala G, de Kruif CG, van de Velde F (2009) The interactions between oil droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels. Food Hydrocolloid 23(3):1038–1046CrossRef
20.
Zurück zum Zitat Mohammadi A (2013) Electric-field-induced response of a droplet embedded in a polyelectrolyte gel. Phys Fluids 25(8):082004CrossRef Mohammadi A (2013) Electric-field-induced response of a droplet embedded in a polyelectrolyte gel. Phys Fluids 25(8):082004CrossRef
21.
Zurück zum Zitat Mohammadi A (2014) Electrokinetic mixing and displacement of charged droplets in hydrogels. Trans Porous Med 104(3):469– 499CrossRef Mohammadi A (2014) Electrokinetic mixing and displacement of charged droplets in hydrogels. Trans Porous Med 104(3):469– 499CrossRef
22.
Zurück zum Zitat Mizuno D, Kimura Y, Hayakawa R (2001) Electrophoretic microrheology in a dilute lamellar phase of a nonionic surfactant. Phys Rev Lett 87 (8):088104CrossRef Mizuno D, Kimura Y, Hayakawa R (2001) Electrophoretic microrheology in a dilute lamellar phase of a nonionic surfactant. Phys Rev Lett 87 (8):088104CrossRef
23.
Zurück zum Zitat Mohammadi A (2011) Dynamics of colloidal inclusions in hydrogels. Ph.D. thesis, chapter 5, McGill university Mohammadi A (2011) Dynamics of colloidal inclusions in hydrogels. Ph.D. thesis, chapter 5, McGill university
24.
Zurück zum Zitat Bradshaw-Hajek BH, Miklavcic SJ, White LR (2008) Frequency-dependent electrical conductivity of concentrated dispersions of spherical colloidal particles. Langmuir 24(9):4512– 4522CrossRef Bradshaw-Hajek BH, Miklavcic SJ, White LR (2008) Frequency-dependent electrical conductivity of concentrated dispersions of spherical colloidal particles. Langmuir 24(9):4512– 4522CrossRef
25.
Zurück zum Zitat Bordi F, Cametti C, Chen SH, Rouch J, Sciortino F, Tartaglia P (1996) The static electrical conductivity of water-in-oil microemulsions below percolation threshold. Physica A 231(1–3):161–167CrossRef Bordi F, Cametti C, Chen SH, Rouch J, Sciortino F, Tartaglia P (1996) The static electrical conductivity of water-in-oil microemulsions below percolation threshold. Physica A 231(1–3):161–167CrossRef
26.
Zurück zum Zitat Zhao H, Zhai S (2013) The influence of dielectric decrement on electrokinetics. J Fluid Mech 724:69–94. 6CrossRef Zhao H, Zhai S (2013) The influence of dielectric decrement on electrokinetics. J Fluid Mech 724:69–94. 6CrossRef
27.
Zurück zum Zitat Stout RF, Khair AS (2014) A continuum approach to predicting electrophoretic mobility reversals. J Fluid Mech 752(8) Stout RF, Khair AS (2014) A continuum approach to predicting electrophoretic mobility reversals. J Fluid Mech 752(8)
28.
Zurück zum Zitat Kosto KB, Deen WM (2004) Diffusivities of macromolecules in composite hydrogels. AIChE J 50(11):2648–2658CrossRef Kosto KB, Deen WM (2004) Diffusivities of macromolecules in composite hydrogels. AIChE J 50(11):2648–2658CrossRef
29.
Zurück zum Zitat Amsden B (2001) Diffusion in polyelectrolyte hydrogels: application of an obstruction-scaling model to solute diffusion in calcium alginate. Macromolecules 34(5):1430–1435CrossRef Amsden B (2001) Diffusion in polyelectrolyte hydrogels: application of an obstruction-scaling model to solute diffusion in calcium alginate. Macromolecules 34(5):1430–1435CrossRef
30.
Zurück zum Zitat Bandopadhyay A, Hossain SS, Chakraborty S (2014) Ionic size dependent electroviscous effects in ion-selective nanopores. Langmuir 30(24):7251–7258CrossRef Bandopadhyay A, Hossain SS, Chakraborty S (2014) Ionic size dependent electroviscous effects in ion-selective nanopores. Langmuir 30(24):7251–7258CrossRef
31.
Zurück zum Zitat Darwish MIM, van der Maarel JRC, Zitha PLJ (2004) Ionic transport in polyelectrolyte gels: model and nmr investigations. Macromolecules 37(6):2307–2312CrossRef Darwish MIM, van der Maarel JRC, Zitha PLJ (2004) Ionic transport in polyelectrolyte gels: model and nmr investigations. Macromolecules 37(6):2307–2312CrossRef
32.
Zurück zum Zitat O’Brien RW (1981) The electrical conductivity of a dilute suspension of charged particles. J Colloid Interface Sci 81(1):234–248CrossRef O’Brien RW (1981) The electrical conductivity of a dilute suspension of charged particles. J Colloid Interface Sci 81(1):234–248CrossRef
33.
Zurück zum Zitat Cox RG (1969) The deformation of a drop in a general time-dependent fluid flow. J Fluid Mech 37:601–623CrossRef Cox RG (1969) The deformation of a drop in a general time-dependent fluid flow. J Fluid Mech 37:601–623CrossRef
34.
Zurück zum Zitat Gary Leal L (2007) Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press, New YorkCrossRef Gary Leal L (2007) Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge University Press, New YorkCrossRef
35.
Zurück zum Zitat O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc, Faraday Trans 2 74:1607–1626CrossRef O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc, Faraday Trans 2 74:1607–1626CrossRef
36.
Zurück zum Zitat Mangelsdorf CS, White LR (1993) Low-zeta-potential analytic solution for the electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J Colloid Interface Sci 160(2):275–287CrossRef Mangelsdorf CS, White LR (1993) Low-zeta-potential analytic solution for the electrophoretic mobility of a spherical colloidal particle in an oscillating electric field. J Colloid Interface Sci 160(2):275–287CrossRef
37.
Zurück zum Zitat Ohshima H, Healy TW, White LR (1984) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans 2 80:1643CrossRef Ohshima H, Healy TW, White LR (1984) Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions. J Chem Soc Faraday Trans 2 80:1643CrossRef
38.
Zurück zum Zitat Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York
39.
Zurück zum Zitat Sasaki S (2006) Elastic properties of swollen polyelectrolyte gels in aqueous salt solutions. J Chem Phys 124:094903CrossRef Sasaki S (2006) Elastic properties of swollen polyelectrolyte gels in aqueous salt solutions. J Chem Phys 124:094903CrossRef
40.
Zurück zum Zitat Sasaki SH, Ojima H, Yataki K, Maeda H (1995) Flory exponent of the chain of the expanding polyion gel. J Chem Phys 102(24):9694–9699CrossRef Sasaki SH, Ojima H, Yataki K, Maeda H (1995) Flory exponent of the chain of the expanding polyion gel. J Chem Phys 102(24):9694–9699CrossRef
41.
Zurück zum Zitat Gundogan N, Melekaslan D, Okay O (2002) Rubber elasticity of poly(n-isopropylacrylamide) gels at various charge densities. Macromolecules 35:5616–5622CrossRef Gundogan N, Melekaslan D, Okay O (2002) Rubber elasticity of poly(n-isopropylacrylamide) gels at various charge densities. Macromolecules 35:5616–5622CrossRef
42.
Zurück zum Zitat Okay O, Durmaz S (2002) Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels. Polymer 43:1215–1221CrossRef Okay O, Durmaz S (2002) Charge density dependence of elastic modulus of strong polyelectrolyte hydrogels. Polymer 43:1215–1221CrossRef
43.
Zurück zum Zitat Raphael E (1990) Annealed and quenched polyelectrolytes. Europhys Lett 13(7):623–628CrossRef Raphael E (1990) Annealed and quenched polyelectrolytes. Europhys Lett 13(7):623–628CrossRef
44.
Zurück zum Zitat Guo X, Ballauff M (2001) Spherical polyelectrolyte brushes: Comparison between annealed and quenched brushes. Phys Rev E 64(5):051406CrossRef Guo X, Ballauff M (2001) Spherical polyelectrolyte brushes: Comparison between annealed and quenched brushes. Phys Rev E 64(5):051406CrossRef
45.
Zurück zum Zitat Fiumefreddo A, Utz M (2010) Bulk streaming potential in poly(acrylic acid)/poly(acrylamide) hydrogels. Macromolecules 6(6):2401–2420 Fiumefreddo A, Utz M (2010) Bulk streaming potential in poly(acrylic acid)/poly(acrylamide) hydrogels. Macromolecules 6(6):2401–2420
46.
Zurück zum Zitat DeLacey EHB, White LR (1981) Dielectric response and conductivity of dilute suspensions of colloidal particles. J Chem Soc, Faraday Trans 2 77(11):2007–2039CrossRef DeLacey EHB, White LR (1981) Dielectric response and conductivity of dilute suspensions of colloidal particles. J Chem Soc, Faraday Trans 2 77(11):2007–2039CrossRef
47.
Zurück zum Zitat Ahualli S, Delgado A, Miklavcic SJ, White LR (2006) Dynamic electrophoretic mobility of concentrated dispersions of spherical colloidal particles. on the consistent use of the cell model. Langmuir 22(16):7041–7051CrossRef Ahualli S, Delgado A, Miklavcic SJ, White LR (2006) Dynamic electrophoretic mobility of concentrated dispersions of spherical colloidal particles. on the consistent use of the cell model. Langmuir 22(16):7041–7051CrossRef
48.
Zurück zum Zitat Bradshaw-Hajek BH, Miklavcic SJ, White LR (2010) High-frequency behavior of the dynamic mobility and dielectric response of concentrated colloidal dispersions. Langmuir 26(3):1656–1665CrossRef Bradshaw-Hajek BH, Miklavcic SJ, White LR (2010) High-frequency behavior of the dynamic mobility and dielectric response of concentrated colloidal dispersions. Langmuir 26(3):1656–1665CrossRef
49.
Zurück zum Zitat Bradshaw-Hajek BH, Miklavcic SJ, White LR (2010) The actual dielectric response function for a colloidal suspension of spherical particles. Langmuir 26(11):7875–7884CrossRef Bradshaw-Hajek BH, Miklavcic SJ, White LR (2010) The actual dielectric response function for a colloidal suspension of spherical particles. Langmuir 26(11):7875–7884CrossRef
50.
Zurück zum Zitat O’Brien RW, Perrins WT (1984) The electrical conductivity of a porous plug. J Colloid Interface Sci 99(1):20–31CrossRef O’Brien RW, Perrins WT (1984) The electrical conductivity of a porous plug. J Colloid Interface Sci 99(1):20–31CrossRef
51.
Zurück zum Zitat Looker JR, Carnie SL (2006) Homogenization of the ionic transport equations in periodic porous media. Trans Porous Med 65:107–131CrossRef Looker JR, Carnie SL (2006) Homogenization of the ionic transport equations in periodic porous media. Trans Porous Med 65:107–131CrossRef
52.
Zurück zum Zitat Simhadri JJ, Stretz HA, Oyanader M, Arce PE (2010) Role of nanocomposite hydrogel morphology in the electrophoretic separation of biomolecules: a review. Ind Eng Chem Res 49(23):11866–11877CrossRef Simhadri JJ, Stretz HA, Oyanader M, Arce PE (2010) Role of nanocomposite hydrogel morphology in the electrophoretic separation of biomolecules: a review. Ind Eng Chem Res 49(23):11866–11877CrossRef
53.
Zurück zum Zitat Russel WB, Schowalter WR, Saville DA (1989) Colloidal dispersions. Cambridge University Press, CambridgeCrossRef Russel WB, Schowalter WR, Saville DA (1989) Colloidal dispersions. Cambridge University Press, CambridgeCrossRef
54.
Zurück zum Zitat Lin KL, Osseo-Asare K (1984) Electrophoretic mobility of oil drops in the presence of solvent extraction reagents. Solvent Extr Ion Exch 2(3):365–380CrossRef Lin KL, Osseo-Asare K (1984) Electrophoretic mobility of oil drops in the presence of solvent extraction reagents. Solvent Extr Ion Exch 2(3):365–380CrossRef
55.
Zurück zum Zitat Beaman DK, Robertson EJ, Richmond GL (2012) Ordered polyelectrolyte assembly at the oil-water interface. Proc Natl Acad Sci 109(9):3226–3231CrossRef Beaman DK, Robertson EJ, Richmond GL (2012) Ordered polyelectrolyte assembly at the oil-water interface. Proc Natl Acad Sci 109(9):3226–3231CrossRef
56.
Zurück zum Zitat Leunissen ME, van Blaaderen A, Hollingsworth AD, Sullivan MT, Chaikin PM (2007) Electrostatics at the oil-water interface, stability, and order in emulsions and colloids. Proc Natl Acad Sci 104(8):2585–2590CrossRef Leunissen ME, van Blaaderen A, Hollingsworth AD, Sullivan MT, Chaikin PM (2007) Electrostatics at the oil-water interface, stability, and order in emulsions and colloids. Proc Natl Acad Sci 104(8):2585–2590CrossRef
57.
Zurück zum Zitat Bhosale PS, Chun J, Berg JC (2011) Electroacoustics of particles dispersed in polymer gel. Langmuir 27(12):7376–7379CrossRef Bhosale PS, Chun J, Berg JC (2011) Electroacoustics of particles dispersed in polymer gel. Langmuir 27(12):7376–7379CrossRef
58.
Zurück zum Zitat Bhosale PS, Berg JC (2010) Acoustic spectroscopy of colloids dispersed in a polymer gel system. Langmuir 26(18):14423–14426CrossRef Bhosale PS, Berg JC (2010) Acoustic spectroscopy of colloids dispersed in a polymer gel system. Langmuir 26(18):14423–14426CrossRef
59.
Zurück zum Zitat Xie G, Okada T (1995) Water transport behavior in nafion 117 membranes. J Electrochem Soc 142(9):3057–3062CrossRef Xie G, Okada T (1995) Water transport behavior in nafion 117 membranes. J Electrochem Soc 142(9):3057–3062CrossRef
Metadaten
Titel
Transport in droplet-hydrogel composites: response to external stimuli
Publikationsdatum
01.03.2015
Erschienen in
Colloid and Polymer Science / Ausgabe 3/2015
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-014-3473-8

Weitere Artikel der Ausgabe 3/2015

Colloid and Polymer Science 3/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.