Skip to main content
Erschienen in: Journal of Materials Science 11/2015

01.06.2015 | Original Paper

Transport properties and localization of electronic states in graphene nanoribbons with edge absorptions

verfasst von: Y. L. Liu, G. L. Xu, X. W. Zhang

Erschienen in: Journal of Materials Science | Ausgabe 11/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the effect of edge methylene on transport properties in graphene nanoribbons (GNRs) using the recursive green’s function method. The concentration of methylene (w) is defined as the substituted probability of edge dangling bonds. Due to the antiresonance of quasilocalized states, some conductance dips are found when single absorption (w = 0.005 in this work) sits on the edge. Localization analyses of wave functions also confirm this. With w increasing, the conductance is suppressed significantly and transport gap develops near E = 0.0 eV. Conductance suppression is induced by antiresonances between edge scattering centers. Meanwhile, these scattering centers prevent the formation of edge extended states which play an important role in the electronic transport at low energy and consequently the transport gaps develop. We found that a stable gap can be obtained at w = 0.3 and it becomes small as the width of the GNRs increases. An interesting oscillation at transport gaps for armchair edge GNRs is observed and it relates to the geometric symmetry of sample. The physical mechanisms behind the novel phenomenon are still unclear.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jiang C, Wang XF, Zhai MX (2014) Spin negative differential resistance in edge doped zigzag graphene nanoribbons. Carbon 68:406–412CrossRef Jiang C, Wang XF, Zhai MX (2014) Spin negative differential resistance in edge doped zigzag graphene nanoribbons. Carbon 68:406–412CrossRef
2.
Zurück zum Zitat Jung J, MacDonald AH (2014) Accurate tight-binding models for the π bands of bilayer graphene. Phys Rev B 89:035405CrossRef Jung J, MacDonald AH (2014) Accurate tight-binding models for the π bands of bilayer graphene. Phys Rev B 89:035405CrossRef
3.
Zurück zum Zitat Costa ALMT, Meunier V, Girão EC (2014) Electronic transport in three-terminal triangular carbon nanopatches. Nanotechnology 25:045706CrossRef Costa ALMT, Meunier V, Girão EC (2014) Electronic transport in three-terminal triangular carbon nanopatches. Nanotechnology 25:045706CrossRef
4.
Zurück zum Zitat Yan W, He WY et al (2013) Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat Commun 4:2159 (1–7) Yan W, He WY et al (2013) Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat Commun 4:2159 (1–7)
5.
Zurück zum Zitat Rosales L, Pacheco M et al (2008) Transport properties of graphene nanoribbons with side-attached organic molecules. Nanotechnology 19:065402CrossRef Rosales L, Pacheco M et al (2008) Transport properties of graphene nanoribbons with side-attached organic molecules. Nanotechnology 19:065402CrossRef
6.
Zurück zum Zitat Li Z, Qian H et al (2008) Role of symmetry in the transport properties of graphene nanoribbons under bias. Phys Rev Lett 100:206802CrossRef Li Z, Qian H et al (2008) Role of symmetry in the transport properties of graphene nanoribbons under bias. Phys Rev Lett 100:206802CrossRef
7.
Zurück zum Zitat Pereira VM, Castro NAH et al (2010) Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys Rev Lett 105:156603CrossRef Pereira VM, Castro NAH et al (2010) Geometry, mechanics, and electronics of singular structures and wrinkles in graphene. Phys Rev Lett 105:156603CrossRef
8.
Zurück zum Zitat Hicks J, Tejeda A et al (2013) A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat Phys 9:49–54CrossRef Hicks J, Tejeda A et al (2013) A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat Phys 9:49–54CrossRef
9.
Zurück zum Zitat Castro NAH, Guinea F et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef Castro NAH, Guinea F et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRef
10.
Zurück zum Zitat Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8:4373–4379CrossRef Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8:4373–4379CrossRef
11.
Zurück zum Zitat Tkachov G (2009) Dirac fermion quantization on graphene edges: isospin-orbit coupling, zero modes, and spontaneous valley polarization. Phys Rev B 79:045429CrossRef Tkachov G (2009) Dirac fermion quantization on graphene edges: isospin-orbit coupling, zero modes, and spontaneous valley polarization. Phys Rev B 79:045429CrossRef
12.
13.
Zurück zum Zitat Mucciolo ER, Castro NAH, Lewenkopf CH (2009) Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys Rev B 79:075407CrossRef Mucciolo ER, Castro NAH, Lewenkopf CH (2009) Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys Rev B 79:075407CrossRef
14.
Zurück zum Zitat Evaldsson M, Zozoulenko IV et al (2008) Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys Rev B 78:161407CrossRef Evaldsson M, Zozoulenko IV et al (2008) Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Phys Rev B 78:161407CrossRef
15.
Zurück zum Zitat Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 77:085408CrossRef Li TC, Lu SP (2008) Quantum conductance of graphene nanoribbons with edge defects. Phys Rev B 77:085408CrossRef
16.
Zurück zum Zitat Zwierzycki M (2014) Transport properties of rippled graphene. J Phys Condens Matter 26:135303CrossRef Zwierzycki M (2014) Transport properties of rippled graphene. J Phys Condens Matter 26:135303CrossRef
17.
Zurück zum Zitat Pereira VM, Castro NAH (2009) Tight-binding approach to uniaxial strain in graphene. Phys Rev B 80:045401CrossRef Pereira VM, Castro NAH (2009) Tight-binding approach to uniaxial strain in graphene. Phys Rev B 80:045401CrossRef
18.
Zurück zum Zitat Lu YH, Chen W et al (2009) Tuning the electronic structure of graphene by an organic molecule. J Phys Chem B 113:2–5CrossRef Lu YH, Chen W et al (2009) Tuning the electronic structure of graphene by an organic molecule. J Phys Chem B 113:2–5CrossRef
19.
Zurück zum Zitat Zhang Y, Hu JP et al (2008) Quantum blockade and loop currents in graphene with topological defects. Phys Rev B 78:155413CrossRef Zhang Y, Hu JP et al (2008) Quantum blockade and loop currents in graphene with topological defects. Phys Rev B 78:155413CrossRef
20.
Zurück zum Zitat Power SR, Gorman PD et al (2012) Strain-induced modulation of magnetic interactions in graphene. Phys Rev B 86:195423CrossRef Power SR, Gorman PD et al (2012) Strain-induced modulation of magnetic interactions in graphene. Phys Rev B 86:195423CrossRef
21.
Zurück zum Zitat Klos JW, Shylau AA et al (2009) Transition from ballistic to diffusive behavior of graphene ribbons in the presence of warping and charged impurities. Phys Rev B 80:245432CrossRef Klos JW, Shylau AA et al (2009) Transition from ballistic to diffusive behavior of graphene ribbons in the presence of warping and charged impurities. Phys Rev B 80:245432CrossRef
22.
Zurück zum Zitat Atanasov V, Saxena A (2011) Electronic properties of corrugated graphene: the Heisenberg principle and wormhole geometry in the solid state. J Phys Condens Matter 23:175301CrossRef Atanasov V, Saxena A (2011) Electronic properties of corrugated graphene: the Heisenberg principle and wormhole geometry in the solid state. J Phys Condens Matter 23:175301CrossRef
23.
Zurück zum Zitat Vázquez de Parga AL, Calleja F (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100:056807CrossRef Vázquez de Parga AL, Calleja F (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100:056807CrossRef
24.
Zurück zum Zitat Lewenkopf CH, Mucciolo ER (2013) The recursive Green’s function method for graphene. J Comput Electron 12:203–231CrossRef Lewenkopf CH, Mucciolo ER (2013) The recursive Green’s function method for graphene. J Comput Electron 12:203–231CrossRef
25.
Zurück zum Zitat Fernando S, Macucci M et al (1989) Theory for a quantum modulated transistor. J Appl Phys 66:3892–3906CrossRef Fernando S, Macucci M et al (1989) Theory for a quantum modulated transistor. J Appl Phys 66:3892–3906CrossRef
26.
Zurück zum Zitat Lopez Sancho MP, Lopez Sancho JM, Rubio J (1985) Highly convergent schemes for the calculation of bulk and surface Green functions. J Phys F 15:851–858CrossRef Lopez Sancho MP, Lopez Sancho JM, Rubio J (1985) Highly convergent schemes for the calculation of bulk and surface Green functions. J Phys F 15:851–858CrossRef
27.
Zurück zum Zitat Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeCrossRef Datta S (1995) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeCrossRef
28.
Zurück zum Zitat Esther J, Antonio PG et al (2006) Resonant cavities in metallic single-wall nanotubes: Green’s function calculations. Phys Rev B 73:205403CrossRef Esther J, Antonio PG et al (2006) Resonant cavities in metallic single-wall nanotubes: Green’s function calculations. Phys Rev B 73:205403CrossRef
29.
Zurück zum Zitat Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRef Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRef
30.
Zurück zum Zitat He Y, Chen F, Yu WB, Ouyang G, Yang GW (2013) Anomalous interface adhesion of graphene membranes. Sci Rep 3:2660 (1–7) He Y, Chen F, Yu WB, Ouyang G, Yang GW (2013) Anomalous interface adhesion of graphene membranes. Sci Rep 3:2660 (1–7)
31.
Zurück zum Zitat He Y, Yu WB, Ouyang G (2014) Effect of stepped substrates on the interfacial adhesion properties of graphene membranes. Phys Chem Chem Phys 16:11390–11397CrossRef He Y, Yu WB, Ouyang G (2014) Effect of stepped substrates on the interfacial adhesion properties of graphene membranes. Phys Chem Chem Phys 16:11390–11397CrossRef
Metadaten
Titel
Transport properties and localization of electronic states in graphene nanoribbons with edge absorptions
verfasst von
Y. L. Liu
G. L. Xu
X. W. Zhang
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8948-6

Weitere Artikel der Ausgabe 11/2015

Journal of Materials Science 11/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.