Skip to main content

2011 | OriginalPaper | Buchkapitel

Transport Properties in Carbon Nanotubes

verfasst von : Stefano Bellucci, Pasquale Onorato

Erschienen in: Physical Properties of Ceramic and Carbon Nanoscale Structures

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter focuses on the general theory of the electron transport properties of carbon nanotubes, yielding an overview of theoretical models. It is organized in five sections describing the results of the research activity performed in electronic/electrical properties modelling. The first section, in addition to describing the scope of the review and providing an introduction to its content, yields as well a general introduction on carbon nanotubes. Sect. ‘Electronic Structure of Single-Wall Nanotubes’ describes the general theory of the electron transport in carbon nanotubes, starting from the band structure of graphene. Sect. ‘Quantum Transport in Carbon Nanotubes’ focuses on the quantum transport in carbon nanotubes, including ballistic transport, Coulomb-blockade regime, Luttinger Liquid theory. Sect. ‘Results and Experiments’ reports results and experimental evidence of the models decribed. Finally, Sect. ‘Superconducting transition’ addresses the issue of superconductivity transitions in carbon nanotubes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)ADS S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)ADS
2.
Zurück zum Zitat P.L. McEuen, Carbon-based electronics. Nature 393, 15 (1998)ADS P.L. McEuen, Carbon-based electronics. Nature 393, 15 (1998)ADS
3.
Zurück zum Zitat A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32, 335–349 (1976)ADS A. Oberlin, M. Endo, T. Koyama, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32, 335–349 (1976)ADS
4.
Zurück zum Zitat H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60:Buckminsterfullerene. Nature 355, 162–163 (1985)ADS H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60:Buckminsterfullerene. Nature 355, 162–163 (1985)ADS
5.
Zurück zum Zitat T.W. Ebbesen, Carbon nanotubes. Phys. Today 49(6), 26 (1996) T.W. Ebbesen, Carbon nanotubes. Phys. Today 49(6), 26 (1996)
6.
Zurück zum Zitat R.E. Smalley, Discovering the fullerenes. Rev. Mod. Phys. 69, 723 (1997)ADS R.E. Smalley, Discovering the fullerenes. Rev. Mod. Phys. 69, 723 (1997)ADS
7.
Zurück zum Zitat P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Nanotube nanodevice. Science 278, 100 (1997) P.G. Collins, A. Zettl, H. Bando, A. Thess, R.E. Smalley, Nanotube nanodevice. Science 278, 100 (1997)
8.
Zurück zum Zitat A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996)ADS A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996)ADS
9.
Zurück zum Zitat G. Gao, T. Cagin, W.A. Goddard III., Energetics, structure, mechanical and vibrational properties of single walled carbon nanotubes (SWNT). Nanotechnology 9, 184–191 (1998)ADS G. Gao, T. Cagin, W.A. Goddard III., Energetics, structure, mechanical and vibrational properties of single walled carbon nanotubes (SWNT). Nanotechnology 9, 184–191 (1998)ADS
10.
Zurück zum Zitat M. Motta, Y.L. Li, I. Kinloch, A. Windle, Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 5(8), 1529–1533 (2005)ADS M. Motta, Y.L. Li, I. Kinloch, A. Windle, Mechanical properties of continuously spun fibers of carbon nanotubes. Nano Lett. 5(8), 1529–1533 (2005)ADS
11.
Zurück zum Zitat A.A. Puretzky, H. Schittenhelm, X.D. Fan, M.J. Lance, L.F. Allard, D.B. Geohegan, Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys. Rev. B 65(24), 245425 (2002)ADS A.A. Puretzky, H. Schittenhelm, X.D. Fan, M.J. Lance, L.F. Allard, D.B. Geohegan, Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys. Rev. B 65(24), 245425 (2002)ADS
12.
Zurück zum Zitat P.X. Hou, S.T. Xu, Z. Ying, Q.H. Yang, C. Liu, H.M. Cheng, Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41(13), 2471–2476 (2003) P.X. Hou, S.T. Xu, Z. Ying, Q.H. Yang, C. Liu, H.M. Cheng, Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters. Carbon 41(13), 2471–2476 (2003)
13.
Zurück zum Zitat R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998) R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)
14.
Zurück zum Zitat J. González, F. Guinea, M.A.H. Vozmediano, The electronic spectrum of fullerenes from the Dirac equation. Nucl. Phys. B 406, 771 (1993)ADSMATH J. González, F. Guinea, M.A.H. Vozmediano, The electronic spectrum of fullerenes from the Dirac equation. Nucl. Phys. B 406, 771 (1993)ADSMATH
15.
Zurück zum Zitat A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2008)ADS A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2008)ADS
16.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Gregorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)ADS K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Gregorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)ADS
17.
Zurück zum Zitat A.H. Castro Neto, F. Guinea, N.M.R. Peres, Drawing conclusions from grapheme. Phys. World 19, 33 (2006) A.H. Castro Neto, F. Guinea, N.M.R. Peres, Drawing conclusions from grapheme. Phys. World 19, 33 (2006)
18.
Zurück zum Zitat M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in grapheme. Nat. Phys. 2, 620 (2006) M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Chiral tunnelling and the Klein paradox in grapheme. Nat. Phys. 2, 620 (2006)
19.
Zurück zum Zitat M.I. Katsnelson, K.S. Novoselov, Graphene: New bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143, 3 (2007)ADS M.I. Katsnelson, K.S. Novoselov, Graphene: New bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143, 3 (2007)ADS
20.
Zurück zum Zitat N.M.R. Peres, F. Guinea, A.H. Castro Neto, Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006)ADS N.M.R. Peres, F. Guinea, A.H. Castro Neto, Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006)ADS
21.
Zurück zum Zitat V.P. Gusynin, S.G. Sharapov, Unconventional integer quantum hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005)ADS V.P. Gusynin, S.G. Sharapov, Unconventional integer quantum hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005)ADS
22.
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)ADS K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)ADS
23.
Zurück zum Zitat Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)ADS Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)ADS
24.
Zurück zum Zitat S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Tight-binding description of grapheme. Phys. Rev. B 66, 035412 (2002)ADS S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Tight-binding description of grapheme. Phys. Rev. B 66, 035412 (2002)ADS
25.
Zurück zum Zitat P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622 (1947)ADSMATH P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622 (1947)ADSMATH
26.
Zurück zum Zitat C.L. Kane, E.J. Mele, Size, Shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932 (1997)ADS C.L. Kane, E.J. Mele, Size, Shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932 (1997)ADS
27.
Zurück zum Zitat D.P. Di Vincenzo, E.J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685 (1984)ADS D.P. Di Vincenzo, E.J. Mele, Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 29, 1685 (1984)ADS
28.
Zurück zum Zitat H.-W. Lee, D.S. Novikov, Supersymmetry in carbon nanotubes in a transverse magnetic field. Phys. Rev. B 68, 155402 (2003)ADS H.-W. Lee, D.S. Novikov, Supersymmetry in carbon nanotubes in a transverse magnetic field. Phys. Rev. B 68, 155402 (2003)ADS
29.
Zurück zum Zitat X. Zhou, J.-Y. Park, S. Huang, J. Liu, P.L. McEuen, Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005)ADS X. Zhou, J.-Y. Park, S. Huang, J. Liu, P.L. McEuen, Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005)ADS
30.
Zurück zum Zitat S. Bellucci, P. Onorato, Transport through a double barrier in large radius carbon Nanotubes in the presence of a transverse magnetic field. Eur. Phys. J. B 52, 469–476 (2006)ADS S. Bellucci, P. Onorato, Transport through a double barrier in large radius carbon Nanotubes in the presence of a transverse magnetic field. Eur. Phys. J. B 52, 469–476 (2006)ADS
31.
Zurück zum Zitat T. Ando, T. Seri, Quantum transport in carbon nanotubes in magnetic fields. J. Phys. Soc. Jpn. 66, 3558 (1997)ADS T. Ando, T. Seri, Quantum transport in carbon nanotubes in magnetic fields. J. Phys. Soc. Jpn. 66, 3558 (1997)ADS
32.
Zurück zum Zitat S. Bellucci, P. Onorato, Transport through a double barrier for interacting quasi one-dimensional electrons in a quantum wire in the presence of a transverse magnetic field. Eur. Phys. J. B 45, 87–96 (2005)ADS S. Bellucci, P. Onorato, Transport through a double barrier for interacting quasi one-dimensional electrons in a quantum wire in the presence of a transverse magnetic field. Eur. Phys. J. B 45, 87–96 (2005)ADS
33.
Zurück zum Zitat J.P. Lu, Novel magnetic properties of carbon nanotubes. Phys. Rev. Lett. 74, 1123 (1995)ADS J.P. Lu, Novel magnetic properties of carbon nanotubes. Phys. Rev. Lett. 74, 1123 (1995)ADS
34.
Zurück zum Zitat R. Saito, G. Dresselhaus, M.S. Dresselhaus, Erratum: Magnetic energy bands of carbon nanotubes. Phys. Rev. B 53, 10408 (1996)ADS R. Saito, G. Dresselhaus, M.S. Dresselhaus, Erratum: Magnetic energy bands of carbon nanotubes. Phys. Rev. B 53, 10408 (1996)ADS
35.
Zurück zum Zitat S. Bellucci, J. Gonzalez, F. Guinea, P. Onorato, E. Perfetto, Magnetic field effects in carbon nanotubes. J. Phys. Condens. Matter 19 395017 (2007) S. Bellucci, J. Gonzalez, F. Guinea, P. Onorato, E. Perfetto, Magnetic field effects in carbon nanotubes. J. Phys. Condens. Matter 19 395017 (2007)
36.
Zurück zum Zitat E. Perfetto, J. Gonzalez, F. Guinea, S. Bellucci, P. Onorato, Quantum hall effect in carbon nanotubes and curved grapheme strips. Phys. Rev. B 76, 125430 (2007)ADS E. Perfetto, J. Gonzalez, F. Guinea, S. Bellucci, P. Onorato, Quantum hall effect in carbon nanotubes and curved grapheme strips. Phys. Rev. B 76, 125430 (2007)ADS
37.
Zurück zum Zitat N. Nemec, G. Cuniberti, Phys. Rev. B 74, 165411 (2006)ADS N. Nemec, G. Cuniberti, Phys. Rev. B 74, 165411 (2006)ADS
38.
Zurück zum Zitat M.F. Lin, K.W.-K. Shung, Magnetoconductance of carbon nanotubes. Phys. Rev. B 51, 7592 (1995)ADS M.F. Lin, K.W.-K. Shung, Magnetoconductance of carbon nanotubes. Phys. Rev. B 51, 7592 (1995)ADS
39.
Zurück zum Zitat W. Tian, S. Datta, Aharonov-Bohm-type effect in graphene tubules: A Landauer approach. Phys. Rev. B 49, 5097 (1994)ADS W. Tian, S. Datta, Aharonov-Bohm-type effect in graphene tubules: A Landauer approach. Phys. Rev. B 49, 5097 (1994)ADS
40.
Zurück zum Zitat H. Aiki, T. Ando, Electronic states of carbon nanotubes. J. Phys. Soc. Jpn. 62, 1255 (1993)ADS H. Aiki, T. Ando, Electronic states of carbon nanotubes. J. Phys. Soc. Jpn. 62, 1255 (1993)ADS
41.
Zurück zum Zitat H. Ajiki, T. Ando, Energy bands of carbon nanotubes in magnetic fields. J. Phys. Soc. Jpn. 65, 505 (1996)ADS H. Ajiki, T. Ando, Energy bands of carbon nanotubes in magnetic fields. J. Phys. Soc. Jpn. 65, 505 (1996)ADS
42.
Zurück zum Zitat J.-O. Lee, J.-R. Kim, J.-J. Kim, J. Kim, N. Kim, J. W. Park, K.-H. Yoo, Observation of magnetic-field-modulated energy gap in carbon nanotubes. Solid State Commun. 115, 467 (2000)ADS J.-O. Lee, J.-R. Kim, J.-J. Kim, J. Kim, N. Kim, J. W. Park, K.-H. Yoo, Observation of magnetic-field-modulated energy gap in carbon nanotubes. Solid State Commun. 115, 467 (2000)ADS
43.
Zurück zum Zitat A. Rochefort, P. Avouris, F. Lesage, D.R. Salahub, Electrical and mechanical properties of distorted carbon nanotubes. Phys. Rev. B 60, 13824 (1999)ADS A. Rochefort, P. Avouris, F. Lesage, D.R. Salahub, Electrical and mechanical properties of distorted carbon nanotubes. Phys. Rev. B 60, 13824 (1999)ADS
44.
Zurück zum Zitat M.S.C. Mazzoni, H. Chacham, Bandgap closure of a flattened semiconductor carbon nanotube: A first-principles study. Appl. Phys. Lett. 76, 1561 (2000)ADS M.S.C. Mazzoni, H. Chacham, Bandgap closure of a flattened semiconductor carbon nanotube: A first-principles study. Appl. Phys. Lett. 76, 1561 (2000)ADS
45.
Zurück zum Zitat P.E. Lammert, P.H. Zhang, V.H. Crespi, Gapping by squashing: Metal-insulator and insulator-metal transitions in collapsed carbon nanotubes. Phys. Rev. Lett. 84, 2453 (2000)ADS P.E. Lammert, P.H. Zhang, V.H. Crespi, Gapping by squashing: Metal-insulator and insulator-metal transitions in collapsed carbon nanotubes. Phys. Rev. Lett. 84, 2453 (2000)ADS
46.
Zurück zum Zitat Ç. Kılıç, S. Ciraci, O. Gülseren, T. Yildirim, Variable and reversible quantum structures on a single carbon nanotube. Phys. Rev. B 62, 16345 (2000)ADS Ç. Kılıç, S. Ciraci, O. Gülseren, T. Yildirim, Variable and reversible quantum structures on a single carbon nanotube. Phys. Rev. B 62, 16345 (2000)ADS
47.
Zurück zum Zitat M.T. Figge, M. Mostovoy, J. Knoester, Peierls transition with acoustic phonons and solitwistons in carbon nanotubes. Phys. Rev. Lett. 86, 4572 (2001)ADS M.T. Figge, M. Mostovoy, J. Knoester, Peierls transition with acoustic phonons and solitwistons in carbon nanotubes. Phys. Rev. Lett. 86, 4572 (2001)ADS
48.
Zurück zum Zitat X. Zhou, H. Chen, O.-Y. Zhong-can, Can electric field induced energy gaps in metallic carbon nanotubes? J. Phys. Condens. Mattter 13, L635 (2001)ADS X. Zhou, H. Chen, O.-Y. Zhong-can, Can electric field induced energy gaps in metallic carbon nanotubes? J. Phys. Condens. Mattter 13, L635 (2001)ADS
49.
Zurück zum Zitat D.S. Novikov, L.S. Levitov, Energy anomaly and polarizability of carbon nanotubes. Phys. Rev. Lett. 96, 036402 (2006)ADS D.S. Novikov, L.S. Levitov, Energy anomaly and polarizability of carbon nanotubes. Phys. Rev. Lett. 96, 036402 (2006)ADS
50.
Zurück zum Zitat J. Jiang, J. Dong, D.Y. Xing, Zeeman effect on the electronic spectral properties of carbon nanotubes in an axial magnetic field. Phys. Rev. B 62, 13209 (2000)ADS J. Jiang, J. Dong, D.Y. Xing, Zeeman effect on the electronic spectral properties of carbon nanotubes in an axial magnetic field. Phys. Rev. B 62, 13209 (2000)ADS
51.
Zurück zum Zitat S. Roche, G. Dresselhaus, M.S. Dresselhaus, R. Saito, Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes. Phys. Rev. B 62, 16092 (2000)ADS S. Roche, G. Dresselhaus, M.S. Dresselhaus, R. Saito, Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes. Phys. Rev. B 62, 16092 (2000)ADS
52.
Zurück zum Zitat F.L. Shyu, C.P. Chang, R.B. Chen, C.W. Chiu, M.F. Lin, Magnetoelectronic and optical properties of carbon nanotubes. Phys. Rev. B 67, 045405 (2003)ADS F.L. Shyu, C.P. Chang, R.B. Chen, C.W. Chiu, M.F. Lin, Magnetoelectronic and optical properties of carbon nanotubes. Phys. Rev. B 67, 045405 (2003)ADS
53.
Zurück zum Zitat Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)MathSciNetADSMATH Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959)MathSciNetADSMATH
54.
Zurück zum Zitat R.A. Webb, S. Washburn, C.P. Umbach, R.B. Laibowitz, Observation of h/e Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696 (1985)ADS R.A. Webb, S. Washburn, C.P. Umbach, R.B. Laibowitz, Observation of h/e Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696 (1985)ADS
55.
Zurück zum Zitat A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forro, T. Nussbaumer, C. Schönenberger, Aharonov-Bohm oscillations in carbon nanotubes. Nature (London) 397, 673 (1999)ADS A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forro, T. Nussbaumer, C. Schönenberger, Aharonov-Bohm oscillations in carbon nanotubes. Nature (London) 397, 673 (1999)ADS
56.
Zurück zum Zitat B. Lassagne, J-P. Cleuziou, S. Nanot, W. Escoffier, R. Avriller, S. Roche, L. Forro, B. Raquet, J.-M Broto, Aharonov-Bohm conductance modulation in ballistic carbon nanotubes. Phys. Rev. Lett. 98, 176802 (2007)ADS B. Lassagne, J-P. Cleuziou, S. Nanot, W. Escoffier, R. Avriller, S. Roche, L. Forro, B. Raquet, J.-M Broto, Aharonov-Bohm conductance modulation in ballistic carbon nanotubes. Phys. Rev. Lett. 98, 176802 (2007)ADS
57.
Zurück zum Zitat J. Cao, Q. Wang, M. Rolandi, H. Dai, Aharonov-Bohm interference and beating in single-walled carbon-nanotube interferometers. Phys. Rev. Lett. 93, 216803 (2004)ADS J. Cao, Q. Wang, M. Rolandi, H. Dai, Aharonov-Bohm interference and beating in single-walled carbon-nanotube interferometers. Phys. Rev. Lett. 93, 216803 (2004)ADS
58.
Zurück zum Zitat C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)ADS C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)ADS
59.
Zurück zum Zitat S. Murakami, N. Nagaosa, S.-C. Zhang, Spin-hall insulator. Phys. Rev. Lett. 93, 156804 (2004)ADS S. Murakami, N. Nagaosa, S.-C. Zhang, Spin-hall insulator. Phys. Rev. Lett. 93, 156804 (2004)ADS
60.
Zurück zum Zitat Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 75, 041401 (R) (2007)ADS Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 75, 041401 (R) (2007)ADS
61.
Zurück zum Zitat A. De Martino, R. Egger, K. Hallberg, C.A. Balseiro, Spin-orbit coupling and electron spin resonance theory for carbon nanotubes. Phys. Rev. Lett. 88 206402 (2002); A. De Martino, R. Egger, F. Murphy-Armando, K. Hallberg, Spin–orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes. J. Phys. Condens. Matter 16, S1437 (2004) A. De Martino, R. Egger, K. Hallberg, C.A. Balseiro, Spin-orbit coupling and electron spin resonance theory for carbon nanotubes. Phys. Rev. Lett. 88 206402 (2002); A. De Martino, R. Egger, F. Murphy-Armando, K. Hallberg, Spin–orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes. J. Phys. Condens. Matter 16, S1437 (2004)
62.
Zurück zum Zitat T. Ando, Spin-Orbit Interaction in Carbon Nanotubes. J. Phys. Soc. Jpn. 69, 1757 (2000)ADS T. Ando, Spin-Orbit Interaction in Carbon Nanotubes. J. Phys. Soc. Jpn. 69, 1757 (2000)ADS
63.
Zurück zum Zitat D. Huertas-Hernando, F. Guinea, A. Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006)ADS D. Huertas-Hernando, F. Guinea, A. Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006)ADS
64.
