Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.05.2019 | Original Article

Transportation scheduling optimization by a collaborative strategy in supply chain management with TPL using chemical reaction optimization

Zeitschrift:
Neural Computing and Applications
Autoren:
Md. Rafiqul Islam, Md. Riaz Mahmud, Rayhan Morshed Pritom
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Optimization of supply chain management is a way of ensuring the usability of resources and related technologies at the best possible way. Transportation scheduling of vehicle and transportation nodes in supply chain management is an important factor in order to create a stable chained network by ensuring the highest amount of product distribution and lowest logistics cost. In recent years, a number of programming models like linear programming, heuristics and meta-heuristics optimization approaches are proposed by the researchers to solve this combinatorial NP-hard problem. In this paper, we have studied and analyzed the nature of transportation vehicle scheduling problem in a supply chain network with the help of third-party logistics enterprise by using a meta-heuristic algorithm called chemical reaction optimization (CRO). At first, we have classified all the transportation nodes into three distinct classifications. Then, a collaborative transportation scheduling strategy is used which is based on two significant kinds of transportation nodes. For the first two kinds of nodes, we have randomly created a large number of combined transportation routes, and the vehicle scheduling for the last standalone nodes is created by a random matrix generation. Then, we have proposed a CRO algorithm using four reaction operators with an additional repair operator to find out the best transportation routes within shortest computing time. We named our proposed algorithm as chemical reaction optimization for supply chain management (CRO-SCM). The proposed CRO-SCM algorithm is analyzed with the standard dataset from the proposed model using modified ACO-NSO algorithm which is the state of the art. In addition, a random dataset of different scales of transportation nodes is considered to evaluate the efficiency of the algorithm. Moreover, six different scales of problem sets consisting different number of nodes are adopted to analyze the performance of the proposed CRO algorithm. The simulation results demonstrate that the proposed approach is practical and efficient than existing ACO-based solutions and the experimental results are more efficient and optimal.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise