Skip to main content

2014 | OriginalPaper | Buchkapitel

18. Transport in Nanoconfinement and Within Blood Vessel Wall

verfasst von : A. Ziemys, N. Filipovic, M. Ferrari, M. Kojic

Erschienen in: Computational Surgery and Dual Training

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The transport of matter is the fundamental biomechanical process in living organisms. It occurs on all time and length scales, from picoseconds to days and from molecular to organ levels. The role of computer modeling is to help elucidating the basic mechanisms in the transport phenomena, investigated experimentally under laboratory and clinical conditions.
In this report we briefly present computational approaches to model transport on small—nanoscale, within nanoconfinement, and on macroscale—considering transport of Low-Density Lipoprotein (LDL) within blood in arterial vessel and within blood vessel tissue. The results illustrate important surface effects on diffusion of molecules when dimensions of diffusion domain are comparable to those of the transporting molecules. On the other hand, the transport model of LDL in the vessel lumen and through tissue and the model of plaque initiation can help in development of drugs and procedures in treating atherosclerosis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grattoni A, Fine D, Ziemys A, Gill J, Zabre E, Goodall R, Ferrari M (2010) Nanochannel systems for personalized therapy and laboratory diagnostics. Curr Pharm Biotechnol 11(4):343–365CrossRef Grattoni A, Fine D, Ziemys A, Gill J, Zabre E, Goodall R, Ferrari M (2010) Nanochannel systems for personalized therapy and laboratory diagnostics. Curr Pharm Biotechnol 11(4):343–365CrossRef
2.
Zurück zum Zitat Gardeniers H, Berg A (2004) Micro-and nanofluidic devices for environmental and biomedical applications. Int J Environ Anal Chem 84(11):809–819CrossRef Gardeniers H, Berg A (2004) Micro-and nanofluidic devices for environmental and biomedical applications. Int J Environ Anal Chem 84(11):809–819CrossRef
3.
Zurück zum Zitat Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes-state of their development and perspective. Micropor Mesopor Mater 38(1):3–24CrossRef Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes-state of their development and perspective. Micropor Mesopor Mater 38(1):3–24CrossRef
4.
Zurück zum Zitat Hoffman A (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12CrossRef Hoffman A (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12CrossRef
5.
Zurück zum Zitat Karniadakis G, Beskok A, Aluru NR (2005) Microflows and nanoflows : fundamentals and simulation. Springer, New York Karniadakis G, Beskok A, Aluru NR (2005) Microflows and nanoflows : fundamentals and simulation. Springer, New York
6.
Zurück zum Zitat English A, Dole M (1950) Diffusion of sucrose in supersaturated solutions. J Am Chem Soc 72(7):3261–3267CrossRef English A, Dole M (1950) Diffusion of sucrose in supersaturated solutions. J Am Chem Soc 72(7):3261–3267CrossRef
7.
Zurück zum Zitat Alpert S, Banks G (1976) The concentration dependence of the hemoglobin mutual diffusion coefficient. Biophys Chem 4(3):287–296CrossRef Alpert S, Banks G (1976) The concentration dependence of the hemoglobin mutual diffusion coefficient. Biophys Chem 4(3):287–296CrossRef
8.
Zurück zum Zitat Ziemys A, Grattoni A, Fine D, Hussain F, Ferrari M (2010) Confinement effects on monosaccharide transport in nanochannels. J Phys Chem B 114:132–137CrossRef Ziemys A, Grattoni A, Fine D, Hussain F, Ferrari M (2010) Confinement effects on monosaccharide transport in nanochannels. J Phys Chem B 114:132–137CrossRef
9.
Zurück zum Zitat Hosoda M, Sakai K, Takagi K (1998) Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy. Phys Rev E 58(5):6275–6280CrossRef Hosoda M, Sakai K, Takagi K (1998) Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy. Phys Rev E 58(5):6275–6280CrossRef
10.
Zurück zum Zitat Holmqvist P, Dhont J, Lang P (2006) Anisotropy of Brownian motion caused only by hydrodynamic interaction with a wall. Phys Rev E 74(2):21402–21407CrossRef Holmqvist P, Dhont J, Lang P (2006) Anisotropy of Brownian motion caused only by hydrodynamic interaction with a wall. Phys Rev E 74(2):21402–21407CrossRef
11.
Zurück zum Zitat Grattoni A, Shen H, Fine D, Ziemys A, Gill J, Hudson L, Hosali S, Goodall R, Liu X, Ferrari M (2011) Nanochannel technology for constant delivery of chemotherapeutics: beyond metronomic administration. Pharm Res 28:292–300 Grattoni A, Shen H, Fine D, Ziemys A, Gill J, Hudson L, Hosali S, Goodall R, Liu X, Ferrari M (2011) Nanochannel technology for constant delivery of chemotherapeutics: beyond metronomic administration. Pharm Res 28:292–300
12.
Zurück zum Zitat Fine D, Grattoni A, Hosali S, Ziemys A, De Rosa E, Gill J, Medema R, Hudson L, Kojic M, Milosevic M (2010) A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery. Lab Chip 10:3074–3083CrossRef Fine D, Grattoni A, Hosali S, Ziemys A, De Rosa E, Gill J, Medema R, Hudson L, Kojic M, Milosevic M (2010) A robust nanofluidic membrane with tunable zero-order release for implantable dose specific drug delivery. Lab Chip 10:3074–3083CrossRef
13.
Zurück zum Zitat Rudd R, Broughton J (1998) Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58(10):5893–5896CrossRef Rudd R, Broughton J (1998) Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys Rev B 58(10):5893–5896CrossRef
14.
Zurück zum Zitat Hou T, Wu X (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134(1):169–189MathSciNetMATHCrossRef Hou T, Wu X (1997) A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys 134(1):169–189MathSciNetMATHCrossRef
15.
Zurück zum Zitat Broughton J, Abraham F, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B 60(4):2391–2403CrossRef Broughton J, Abraham F, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B 60(4):2391–2403CrossRef
16.
Zurück zum Zitat Ogata S, Lidorikis E, Shimojo F, Nakano A, Vashishta P, Kalia R (2001) Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comput Phys Commun 138(2):143–154MATHCrossRef Ogata S, Lidorikis E, Shimojo F, Nakano A, Vashishta P, Kalia R (2001) Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers. Comput Phys Commun 138(2):143–154MATHCrossRef
17.
Zurück zum Zitat Berweger C, van Gunsteren W, Müller-Plathe F (1997) Finite element interpolation for combined classical/quantum mechanical molecular dynamics simulations. J Comput Chem 18(12):1484–1495CrossRef Berweger C, van Gunsteren W, Müller-Plathe F (1997) Finite element interpolation for combined classical/quantum mechanical molecular dynamics simulations. J Comput Chem 18(12):1484–1495CrossRef
18.
Zurück zum Zitat Ziemys A, Kojic M, Milosevic M, Kojic N, Hussain F, Ferrari M, Grattoni A (2011) Hierarchical modeling of diffusive transport through nanochannels by coupling molecular dynamics with finite element method. J Comput Phys 230:5722–5731 Ziemys A, Kojic M, Milosevic M, Kojic N, Hussain F, Ferrari M, Grattoni A (2011) Hierarchical modeling of diffusive transport through nanochannels by coupling molecular dynamics with finite element method. J Comput Phys 230:5722–5731
19.
Zurück zum Zitat MacKerell A Jr, Bashford D, Bellott M, Dunbrack R Jr, Evanseck J, Field M, Fischer S, Gao J, Guo H, Ha S (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616CrossRef MacKerell A Jr, Bashford D, Bellott M, Dunbrack R Jr, Evanseck J, Field M, Fischer S, Gao J, Guo H, Ha S (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616CrossRef
20.
Zurück zum Zitat Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRef Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRef
21.
Zurück zum Zitat Cruz-Chu ER, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110(43):21497–21508CrossRef Cruz-Chu ER, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110(43):21497–21508CrossRef
22.
Zurück zum Zitat Ziemys A, Ferrari M, Cavasotto CN (2009) Molecular modeling of glucose diffusivity in silica nanochannels. J Nanosci Nanotechnol 9:6349–6359CrossRef Ziemys A, Ferrari M, Cavasotto CN (2009) Molecular modeling of glucose diffusivity in silica nanochannels. J Nanosci Nanotechnol 9:6349–6359CrossRef
23.
Zurück zum Zitat Gladden JK, Dole M (1953) Diffusion in supersaturated solution-II: glucose solutions. J Am Chem Soc 75:3900–3904CrossRef Gladden JK, Dole M (1953) Diffusion in supersaturated solution-II: glucose solutions. J Am Chem Soc 75:3900–3904CrossRef
24.
Zurück zum Zitat Bathe K (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs Bathe K (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs
25.
Zurück zum Zitat Hughes T (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York Hughes T (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York
26.
Zurück zum Zitat Kojic M, Filipovic N, Stojanovic B, Kojic N (2008) Computer Modeling in Bioengineering: Theoretical background, examples and software. Wiley, ChichesterCrossRef Kojic M, Filipovic N, Stojanovic B, Kojic N (2008) Computer Modeling in Bioengineering: Theoretical background, examples and software. Wiley, ChichesterCrossRef
27.
Zurück zum Zitat Kojic N, Kojic A, Kojic M (2006) Numerical determination of the solvent diffusion coefficient in a concentrated polymer solution. Commun Numer Method Eng 22(9):1003–1013MATHCrossRef Kojic N, Kojic A, Kojic M (2006) Numerical determination of the solvent diffusion coefficient in a concentrated polymer solution. Commun Numer Method Eng 22(9):1003–1013MATHCrossRef
28.
Zurück zum Zitat Kedem O, Katchalsky A (1961) A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol 45:143–179CrossRef Kedem O, Katchalsky A (1961) A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol 45:143–179CrossRef
29.
Zurück zum Zitat Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys 27:229–246CrossRef Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys 27:229–246CrossRef
30.
Zurück zum Zitat Kojic M, Filipovic N, Slavkovic R, Zivkovic M, Grujovic N (2008) PAK-finite element program for linear and nonlinear analysis of fluids, heat and mass transfer, coupled problems and biomechanics. Faculty of Mechanical Engineering and R&D Center for Bioengineering, Kragujevac Kojic M, Filipovic N, Slavkovic R, Zivkovic M, Grujovic N (2008) PAK-finite element program for linear and nonlinear analysis of fluids, heat and mass transfer, coupled problems and biomechanics. Faculty of Mechanical Engineering and R&D Center for Bioengineering, Kragujevac
31.
Zurück zum Zitat Graphical Interface Software for Finite Element and Discrete Particle Solvers (2010) Internal document. R&D Center for Bioengineering BIOIRC, Kragujevac Graphical Interface Software for Finite Element and Discrete Particle Solvers (2010) Internal document. R&D Center for Bioengineering BIOIRC, Kragujevac
32.
Zurück zum Zitat Ross R (1993) Atherosclerosis: a defense mechanism gone awry. Am J Pathol 143:987–1002 Ross R (1993) Atherosclerosis: a defense mechanism gone awry. Am J Pathol 143:987–1002
33.
Zurück zum Zitat Calvez V, Abderrhaman E, Meunier N, Raoult A (2008) Mathematical modelling of the atherosclerotic plaque formation. ESAIM Proc 28:1–12CrossRef Calvez V, Abderrhaman E, Meunier N, Raoult A (2008) Mathematical modelling of the atherosclerotic plaque formation. ESAIM Proc 28:1–12CrossRef
34.
Zurück zum Zitat Boynard M, Calvez V, Hamraoui A, Meunier N, Raoult A (2009) Mathematical modelling of earliest stage of atherosclerosis. In: COMPDYN 2009 - SEECCM 2009, Rhodes Boynard M, Calvez V, Hamraoui A, Meunier N, Raoult A (2009) Mathematical modelling of earliest stage of atherosclerosis. In: COMPDYN 2009 - SEECCM 2009, Rhodes
35.
Zurück zum Zitat Filipovic N, Meunier N, Fotiadis D, Parodi O, Kojic M (2011) Three-dimensional numerical simulation of plaque formation in arteries. In: Computational surgery conference, 26–27 January 2011, Houston Filipovic N, Meunier N, Fotiadis D, Parodi O, Kojic M (2011) Three-dimensional numerical simulation of plaque formation in arteries. In: Computational surgery conference, 26–27 January 2011, Houston
36.
Zurück zum Zitat Filipovic N, Meunier N, Boynard M, Kojic M, Fotiadis D (2010) A 3D computer simulation of plaque formation and development in coronary artery. In: Proceedings of ASME 2010 first global congress on nanoengineering for medicine and biology (NEMB2010), 7–10 February 2010, Houston Filipovic N, Meunier N, Boynard M, Kojic M, Fotiadis D (2010) A 3D computer simulation of plaque formation and development in coronary artery. In: Proceedings of ASME 2010 first global congress on nanoengineering for medicine and biology (NEMB2010), 7–10 February 2010, Houston
37.
Zurück zum Zitat Cheng C, Tempel D, Haperen VR, Baan AVD, Grosveld F, Daemen MJAP, Krams R, Crom DR (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753CrossRef Cheng C, Tempel D, Haperen VR, Baan AVD, Grosveld F, Daemen MJAP, Krams R, Crom DR (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744–2753CrossRef
38.
Zurück zum Zitat Himburg H, Grzybowski D, Hazel A, LaMack J, Li X, Friedman M (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Hear Circ Pysiol 286:1916–1922CrossRef Himburg H, Grzybowski D, Hazel A, LaMack J, Li X, Friedman M (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Hear Circ Pysiol 286:1916–1922CrossRef
39.
Zurück zum Zitat Tarbell JM (2003) Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng 5:79–118CrossRef Tarbell JM (2003) Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng 5:79–118CrossRef
Metadaten
Titel
Transport in Nanoconfinement and Within Blood Vessel Wall
verfasst von
A. Ziemys
N. Filipovic
M. Ferrari
M. Kojic
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-8648-0_18

Neuer Inhalt