Zurück zum Zitat L. Chico, M.P. López-Sancho, M.C. Muñoz, Spin splitting induced by spin-orbit interaction in chiral nanotubes. Phys. Rev. Lett. 93, 176402 (2004)ADS L. Chico, M.P. López-Sancho, M.C. Muñoz, Spin splitting induced by spin-orbit interaction in chiral nanotubes. Phys. Rev. Lett. 93, 176402 (2004)ADS
65.
Zurück zum Zitat L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen, Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 54, 2600 (1996)ADS L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen, Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 54, 2600 (1996)ADS
66.
Zurück zum Zitat R. Landauer, IBM J. Res. Dev. 1, 233 (1957); R. Landauer, Phil. Mag. 21, 863 (1970) R. Landauer, IBM J. Res. Dev. 1, 233 (1957); R. Landauer, Phil. Mag. 21, 863 (1970)
67.
Zurück zum Zitat W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, Tinkham, H. Park, Fabry-Perot interference in a nanotube electron waveguide. Nature (London) 411, 665 (2001)ADS W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, Tinkham, H. Park, Fabry-Perot interference in a nanotube electron waveguide. Nature (London) 411, 665 (2001)ADS
68.
Zurück zum Zitat S. Frank, P. Poncharal, Z.L. Wang, W.A. De Heer, Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998)ADS S. Frank, P. Poncharal, Z.L. Wang, W.A. De Heer, Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998)ADS
69.
Zurück zum Zitat S. Sanvito, Y.-K. Kwon, D. Tomànek, C.J. Lambert, Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 84, 1974 (2000)ADS S. Sanvito, Y.-K. Kwon, D. Tomànek, C.J. Lambert, Fractional quantum conductance in carbon nanotubes. Phys. Rev. Lett. 84, 1974 (2000)ADS
70.
Zurück zum Zitat M.P. Anantram, Which nanowire couples better electrically to a metal contact: Armchair or zigzag nanotube? Appl. Phys. Lett. 78, 2055 (2001)ADS M.P. Anantram, Which nanowire couples better electrically to a metal contact: Armchair or zigzag nanotube? Appl. Phys. Lett. 78, 2055 (2001)ADS
71.
Zurück zum Zitat N. Mingo, J. Han, Conductance of metallic carbon nanotubes dipped into metal. Phys. Rev. B 64, 201401 (2001)ADS N. Mingo, J. Han, Conductance of metallic carbon nanotubes dipped into metal. Phys. Rev. B 64, 201401 (2001)ADS
72.
Zurück zum Zitat M.B. Nardelli, J.-L. Fattebert, J. Bernholc, O(N) real-space method for ab initio quantum transport calculations: Application to carbon nanotube–metal contacts. Phys. Rev. B 64, 245423 (2001)ADS M.B. Nardelli, J.-L. Fattebert, J. Bernholc, O(N) real-space method for ab initio quantum transport calculations: Application to carbon nanotube–metal contacts. Phys. Rev. B 64, 245423 (2001)ADS
73.
Zurück zum Zitat S. Dag, O. Gulseren, S. Ciraci, T. Yildirim, Electronic structure of the contact between carbon nanotube and metal electrodes. Appl. Phys. Lett. 83, 3180 (2003)ADS S. Dag, O. Gulseren, S. Ciraci, T. Yildirim, Electronic structure of the contact between carbon nanotube and metal electrodes. Appl. Phys. Lett. 83, 3180 (2003)ADS
74.
Zurück zum Zitat J.J. Palacios, A.J. Perez-Jimenez, E. Louis, E. SanFabian, J.A. Verges, First-principles phase-coherent transport in metallic nanotubes with realistic contacts. Phys. Rev. Lett. 90, 106801 (2003)ADS J.J. Palacios, A.J. Perez-Jimenez, E. Louis, E. SanFabian, J.A. Verges, First-principles phase-coherent transport in metallic nanotubes with realistic contacts. Phys. Rev. Lett. 90, 106801 (2003)ADS
75.
Zurück zum Zitat S. Okada, A. Oshiyama, Electronic structure of semiconducting nanotubes adsorbed on metal surfaces. Phys. Rev. Lett. 95, 206804 (2005)ADS S. Okada, A. Oshiyama, Electronic structure of semiconducting nanotubes adsorbed on metal surfaces. Phys. Rev. Lett. 95, 206804 (2005)ADS
76.
Zurück zum Zitat S.-H. Ke, W. Yang, H.U. Baranger, Nanotube-metal junctions: 2- and 3-terminal electrical transport. J. Chem. Phys. 124, 181102 (2006)ADS S.-H. Ke, W. Yang, H.U. Baranger, Nanotube-metal junctions: 2- and 3-terminal electrical transport. J. Chem. Phys. 124, 181102 (2006)ADS
77.
Zurück zum Zitat N. Nemec, D. Tománek, G. Cuniberti, Contact dependence of carrier injection in carbon nanotubes: An Ab Initio study. Phys. Rev. Lett. 96, 076802 (2006)ADS N. Nemec, D. Tománek, G. Cuniberti, Contact dependence of carrier injection in carbon nanotubes: An Ab Initio study. Phys. Rev. Lett. 96, 076802 (2006)ADS
78.
Zurück zum Zitat M.P. Anantram, Current-carrying capacity of carbon nanotubes. Phys. Rev. B 62, R4837 (2000)ADS M.P. Anantram, Current-carrying capacity of carbon nanotubes. Phys. Rev. B 62, R4837 (2000)ADS
79.
Zurück zum Zitat J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H.R.B. Laughlin, L. Liu, C.S. Jayanthi, S.Y. Wu, Quantum interference and ballistic transmission in nanotube electron waveguides. Phys. Rev. Lett. 87, 106801 (2001)ADS J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H.R.B. Laughlin, L. Liu, C.S. Jayanthi, S.Y. Wu, Quantum interference and ballistic transmission in nanotube electron waveguides. Phys. Rev. Lett. 87, 106801 (2001)ADS
80.
Zurück zum Zitat D. Mann, A. Javey, J. Kong, Q. Wang, H. Dai, Ballistic transport in metallic nanotubes with reliable ohmic contacts. Nano Lett. 3, 1541 (2003)ADS D. Mann, A. Javey, J. Kong, Q. Wang, H. Dai, Ballistic transport in metallic nanotubes with reliable ohmic contacts. Nano Lett. 3, 1541 (2003)ADS
81.
Zurück zum Zitat A. Javey, J. Guo, Q. Wang, M. Lundstrom, H.J. Dai, Ballistic carbon nanotube transistors. Nature (London) 424, 654 (2003)ADS A. Javey, J. Guo, Q. Wang, M. Lundstrom, H.J. Dai, Ballistic carbon nanotube transistors. Nature (London) 424, 654 (2003)ADS
82.
Zurück zum Zitat A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, Lundstrom, H. Dai, High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004)ADS A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, Lundstrom, H. Dai, High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004)ADS
83.
Zurück zum Zitat P.J. de Pablo, C. Gomez-Navarro, J. Colchero, P.A. Serena, J. Gomez-Herrero, A. M. Baro, Nonlinear resistance versus length in single-walled carbon nanotubes. Phys. Rev. Lett. 88, 036804 (2002)ADS P.J. de Pablo, C. Gomez-Navarro, J. Colchero, P.A. Serena, J. Gomez-Herrero, A. M. Baro, Nonlinear resistance versus length in single-walled carbon nanotubes. Phys. Rev. Lett. 88, 036804 (2002)ADS
84.
Zurück zum Zitat T. Ando et al., Mesoscopic Physics and Electronics (Springer, Berlin, 1998) T. Ando et al., Mesoscopic Physics and Electronics (Springer, Berlin, 1998)
85.
Zurück zum Zitat S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995) S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)
86.
Zurück zum Zitat B.J. van Wees, L.P. Kouwenhoven, C.J.P.M. Harmans, J.G. Williamson, C.E. Timmering, M.E.I. Broekaart, C.T. Foxon, J.J. Harris, Observation of zero-dimensional states in a one-dimensional electron interferometer. Phys. Rev. Lett. 62, 2523–2526 (1989)ADS B.J. van Wees, L.P. Kouwenhoven, C.J.P.M. Harmans, J.G. Williamson, C.E. Timmering, M.E.I. Broekaart, C.T. Foxon, J.J. Harris, Observation of zero-dimensional states in a one-dimensional electron interferometer. Phys. Rev. Lett. 62, 2523–2526 (1989)ADS
87.
Zurück zum Zitat M. Crommie, C.P. Lutz, D.M. Eigler, Confinement of Electrons to Quantum Corrals on a Metal Surface. Science 262, 218–220 (1993)ADS M. Crommie, C.P. Lutz, D.M. Eigler, Confinement of Electrons to Quantum Corrals on a Metal Surface. Science 262, 218–220 (1993)ADS
88.
89.
Zurück zum Zitat M.A. Topinka, B.J. LeRoy, S.E.J. Shaw, E.J. Heller, R.M. Westervelt, K.D. Maranowski, A.C. Gossard, Imaging coherent electron flow from a quantum point contact. Science 289, 2323–2326 (2000)ADS M.A. Topinka, B.J. LeRoy, S.E.J. Shaw, E.J. Heller, R.M. Westervelt, K.D. Maranowski, A.C. Gossard, Imaging coherent electron flow from a quantum point contact. Science 289, 2323–2326 (2000)ADS
90.
Zurück zum Zitat H.C. Manoharan, C.P. Lutz, D.M. Eigler, Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000)ADS H.C. Manoharan, C.P. Lutz, D.M. Eigler, Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000)ADS
91.
Zurück zum Zitat P. Debray, O.E. Raichev, P. Vasilopoulos, M. Rahman, R. Perrin, W.C. Mitchell, Ballistic electron transport in stubbed quantum waveguides: Experiment and theory. Phys. Rev. B 61, 10950–10958 (2000)ADS P. Debray, O.E. Raichev, P. Vasilopoulos, M. Rahman, R. Perrin, W.C. Mitchell, Ballistic electron transport in stubbed quantum waveguides: Experiment and theory. Phys. Rev. B 61, 10950–10958 (2000)ADS
92.
Zurück zum Zitat C. Dekker, Carbon nanotubes as molecular quantum wires. Phys. Today 52(5), 22–28 (1999)ADS C. Dekker, Carbon nanotubes as molecular quantum wires. Phys. Today 52(5), 22–28 (1999)ADS
93.
Zurück zum Zitat C.T. White, T.N. Todorov, Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998)ADS C.T. White, T.N. Todorov, Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998)ADS
94.
Zurück zum Zitat M. Buttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985)ADS M. Buttiker, Y. Imry, R. Landauer, S. Pinhas, Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985)ADS
95.
Zurück zum Zitat M. Buttiker, Role of quantum coherence in series resistors. Phys. Rev. B 33, 3020–3026 (1986)ADS M. Buttiker, Role of quantum coherence in series resistors. Phys. Rev. B 33, 3020–3026 (1986)ADS
96.
Zurück zum Zitat M. Cahay, M. McLennan, S. Datta, Conductance of an array of elastic scatterers: A scattering-matrix approach. Phys. Rev. B 37, 10125–10136 (1988)ADS M. Cahay, M. McLennan, S. Datta, Conductance of an array of elastic scatterers: A scattering-matrix approach. Phys. Rev. B 37, 10125–10136 (1988)ADS
97.
Zurück zum Zitat M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Single-electron transport in ropes of carbon nanotubes. Science 275, 1922 (1997) M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Single-electron transport in ropes of carbon nanotubes. Science 275, 1922 (1997)
98.
Zurück zum Zitat S.J. Tans, M.H. Devoret, R.J.A. Groeneveld, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997)ADS S.J. Tans, M.H. Devoret, R.J.A. Groeneveld, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997)ADS
99.
Zurück zum Zitat H.W.Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Carbon nanotube single-electron transistors at room temperature. Science 293, 76 (2001)ADS H.W.Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Carbon nanotube single-electron transistors at room temperature. Science 293, 76 (2001)ADS
100.
Zurück zum Zitat M.R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, C. Schönenberger, Multiwall carbon nanotubes as quantum dots. Phys. Rev. Lett. 88, 156801 (2002)ADS M.R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal, C. Schönenberger, Multiwall carbon nanotubes as quantum dots. Phys. Rev. Lett. 88, 156801 (2002)ADS
101.
Zurück zum Zitat L.P. Kouwenhoven, C. Marcus, Phys. World 11, 35 (1998) L.P. Kouwenhoven, C. Marcus, Phys. World 11, 35 (1998)
102.
Zurück zum Zitat S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613 (1996)ADS S. Tarucha, D.G. Austing, T. Honda, R.J. van der Hage, L.P. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613 (1996)ADS
103.
Zurück zum Zitat T.H. Oosterkamp, J.W. Jansen, L.P. Kouwenhoven, D.G. Austing, T. Honda, S. Tarucha, Maximum-density droplet and charge redistributions in quantum dots at high magnetic fields. Phys. Rev. Lett. 82, 2931 (1999)ADS T.H. Oosterkamp, J.W. Jansen, L.P. Kouwenhoven, D.G. Austing, T. Honda, S. Tarucha, Maximum-density droplet and charge redistributions in quantum dots at high magnetic fields. Phys. Rev. Lett. 82, 2931 (1999)ADS
104.
Zurück zum Zitat C. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646 (1991)ADS C. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646 (1991)ADS
105.
Zurück zum Zitat O. Klein et al., Phase transitions in artificial atoms, in Quantum Transport in Semiconductor Submicron Structures, ed. by B. Kramer (Kluwer, Berlin, 1996) O. Klein et al., Phase transitions in artificial atoms, in Quantum Transport in Semiconductor Submicron Structures, ed. by B. Kramer (Kluwer, Berlin, 1996)
106.
Zurück zum Zitat L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, Mesoscopic Electron Transport, (Kluwer, Dordrecht, The Netherlands, 1997) L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt, N.S. Wingreen, Mesoscopic Electron Transport, (Kluwer, Dordrecht, The Netherlands, 1997)
107.
Zurück zum Zitat Y. Oreg, K. Byczuk, B.I. Halperin, Spin configurations of a carbon nanotube in a nonuniform external potential. Phys. Rev. Lett. 85, 365 (2000)ADS Y. Oreg, K. Byczuk, B.I. Halperin, Spin configurations of a carbon nanotube in a nonuniform external potential. Phys. Rev. Lett. 85, 365 (2000)ADS
108.
Zurück zum Zitat D.H. Cobden, J. Nygard, Shell filling in closed single-wall carbon nanotube quantum dots. Phys. Rev. Lett. 89, 46803 (2002)ADS D.H. Cobden, J. Nygard, Shell filling in closed single-wall carbon nanotube quantum dots. Phys. Rev. Lett. 89, 46803 (2002)ADS
109.
Zurück zum Zitat W. Liang, M. Bockrath, H. Park, Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002)ADS W. Liang, M. Bockrath, H. Park, Shell filling and exchange coupling in metallic single-walled carbon nanotubes. Phys. Rev. Lett. 88, 126801 (2002)ADS
110.
Zurück zum Zitat S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998)ADS S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998)ADS
111.
Zurück zum Zitat D.H. Cobden, M. Bockrath, P.L. McEuen, A.G. Rinzler, R.E. Smalley, Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681 (1998)ADS D.H. Cobden, M. Bockrath, P.L. McEuen, A.G. Rinzler, R.E. Smalley, Spin splitting and even-odd effects in carbon nanotubes. Phys. Rev. Lett. 81, 681 (1998)ADS
112.
Zurück zum Zitat P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L.P. Kouwenhoven, H.S.J. van der Zant, Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature (London) 429, 389 (2004)ADS P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L.P. Kouwenhoven, H.S.J. van der Zant, Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature (London) 429, 389 (2004)ADS
113.
Zurück zum Zitat P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Phys. Rev. Lett. 94, 156802 (2005)ADS P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Electronic transport spectroscopy of carbon nanotubes in a magnetic field. Phys. Rev. Lett. 94, 156802 (2005)ADS
114.
Zurück zum Zitat S. Sapmaz, P. Jarillo-Herrero, Ya. M. Blanter, C. Dekker, H.S.J. van der Zant, Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. Phys. Rev. Lett. 96, 026801 (2006)ADS S. Sapmaz, P. Jarillo-Herrero, Ya. M. Blanter, C. Dekker, H.S.J. van der Zant, Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. Phys. Rev. Lett. 96, 026801 (2006)ADS
115.
Zurück zum Zitat S. Bellucci, P. Onorato, Single-wall nanotubes: Atomiclike behavior and microscopic approach. Phys. Rev. B 71, 075418 (2005)ADS S. Bellucci, P. Onorato, Single-wall nanotubes: Atomiclike behavior and microscopic approach. Phys. Rev. B 71, 075418 (2005)ADS
116.
Zurück zum Zitat J. Nygård, D.H. Cobden, P.E. Lindelof, Kondo physics in carbon nanotubes. Nature 408, 342 (2000)ADS J. Nygård, D.H. Cobden, P.E. Lindelof, Kondo physics in carbon nanotubes. Nature 408, 342 (2000)ADS
117.
Zurück zum Zitat P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Orbital Kondo effect in carbon nanotubes. Nature 434, 484 (2005)ADS P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Orbital Kondo effect in carbon nanotubes. Nature 434, 484 (2005)ADS
118.
Zurück zum Zitat B. Babić, T. Kontos, C. Schüonenberger, Kondo effect in carbon nanotubes at half filling. Phys. Rev. B 70, 235419 (2004)ADS B. Babić, T. Kontos, C. Schüonenberger, Kondo effect in carbon nanotubes at half filling. Phys. Rev. B 70, 235419 (2004)ADS
119.
Zurück zum Zitat S. Moriyama, T. Fuse, M. Suzuki, Y. Aoyagi, K. Ishibashi, Four-electron shell structures and an tnteracting two-electron system in carbon-nanotube quantum dots. Phys. Rev. Lett. 94, 186806 (2005)ADS S. Moriyama, T. Fuse, M. Suzuki, Y. Aoyagi, K. Ishibashi, Four-electron shell structures and an tnteracting two-electron system in carbon-nanotube quantum dots. Phys. Rev. Lett. 94, 186806 (2005)ADS
120.
Zurück zum Zitat S. Sapmaz, P. Jarillo-Herrero, J. Kong, C. Dekker, L.P. Kouwenhoven, H.S.J. van der Zant, Electronic excitation spectrum of metallic carbon nanotubes. Phys. Rev. B 71, 153402 (2005)ADS S. Sapmaz, P. Jarillo-Herrero, J. Kong, C. Dekker, L.P. Kouwenhoven, H.S.J. van der Zant, Electronic excitation spectrum of metallic carbon nanotubes. Phys. Rev. B 71, 153402 (2005)ADS
121.
Zurück zum Zitat A. Makarovski, L. An, J. Liu, G. Finkelstein, Evolution of transport regimes in carbon nanotube quantum dots. Phys. Rev. B 74, 155431 (2006)ADS A. Makarovski, L. An, J. Liu, G. Finkelstein, Evolution of transport regimes in carbon nanotube quantum dots. Phys. Rev. B 74, 155431 (2006)ADS
122.
Zurück zum Zitat S. Moriyama, T. Fuse, T. Yamaguchi, K. Ishibashi, Phys. Rev. B 76, 045102 (2007)ADS S. Moriyama, T. Fuse, T. Yamaguchi, K. Ishibashi, Phys. Rev. B 76, 045102 (2007)ADS
123.
Zurück zum Zitat H. Ingerslev Jorgensen, K. Grove-Rasmussen, K.-Y. Wang, A.M. Blackburn, K. Flensberg, P.E. Lindelof, D.A. Williams, Nat. Phys. 4, 536–539 (2008) H. Ingerslev Jorgensen, K. Grove-Rasmussen, K.-Y. Wang, A.M. Blackburn, K. Flensberg, P.E. Lindelof, D.A. Williams, Nat. Phys. 4, 536–539 (2008)
124.
Zurück zum Zitat S. Tomonaga, Remarks on bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950)MathSciNetADS S. Tomonaga, Remarks on bloch’s method of sound waves applied to many-fermion problems. Prog. Theor. Phys. 5, 544 (1950)MathSciNetADS
125.
Zurück zum Zitat J.M. Luttinger, An exactly soluble model of a many‐fermion system. J. Math. Phys. 4, 1154 (1963)MathSciNetADS J.M. Luttinger, An exactly soluble model of a many‐fermion system. J. Math. Phys. 4, 1154 (1963)MathSciNetADS
126.
Zurück zum Zitat D.C. Mattis, E.H. Lieb, Exact solution of a many‐fermion system and its associated boson field. J. Math. Phys. 6, 304 (1965)MathSciNetADS D.C. Mattis, E.H. Lieb, Exact solution of a many‐fermion system and its associated boson field. J. Math. Phys. 6, 304 (1965)MathSciNetADS
127.
Zurück zum Zitat A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Nonuniversal conductance quantization in quantum wires. Phys. Rev. Lett. 77, 4612 (1996); O.M. Auslaender, A. Yacoby, R. de Picciotto, K.W. Baldwin, L.N. Pfeiffer, K.W. West, Experimental evidence for resonant tunneling in a Luttinger liquid. Phys. Rev. Lett. 84, 1764 (2000) A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Nonuniversal conductance quantization in quantum wires. Phys. Rev. Lett. 77, 4612 (1996); O.M. Auslaender, A. Yacoby, R. de Picciotto, K.W. Baldwin, L.N. Pfeiffer, K.W. West, Experimental evidence for resonant tunneling in a Luttinger liquid. Phys. Rev. Lett. 84, 1764 (2000)
128.
Zurück zum Zitat S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997)ADS S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997)ADS
129.
Zurück zum Zitat Z. Yao, H.W.J. Postma, L. Balents, C. Dekker, Carbon nanotube intramolecular junctions. Nature 402, 273 (1999)ADS Z. Yao, H.W.J. Postma, L. Balents, C. Dekker, Carbon nanotube intramolecular junctions. Nature 402, 273 (1999)ADS
130.
Zurück zum Zitat C.L. Kane, M.P.A. Fisher, Experimental evidence for resonant tunneling in a Luttinger liquid. Phys. Rev. Lett. 68, 1220 (1992)ADS C.L. Kane, M.P.A. Fisher, Experimental evidence for resonant tunneling in a Luttinger liquid. Phys. Rev. Lett. 68, 1220 (1992)ADS
131.
Zurück zum Zitat C.L. Kane, M.P.A. Fisher, Resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B 46, R7268 (1992)ADS C.L. Kane, M.P.A. Fisher, Resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B 46, R7268 (1992)ADS
132.
Zurück zum Zitat J. Sólyom, The Fermi gas model of one-dimensional conductors. Adv. Phys. 28, 201 (1979)ADS J. Sólyom, The Fermi gas model of one-dimensional conductors. Adv. Phys. 28, 201 (1979)ADS
133.
Zurück zum Zitat J. Voit, One-dimensional Fermi liquids. Rep. Prog. Phys. 57, 977 (1994) J. Voit, One-dimensional Fermi liquids. Rep. Prog. Phys. 57, 977 (1994)
134.
Zurück zum Zitat H.J. Schulz, in Proceedings of Les Houches Summer School LXI, ed. by E. Akkermans, G. Montambaux, J. Pichard, J. Zinn-Justin (Elsevier, Amsterdam, 1995) p. 533 H.J. Schulz, in Proceedings of Les Houches Summer School LXI, ed. by E. Akkermans, G. Montambaux, J. Pichard, J. Zinn-Justin (Elsevier, Amsterdam, 1995) p. 533
135.
Zurück zum Zitat F.D.M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981)ADS F.D.M. Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981)ADS
136.
Zurück zum Zitat H.J. Schulz, G. Cuniberti, P. Pieri, in Field Theories for Low-Dimensional Condensed Matter Systems, ed. by G. Morandi (Springer, Berlin, 2000) H.J. Schulz, G. Cuniberti, P. Pieri, in Field Theories for Low-Dimensional Condensed Matter Systems, ed. by G. Morandi (Springer, Berlin, 2000)
137.
Zurück zum Zitat T. Giamarchi, Quantum Physics in One Dimension (Oxford, Clarendon, 2004)MATH T. Giamarchi, Quantum Physics in One Dimension (Oxford, Clarendon, 2004)MATH
138.
Zurück zum Zitat W. Häusler, L. Kecke, A.H. MacDonald, Tomonaga-Luttinger parameters for quantum wires. Phys. Rev. B 65, 085104 (2002)ADS W. Häusler, L. Kecke, A.H. MacDonald, Tomonaga-Luttinger parameters for quantum wires. Phys. Rev. B 65, 085104 (2002)ADS
139.
Zurück zum Zitat R. Egger, A.O. Gogolin, Correlated transport and non-Fermi-liquid behavior in single-wall carbon nanotubes. Eur. Phys. J. B 3, 281 (1998)ADS R. Egger, A.O. Gogolin, Correlated transport and non-Fermi-liquid behavior in single-wall carbon nanotubes. Eur. Phys. J. B 3, 281 (1998)ADS
140.
Zurück zum Zitat R. Egger, A.O. Gogolin, Effective low-energy theory for correlated carbon nanotubes. Phys. Rev. Lett. 79, 5082 (1997)ADS R. Egger, A.O. Gogolin, Effective low-energy theory for correlated carbon nanotubes. Phys. Rev. Lett. 79, 5082 (1997)ADS
141.
Zurück zum Zitat R. Egger, A. Bachtold, M. Fuhrer, M. Bockrath, D. Cobden, P. McEuen, in Interacting Electrons in Nanostructures, ed. by R. Haug, H. Schoeller. Lecture Notes in Physics, vol 579 (Springer, Berlin, 2001) R. Egger, A. Bachtold, M. Fuhrer, M. Bockrath, D. Cobden, P. McEuen, in Interacting Electrons in Nanostructures, ed. by R. Haug, H. Schoeller. Lecture Notes in Physics, vol 579 (Springer, Berlin, 2001)
142.
Zurück zum Zitat C. Kane, L. Balents, M.P.A. Fisher, Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086 (1997)ADS C. Kane, L. Balents, M.P.A. Fisher, Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086 (1997)ADS
143.
Zurück zum Zitat R. Egger, Luttinger liquid behavior in multiwall carbon nanotubes. Phys. Rev. Lett. 83, 5547 (1999)ADS R. Egger, Luttinger liquid behavior in multiwall carbon nanotubes. Phys. Rev. Lett. 83, 5547 (1999)ADS
144.
Zurück zum Zitat R. Egger, A.O. Gogolin, Bulk and boundary zero-bias anomaly in multiwall carbon nanotubes. Phys. Rev. Lett. 87, 066401 (2001)ADS R. Egger, A.O. Gogolin, Bulk and boundary zero-bias anomaly in multiwall carbon nanotubes. Phys. Rev. Lett. 87, 066401 (2001)ADS
145.
Zurück zum Zitat V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80, 2773 (2002)ADS V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Controlling doping and carrier injection in carbon nanotube transistors. Appl. Phys. Lett. 80, 2773 (2002)ADS
146.
Zurück zum Zitat P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287, 1801 (2000)ADS P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287, 1801 (2000)ADS
147.
Zurück zum Zitat G.U. Sumanasekera, C.K.W. Adu, S. Fang, P.C. Eklund, Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 85, 1096 (2000)ADS G.U. Sumanasekera, C.K.W. Adu, S. Fang, P.C. Eklund, Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 85, 1096 (2000)ADS
148.
Zurück zum Zitat K. Bradley, S.-H. Jhi, P.G. Collins, J. Hone, M.L. Cohen, S.G. Louie, A. Zettl, Is the intrinsic thermoelectric power of carbon nanotubes positive? Phys. Rev. Lett. 85, 4361 (2000)ADS K. Bradley, S.-H. Jhi, P.G. Collins, J. Hone, M.L. Cohen, S.G. Louie, A. Zettl, Is the intrinsic thermoelectric power of carbon nanotubes positive? Phys. Rev. Lett. 85, 4361 (2000)ADS
149.
Zurück zum Zitat S.-H. Jhi, S.G. Louie, M.L. Cohen, Electronic properties of oxidized carbon nanotubes. Phys. Rev. Lett. 85, 1710 (2000)ADS S.-H. Jhi, S.G. Louie, M.L. Cohen, Electronic properties of oxidized carbon nanotubes. Phys. Rev. Lett. 85, 1710 (2000)ADS
150.
Zurück zum Zitat M. Bockrath, J. Hone, A. Zettl, P.L. McEuen, A.G. Rinzler, R.E. Smalley, Chemical doping of individual semiconducting carbon-nanotube ropes. Phys. Rev. B 61, R10606 (2000)ADS M. Bockrath, J. Hone, A. Zettl, P.L. McEuen, A.G. Rinzler, R.E. Smalley, Chemical doping of individual semiconducting carbon-nanotube ropes. Phys. Rev. B 61, R10606 (2000)ADS
151.
Zurück zum Zitat C. Zhou, J. Kong, E. Yenilmez, H. Dai, Modulated chemical doping of individual carbon nanotubes. Science 290, 1552 (2000)ADS C. Zhou, J. Kong, E. Yenilmez, H. Dai, Modulated chemical doping of individual carbon nanotubes. Science 290, 1552 (2000)ADS
152.
Zurück zum Zitat M. Krüger, M.R. Buitelaar, T. Nussbaumer, C. Schönenberger, L. Forró, The electrochemical nanotube field-effect transistor. Appl. Phys. Lett. 78, 1291 (2001)ADS M. Krüger, M.R. Buitelaar, T. Nussbaumer, C. Schönenberger, L. Forró, The electrochemical nanotube field-effect transistor. Appl. Phys. Lett. 78, 1291 (2001)ADS
153.
Zurück zum Zitat A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P.L. McEuen, M. Buitelaar, C. Schönenberger, Suppression of tunneling into multiwall carbon nanotubes. Phys. Rev. Lett. 87, 166801 (2001)ADS A. Bachtold, M. de Jonge, K. Grove-Rasmussen, P.L. McEuen, M. Buitelaar, C. Schönenberger, Suppression of tunneling into multiwall carbon nanotubes. Phys. Rev. Lett. 87, 166801 (2001)ADS
154.
Zurück zum Zitat S. Bellucci, in Path Integrals from peV and TevV, ed. by R. Casalbuoni et al. (World Scientific, Singapore, 1999) p. 363 S. Bellucci, in Path Integrals from peV and TevV, ed. by R. Casalbuoni et al. (World Scientific, Singapore, 1999) p. 363
155.
Zurück zum Zitat S. Bellucci, J. González, Crossover from marginal Fermi liquid to Luttinger liquid behavior in carbon nanotubes. Phys. Rev. B 64, 201106 (2001)ADS S. Bellucci, J. González, Crossover from marginal Fermi liquid to Luttinger liquid behavior in carbon nanotubes. Phys. Rev. B 64, 201106 (2001)ADS
156.
Zurück zum Zitat S. Bellucci, J. González, P. Onorato, Large N effects and renormalization of the long-range Coulomb interaction in carbon nanotubes. Nucl. Phys. B 663, (2003) S. Bellucci, J. González, P. Onorato, Large N effects and renormalization of the long-range Coulomb interaction in carbon nanotubes. Nucl. Phys. B 663, (2003)
157.
Zurück zum Zitat S. Bellucci, P. Onorato, Magnetic field effects and renormalization of the long-range Coulomb interaction in Carbon Nanotubes. Ann. Phys. 321, 934 (2006)ADSMATH S. Bellucci, P. Onorato, Magnetic field effects and renormalization of the long-range Coulomb interaction in Carbon Nanotubes. Ann. Phys. 321, 934 (2006)ADSMATH
158.
Zurück zum Zitat S. Bellucci, J. González, P. Onorato, Doping- and geometry-dependent suppression of tunneling in carbon nanotubes. Phys. Rev. B 69, 085404 (2004)ADS S. Bellucci, J. González, P. Onorato, Doping- and geometry-dependent suppression of tunneling in carbon nanotubes. Phys. Rev. B 69, 085404 (2004)ADS
159.
Zurück zum Zitat R. Egger, H. Grabert, Electroneutrality and the Friedel sum rule in a Luttinger liquid. Phys. Rev. Lett. 79, 3463 (1997)ADS R. Egger, H. Grabert, Electroneutrality and the Friedel sum rule in a Luttinger liquid. Phys. Rev. Lett. 79, 3463 (1997)ADS
160.
Zurück zum Zitat S. Xu, J. Cao, C.C. Miller, D.A. Mantell, R.J.D. Miller, Y. Gao, Energy dependence of electron lifetime in graphite observed with femtosecond photoemission spectroscopy. Phys. Rev. Lett. 76, 483 (1996)ADS S. Xu, J. Cao, C.C. Miller, D.A. Mantell, R.J.D. Miller, Y. Gao, Energy dependence of electron lifetime in graphite observed with femtosecond photoemission spectroscopy. Phys. Rev. Lett. 76, 483 (1996)ADS
161.
Zurück zum Zitat C. Castellani, C. Di Castro, W. Metzner, Dimensional crossover from Fermi to Luttinger liquid. Phys. Rev. Lett. 72, 316 (1994)ADS C. Castellani, C. Di Castro, W. Metzner, Dimensional crossover from Fermi to Luttinger liquid. Phys. Rev. Lett. 72, 316 (1994)ADS
162.
Zurück zum Zitat S. Bellucci, J. González, On the Coulomb interaction in chiral-invariant one-dimensional electron systems. Eur. Phys. J. B 18, 3 (2000)ADS S. Bellucci, J. González, On the Coulomb interaction in chiral-invariant one-dimensional electron systems. Eur. Phys. J. B 18, 3 (2000)ADS
163.
Zurück zum Zitat P.W. Anderson, The Theory of Superconductivity in the High- T c Cuprates (Princeton University Press, Princeton, 1997) P.W. Anderson, The Theory of Superconductivity in the High- T c Cuprates (Princeton University Press, Princeton, 1997)
164.
Zurück zum Zitat D.W. Wang, A.J. Millis, S. Das Sarma, Coulomb Luttinger liquid. Phys. Rev. B 64, 193307 (2001)ADS D.W. Wang, A.J. Millis, S. Das Sarma, Coulomb Luttinger liquid. Phys. Rev. B 64, 193307 (2001)ADS
165.
Zurück zum Zitat M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Luttinger liquid behavior in carbon nanotubes. Nature (London) 397, 598 (1999)ADS M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Luttinger liquid behavior in carbon nanotubes. Nature (London) 397, 598 (1999)ADS
166.
Zurück zum Zitat J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley, Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys. Rev. B 55, R4921 (1997)ADS J.E. Fischer, H. Dai, A. Thess, R. Lee, N.M. Hanjani, D.L. Dehaas, R.E. Smalley, Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys. Rev. B 55, R4921 (1997)ADS
167.
Zurück zum Zitat B. Gao, A. Komnik, R. Egger, D.C. Glattli, A. Bachtold, Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes. Phys. Rev. Lett. 92, 216804 (2004)ADS B. Gao, A. Komnik, R. Egger, D.C. Glattli, A. Bachtold, Evidence for Luttinger-liquid behavior in crossed metallic single-wall nanotubes. Phys. Rev. Lett. 92, 216804 (2004)ADS
168.
Zurück zum Zitat H. Ishii et al., Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature (London) 426, 540 (2003)ADS H. Ishii et al., Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature (London) 426, 540 (2003)ADS
169.
Zurück zum Zitat P.M. Singer, P. Wzietek, H. Alloul, F. Simon, H. Kuzmany, NMR evidence for gapped spin excitations in metallic carbon nanotubes. Phys. Rev. Lett. 95, 236403 12 (2005)ADS P.M. Singer, P. Wzietek, H. Alloul, F. Simon, H. Kuzmany, NMR evidence for gapped spin excitations in metallic carbon nanotubes. Phys. Rev. Lett. 95, 236403 12 (2005)ADS
170.
Zurück zum Zitat A. Kanda, K. Tsukagoshi, Y. Aoyagi, Y. Ootuka, Gate-voltage dependence of zero-bias anomalies in multiwall carbon nanotubes. Phys. Rev. Lett. 92, 36801 (2004)ADS A. Kanda, K. Tsukagoshi, Y. Aoyagi, Y. Ootuka, Gate-voltage dependence of zero-bias anomalies in multiwall carbon nanotubes. Phys. Rev. Lett. 92, 36801 (2004)ADS
171.
Zurück zum Zitat S. Bellucci, P. Onorato, Magnetic field effects on low dimensional electron systems: Luttinger liquid behaviour in a quantum wire. Eur. Phys. J. B 45, 87 (2005)ADS S. Bellucci, P. Onorato, Magnetic field effects on low dimensional electron systems: Luttinger liquid behaviour in a quantum wire. Eur. Phys. J. B 45, 87 (2005)ADS
172.
Zurück zum Zitat L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Pure carbon nanoscale devices: Nanotube heterojunctions. Phys. Rev. Lett. 76, 971–974 (1996)ADS L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Pure carbon nanoscale devices: Nanotube heterojunctions. Phys. Rev. Lett. 76, 971–974 (1996)ADS
173.
Zurück zum Zitat Ph. Lambin, A. Fonseca, J.P. Vigneron, J.B. Nagy, A.A. Lucas, Structural and electronic properties of bent carbon nanotubes. Chem. Phys. Lett. 245, 85–89 (1995)ADS Ph. Lambin, A. Fonseca, J.P. Vigneron, J.B. Nagy, A.A. Lucas, Structural and electronic properties of bent carbon nanotubes. Chem. Phys. Lett. 245, 85–89 (1995)ADS
174.
Zurück zum Zitat R. Saito, G. Dresselhaus, M.S. Dresselhaus, Tunneling conductance of connected carbon nanotubes. Phys. Rev. B 53, 2044–2050 (1996)ADS R. Saito, G. Dresselhaus, M.S. Dresselhaus, Tunneling conductance of connected carbon nanotubes. Phys. Rev. B 53, 2044–2050 (1996)ADS
175.
Zurück zum Zitat J.-C. Charlier, T.W. Ebbesen, Ph. Lambin, Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys. Rev. B 53, 11108–11113 (1996)ADS J.-C. Charlier, T.W. Ebbesen, Ph. Lambin, Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes. Phys. Rev. B 53, 11108–11113 (1996)ADS
176.
Zurück zum Zitat M. Menon, D. Srivastava, Carbon nanotube “T junctions”: Nanoscale metal-semiconductor-metal contact devices. Phys. Rev. Lett. 79, 4453–4456 (1997)ADS M. Menon, D. Srivastava, Carbon nanotube “T junctions”: Nanoscale metal-semiconductor-metal contact devices. Phys. Rev. Lett. 79, 4453–4456 (1997)ADS
177.
Zurück zum Zitat L. Chico, M.P. López Sancho, M.C. Muñoz, Carbon-nanotube-based quantum dot. Phys. Rev. Lett. 81, 1278–1281 (1998)ADS L. Chico, M.P. López Sancho, M.C. Muñoz, Carbon-nanotube-based quantum dot. Phys. Rev. Lett. 81, 1278–1281 (1998)ADS
178.
Zurück zum Zitat H.W.Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Carbon nanotube single-electron transistors at room temperature. Science 293, 76 (2001)ADS H.W.Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Carbon nanotube single-electron transistors at room temperature. Science 293, 76 (2001)ADS
179.
Zurück zum Zitat D. Bozovic, M. Bockrath, J.H. Hafner, C. M. Lieber, H. Park, M. Tinkham, Electronic properties of mechanically induced kinks in single-walled carbon nanotubes. Appl. Phys. Lett. 78, 3693 (2001)ADS D. Bozovic, M. Bockrath, J.H. Hafner, C. M. Lieber, H. Park, M. Tinkham, Electronic properties of mechanically induced kinks in single-walled carbon nanotubes. Appl. Phys. Lett. 78, 3693 (2001)ADS
180.
Zurück zum Zitat M. Sassetti, F. Napoli, U. Weiss, Coherent transport of charge through a double barrier in a Luttinger liquid. Phys. Rev. B 52, 11213 (1995)ADS M. Sassetti, F. Napoli, U. Weiss, Coherent transport of charge through a double barrier in a Luttinger liquid. Phys. Rev. B 52, 11213 (1995)ADS
181.
Zurück zum Zitat A. Furusaki, Resonant tunneling through a quantum dot weakly coupled to quantum wires or quantum Hall edge states. Phys. Rev. B 57, 7141 (1998)ADS A. Furusaki, Resonant tunneling through a quantum dot weakly coupled to quantum wires or quantum Hall edge states. Phys. Rev. B 57, 7141 (1998)ADS
182.
Zurück zum Zitat A. Braggio, M. Grifoni, M. Sassetti, F. Napoli, Plasmon and charge quantization effects in a double-barrier quantum wire. Europhys. Lett. 50, 236 (2000)ADS A. Braggio, M. Grifoni, M. Sassetti, F. Napoli, Plasmon and charge quantization effects in a double-barrier quantum wire. Europhys. Lett. 50, 236 (2000)ADS
183.
Zurück zum Zitat M. Thorwart, M. Grifoni, G. Cuniberti, H.W.Ch. Postma, C. Dekker, Correlated tunneling in intramolecular carbon nanotube quantum dots. Phys. Rev. Lett. 89, 196402 (2002)ADS M. Thorwart, M. Grifoni, G. Cuniberti, H.W.Ch. Postma, C. Dekker, Correlated tunneling in intramolecular carbon nanotube quantum dots. Phys. Rev. Lett. 89, 196402 (2002)ADS
184.
Zurück zum Zitat Yu.V. Nazarov, L.I. Glazman, Resonant tunneling of interacting electrons in a one-dimensional wire. Phys. Rev. Lett. 91, 126804 (2003)ADS Yu.V. Nazarov, L.I. Glazman, Resonant tunneling of interacting electrons in a one-dimensional wire. Phys. Rev. Lett. 91, 126804 (2003)ADS
185.
Zurück zum Zitat D.G. Polyakov, I.V. Gornyi, Transport of interacting electrons through a double barrier in quantum wires. Phys. Rev. B 68, 035421 (2003)ADS D.G. Polyakov, I.V. Gornyi, Transport of interacting electrons through a double barrier in quantum wires. Phys. Rev. B 68, 035421 (2003)ADS
186.
Zurück zum Zitat A. Komnik, A.O. Gogolin, Resonant tunneling between Luttinger liquids: A solvable case. Phys. Rev. Lett. 90, 246403 (2003)ADS A. Komnik, A.O. Gogolin, Resonant tunneling between Luttinger liquids: A solvable case. Phys. Rev. Lett. 90, 246403 (2003)ADS
187.
Zurück zum Zitat S. Hügle, R. Egger, Resonant tunneling in a Luttinger liquid for arbitrary barrier transmission. Europhys. Europhys. Lett. 66, 565 (2004)ADS S. Hügle, R. Egger, Resonant tunneling in a Luttinger liquid for arbitrary barrier transmission. Europhys. Europhys. Lett. 66, 565 (2004)ADS
188.
Zurück zum Zitat A. Furusaki, N. Nagaosa, Resonant tunneling in a Luttinger liquid. Phys. Rev. B 47, 3827 (1993)ADS A. Furusaki, N. Nagaosa, Resonant tunneling in a Luttinger liquid. Phys. Rev. B 47, 3827 (1993)ADS
189.
Zurück zum Zitat V. Meden, T. Enss, S. Andergassen, W. Metzner, K. Schönhammer, Correlation effects on resonant tunneling in one-dimensional quantum wires. Phys. Rev. B 71, 041302(R) (2005)ADS V. Meden, T. Enss, S. Andergassen, W. Metzner, K. Schönhammer, Correlation effects on resonant tunneling in one-dimensional quantum wires. Phys. Rev. B 71, 041302(R) (2005)ADS
190.
Zurück zum Zitat H.J. Choi, J. Ihm, S.G. Louie, M.L. Cohen, Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917 (2000)ADS H.J. Choi, J. Ihm, S.G. Louie, M.L. Cohen, Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 84, 2917 (2000)ADS
191.
Zurück zum Zitat S. Bellucci, J. González, P. Onorato, Crossover from Luttinger liquid to Coulomb blockade regime in carbon nanotubes. Phys. Rev. Lett. 95, 186403 (2005)ADS S. Bellucci, J. González, P. Onorato, Crossover from Luttinger liquid to Coulomb blockade regime in carbon nanotubes. Phys. Rev. Lett. 95, 186403 (2005)ADS
192.
Zurück zum Zitat S. Bellucci, J. Gonzalez, P. Onorato, E. Perfetto, Modulation of Luttinger liquid exponents in multi-walled carbon nanotubes. Phys. Rev. B 74, 045427 (2006)ADS S. Bellucci, J. Gonzalez, P. Onorato, E. Perfetto, Modulation of Luttinger liquid exponents in multi-walled carbon nanotubes. Phys. Rev. B 74, 045427 (2006)ADS
193.
Zurück zum Zitat D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Kondo effect in a single-electron transistor. Nature 391, 156 (1998)ADS D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Kondo effect in a single-electron transistor. Nature 391, 156 (1998)ADS
194.
Zurück zum Zitat J. Nygard, D.H. Cobden, P.E. Lindelof, Kondo physics in carbon nanotubes. Nature 408, 342 (2000)ADS J. Nygard, D.H. Cobden, P.E. Lindelof, Kondo physics in carbon nanotubes. Nature 408, 342 (2000)ADS
195.
Zurück zum Zitat J. Paaske, A. Rosch, P. Wolfle, N. Mason, C.M. Marcus, J. Nygard, Non-equilibrium singlet-triplet Kondo effect in carbon nanotubes. Nat. Phys. 2, 460 (2006) J. Paaske, A. Rosch, P. Wolfle, N. Mason, C.M. Marcus, J. Nygard, Non-equilibrium singlet-triplet Kondo effect in carbon nanotubes. Nat. Phys. 2, 460 (2006)
196.
Zurück zum Zitat P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Orbital Kondo effect in carbon nanotubes. Nature 434, 484 (2005)ADS P. Jarillo-Herrero, J. Kong, H.S.J. van der Zant, C. Dekker, L.P. Kouwenhoven, S. De Franceschi, Orbital Kondo effect in carbon nanotubes. Nature 434, 484 (2005)ADS
197.
Zurück zum Zitat A. Makarovski, J. Liu, G. Finkelstein, Evolution of transport regimes in carbon nanotube quantum dots. Phys. Rev. Lett. 99, 066801 (2007)ADS A. Makarovski, J. Liu, G. Finkelstein, Evolution of transport regimes in carbon nanotube quantum dots. Phys. Rev. Lett. 99, 066801 (2007)ADS
198.
Zurück zum Zitat J.V. Holm, H.I. Jorgensen, K. Grove-Rasmussen, J. Paaske, K. Flensberg, P.E. Lindelof, Gate-dependent tunneling-induced level shifts observed in carbon nanotube quantum dots. Phys. Rev. B 77, 161406 (2008)ADS J.V. Holm, H.I. Jorgensen, K. Grove-Rasmussen, J. Paaske, K. Flensberg, P.E. Lindelof, Gate-dependent tunneling-induced level shifts observed in carbon nanotube quantum dots. Phys. Rev. B 77, 161406 (2008)ADS
199.
Zurück zum Zitat N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)ADS N.D. Mermin, H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)ADS
200.
Zurück zum Zitat Z.K. Tang, L. Zhang, N. Wang, X.X. Zhang, G.H. Wen et al., Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science 292, 2462 (2001)ADS Z.K. Tang, L. Zhang, N. Wang, X.X. Zhang, G.H. Wen et al., Superconductivity in 4 Angstrom single-walled carbon nanotubes. Science 292, 2462 (2001)ADS
201.
Zurück zum Zitat I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinohara, Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 96, 057001 (2006)ADS I. Takesue, J. Haruyama, N. Kobayashi, S. Chiashi, S. Maruyama, T. Sugai, H. Shinohara, Superconductivity in entirely end-bonded multiwalled carbon nanotubes. Phys. Rev. Lett. 96, 057001 (2006)ADS
202.
Zurück zum Zitat A.Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, C. Journet, M. Burghard, Supercurrent through single-walled carbon nanotubes. Science 284, 1508 (1999)ADS A.Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, C. Journet, M. Burghard, Supercurrent through single-walled carbon nanotubes. Science 284, 1508 (1999)ADS
203.
Zurück zum Zitat A.F. Mopurgo, J. Kong, C.M. Marcus, H. Dai, Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286, 263 (1999) A.F. Mopurgo, J. Kong, C.M. Marcus, H. Dai, Gate-controlled superconducting proximity effect in carbon nanotubes. Science 286, 263 (1999)
204.
Zurück zum Zitat M. Kociak, A.Yu. Kasumov, S. Guéron, B. Reulet, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, L. Vaccarini, H. Bouchiat, Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416 (2001)ADS M. Kociak, A.Yu. Kasumov, S. Guéron, B. Reulet, I.I. Khodos, Yu.B. Gorbatov, V.T. Volkov, L. Vaccarini, H. Bouchiat, Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416 (2001)ADS
205.
Zurück zum Zitat A.A. Kasumov, M. Kociak, M. Ferrier, R. Deblock, S. Guéron, B. Reulet, I. Khodos, O. Stéphan, H. Bouchiat, Quantum transport through carbon nanotubes: Proximity-induced and intrinsic superconductivity. Phys. Rev. B 68, 214521 (2003)ADS A.A. Kasumov, M. Kociak, M. Ferrier, R. Deblock, S. Guéron, B. Reulet, I. Khodos, O. Stéphan, H. Bouchiat, Quantum transport through carbon nanotubes: Proximity-induced and intrinsic superconductivity. Phys. Rev. B 68, 214521 (2003)ADS
206.
Zurück zum Zitat M.R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babic, C. Bruder, C. Schönenberger, Multiple Andreev reflections in a carbon nanotube quantum. Phys. Rev. Lett. 91, 057005 (2003); E. Vecino, M.R. Buitelaar, A. Martýn-Rodero, C. Schönenberger, A.L. Yeyati, Conductance properties of nanotubes coupled to superconducting leads: signatures of Andreev states dynamics. Solid State Commun. 131, 625 (2004) M.R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babic, C. Bruder, C. Schönenberger, Multiple Andreev reflections in a carbon nanotube quantum. Phys. Rev. Lett. 91, 057005 (2003); E. Vecino, M.R. Buitelaar, A. Martýn-Rodero, C. Schönenberger, A.L. Yeyati, Conductance properties of nanotubes coupled to superconducting leads: signatures of Andreev states dynamics. Solid State Commun. 131, 625 (2004)
207.
Zurück zum Zitat J. Haruyama, A. Tokita, N. Kobayashi, M. Nomura, S. Miyadai et al., End-bonding multiwalled carbon nanotubes in alumina templates: Superconducting proximity effect. Appl. Phys. Lett. 84, 4714 (2004)ADS J. Haruyama, A. Tokita, N. Kobayashi, M. Nomura, S. Miyadai et al., End-bonding multiwalled carbon nanotubes in alumina templates: Superconducting proximity effect. Appl. Phys. Lett. 84, 4714 (2004)ADS
208.
Zurück zum Zitat T. Tsuneta, L. Lechner, P.J. Hakonen, Gate-controlled superconductivity in a diffusive multiwalled carbon nanotube. Phys. Rev. Lett. 98, 087002 (2007)ADS T. Tsuneta, L. Lechner, P.J. Hakonen, Gate-controlled superconductivity in a diffusive multiwalled carbon nanotube. Phys. Rev. Lett. 98, 087002 (2007)ADS
209.
Zurück zum Zitat N. Murata, J. Haruyama, Y. Ueda, M. Matsudaira, H. Karino, Y. Yagi, E. Einarsson, S. Chiashi, S. Maruyama, T. Sugai, N. Kishi, H. Shinohara, Meissner effect in honeycomb arrays of multiwalled carbon nanotubes. Phys. Rev. B 76, 245424 (2007)ADS N. Murata, J. Haruyama, Y. Ueda, M. Matsudaira, H. Karino, Y. Yagi, E. Einarsson, S. Chiashi, S. Maruyama, T. Sugai, N. Kishi, H. Shinohara, Meissner effect in honeycomb arrays of multiwalled carbon nanotubes. Phys. Rev. B 76, 245424 (2007)ADS
210.
Zurück zum Zitat R.E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 1955)MATH R.E. Peierls, Quantum Theory of Solids (Clarendon, Oxford, 1955)MATH
211.
Zurück zum Zitat M. Ferrier, A. De Martino, A. Kasumov, S. Gueron, M. Kociak, R. Egger, H. Bouchiat, Superconductivity in ropes of carbon nanotubes. Solid State Commun. 131, 615 (2004)ADS M. Ferrier, A. De Martino, A. Kasumov, S. Gueron, M. Kociak, R. Egger, H. Bouchiat, Superconductivity in ropes of carbon nanotubes. Solid State Commun. 131, 615 (2004)ADS
212.
Zurück zum Zitat A. De Martino, R. Egger, Effective low-energy theory of superconductivity in carbon nanotube ropes. Phys. Rev. B 70, 014508 (2004)ADS A. De Martino, R. Egger, Effective low-energy theory of superconductivity in carbon nanotube ropes. Phys. Rev. B 70, 014508 (2004)ADS
213.
Zurück zum Zitat J. González, Consistency of superconducting correlations with one-dimensional electron interactions in carbon nanotubes. Phys. Rev. Lett. 87, 136401 (2001)ADS J. González, Consistency of superconducting correlations with one-dimensional electron interactions in carbon nanotubes. Phys. Rev. Lett. 87, 136401 (2001)ADS
214.
Zurück zum Zitat J. González, Microscopic model of superconductivity in carbon nanotubes. Phys. Rev. Lett. 88, 076403 (2002)ADS J. González, Microscopic model of superconductivity in carbon nanotubes. Phys. Rev. Lett. 88, 076403 (2002)ADS
215.
Zurück zum Zitat A.A. Maarouf, C.L. Kane, E.J. Mele, Electronic structure of carbon nanotube ropes. Phys. Rev. B 61, 11156 (2000)ADS A.A. Maarouf, C.L. Kane, E.J. Mele, Electronic structure of carbon nanotube ropes. Phys. Rev. B 61, 11156 (2000)ADS
216.
Zurück zum Zitat H.J. Schulz, in Correlated Electron Systems, ed. by V.J. Emery, vol 9 (World Scientific, Singapore, 1993) H.J. Schulz, in Correlated Electron Systems, ed. by V.J. Emery, vol 9 (World Scientific, Singapore, 1993)
217.
Zurück zum Zitat J. González, Superconductivity in carbon nanotube ropes. Phys. Rev. B 67, 014528 (2003)ADS J. González, Superconductivity in carbon nanotube ropes. Phys. Rev. B 67, 014528 (2003)ADS
218.
Zurück zum Zitat J.V. Alvarez, J. González, Insulating, superconducting, and large-compressibility phases in nanotube ropes. Phys. Rev. Lett. 91, 076401 (2003)ADS J.V. Alvarez, J. González, Insulating, superconducting, and large-compressibility phases in nanotube ropes. Phys. Rev. Lett. 91, 076401 (2003)ADS
219.
Zurück zum Zitat J. González, Current instability and diamagnetism in small-diameter carbon nanotubes. Phys. Rev. B 72, 073403 (2005)ADS J. González, Current instability and diamagnetism in small-diameter carbon nanotubes. Phys. Rev. B 72, 073403 (2005)ADS
220.
Zurück zum Zitat K.-P. Bohnen, R. Heid, H.J. Liu, C.T. Chan, Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes. Phys. Rev. Lett. 93, 245501 (2004)ADS K.-P. Bohnen, R. Heid, H.J. Liu, C.T. Chan, Lattice dynamics and electron-phonon interaction in (3,3) carbon nanotubes. Phys. Rev. Lett. 93, 245501 (2004)ADS
221.
Zurück zum Zitat D. Connétable, G.-M. Rignanese, J.-C. Charlier, X. Blase, Room temperature Peierls distortion in small diameter nanotubes. Phys. Rev. Lett. 94, 015503, (2005)ADS D. Connétable, G.-M. Rignanese, J.-C. Charlier, X. Blase, Room temperature Peierls distortion in small diameter nanotubes. Phys. Rev. Lett. 94, 015503, (2005)ADS
222.
Zurück zum Zitat E. Perfetto, J. González, Theory of superconductivity in multiwalled carbon nanotubes. Phys. Rev. B 74, 201403 (2006)ADS E. Perfetto, J. González, Theory of superconductivity in multiwalled carbon nanotubes. Phys. Rev. B 74, 201403 (2006)ADS
223.
Zurück zum Zitat K. Kamide, T. Kimura, M. Nishida, S. Kurihara, Singlet superconductivity phase in carbon nanotubes. Phys. Rev. B 68, 024506 (2003)ADS K. Kamide, T. Kimura, M. Nishida, S. Kurihara, Singlet superconductivity phase in carbon nanotubes. Phys. Rev. B 68, 024506 (2003)ADS
224.
Zurück zum Zitat D. Carpentier, E. Orignac, Superconducting instability in three-band metallic nanotubes. Phys. Rev. B 74, 085409 (2006)ADS D. Carpentier, E. Orignac, Superconducting instability in three-band metallic nanotubes. Phys. Rev. B 74, 085409 (2006)ADS
225.
Zurück zum Zitat K. Sasaki, J. Jiang, R. Saito, S. Onari, Y. Tanaka, Theory of superconductivity of carbon nanotubes and graphene. J. Phys. Soc. Jpn. 76, 033702 (2007)ADS K. Sasaki, J. Jiang, R. Saito, S. Onari, Y. Tanaka, Theory of superconductivity of carbon nanotubes and graphene. J. Phys. Soc. Jpn. 76, 033702 (2007)ADS
226.
Zurück zum Zitat S. Bellucci, M. Cini, P. Onorato, E. Perfetto, Suppression of electron electron repulsion and superconductivity in ultra small carbon nanotubes. J. Phys. Condens. Matter 18, S2115 (2006)ADS S. Bellucci, M. Cini, P. Onorato, E. Perfetto, Suppression of electron electron repulsion and superconductivity in ultra small carbon nanotubes. J. Phys. Condens. Matter 18, S2115 (2006)ADS
227.
Zurück zum Zitat S. Bellucci, M. Cini, P. Onorato, E. Perfetto, Theoretical approach to electronic screening and correlated superconductivity in carbon nanotubes. Phys. Rev. B 75, 014523 (2007)ADS S. Bellucci, M. Cini, P. Onorato, E. Perfetto, Theoretical approach to electronic screening and correlated superconductivity in carbon nanotubes. Phys. Rev. B 75, 014523 (2007)ADS
228.
Zurück zum Zitat E. Perfetto, G. Stefanucci, M. Cini, W=0 pairing in (N,N) carbon nanotubes away from half filling. Phys. Rev. B 66, 165434 (2002)ADS E. Perfetto, G. Stefanucci, M. Cini, W=0 pairing in (N,N) carbon nanotubes away from half filling. Phys. Rev. B 66, 165434 (2002)ADS
229.
Zurück zum Zitat E. Perfetto, G. Stefanucci, M. Cini, On-site repulsion as the origin of pairing in carbonnanotubes and intercalated graphite. Eur. Phys. J. B 30, 139 (2002)ADS E. Perfetto, G. Stefanucci, M. Cini, On-site repulsion as the origin of pairing in carbonnanotubes and intercalated graphite. Eur. Phys. J. B 30, 139 (2002)ADS
230.
Zurück zum Zitat S. Bellucci, M. Cini, P. Onorato, E. Perfetto, Influence of dimensionality on superconductivity in carbon nanotubes. J. Phys. Condens. Matter 19, 395016 (2007) S. Bellucci, M. Cini, P. Onorato, E. Perfetto, Influence of dimensionality on superconductivity in carbon nanotubes. J. Phys. Condens. Matter 19, 395016 (2007)
Metadaten
Titel
Transport Properties in Carbon Nanotubes
verfasst von
Stefano Bellucci
Pasquale Onorato
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-15778-3_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.