Skip to main content
Erschienen in: Journal of Polymer Research 5/2019

01.05.2019 | ORIGINAL PAPER

Transurethanization reaction as an alternative for melt modification of polyamide 6

verfasst von: Lucas Dall Agnol, Hérlon Luiz Ceratti, Diana Favero, Silvana Pereira Rempel, Licia da Silva Alves Schiavo, Juliano Roberto Ernzen, Fernanda Trindade Gonzalez Dias, Otávio Bianchi

Erschienen in: Journal of Polymer Research | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents an interesting alternative for melt modification of polyamide 6 (PA6). Transurethanization was employed as an effective strategy for this purpose. At high temperatures (>160 °C), the dissociation of urethane groups and subsequent reaction with PA6 end groups result in chain grown. The effect of TPU incorporation (2–10 wt.%) into PA6 on the microstructure, rheology, and thermal and mechanical performance of PA6/TPU blends was investigated. The chemical reactions between PA6 and TPU were elucidated using a model reaction of amino acid and MDI. The phase morphology of the blends did not show defined phases of TPU. However, it was noticed the formation of micrometric pores. Both the melting temperature and crystallinity of neat PA6 decreased with TPU incorporation. The production of a copolymer by terminal group reactions hinders the crystallization of polyamide with the reduction of nucleation and crystal growth. The increase in molar mass of PA6 can be confirmed by rheological measurements, in which an abrupt increase in viscosity was noted, as well as in the storage modulus. The impact strength of the blends significantly increased with the addition of TPU, whereas a discrete decrease occurred for the elastic modulus and tensile strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lozano-González MJ, Rodriguez-Hernandez MT, Gonzalez-De Los Santos EA, Villalpando-Olmos J (2000) Physical–mechanical properties and morphological study on nylon-6 recycling by injection molding. J Appl Polym Sci 76(6):851–858CrossRef Lozano-González MJ, Rodriguez-Hernandez MT, Gonzalez-De Los Santos EA, Villalpando-Olmos J (2000) Physical–mechanical properties and morphological study on nylon-6 recycling by injection molding. J Appl Polym Sci 76(6):851–858CrossRef
2.
Zurück zum Zitat Li HB, Wu JW, Huang YQ, Runt J, Huang CM, Huang KS, Yeh JT (2018) Properties of polyamide 612/poly (vinyl alcohol) blends and their impact on free volume and oxygen barrier properties. J Polym Res 25(9):195CrossRef Li HB, Wu JW, Huang YQ, Runt J, Huang CM, Huang KS, Yeh JT (2018) Properties of polyamide 612/poly (vinyl alcohol) blends and their impact on free volume and oxygen barrier properties. J Polym Res 25(9):195CrossRef
3.
Zurück zum Zitat Goitisolo I, Eguiazábal JI, Nazábal J (2008) Effects of reprocessing on the structure and properties of polyamide 6 nanocomposites. Polym Degrad Stab 93(10):1747–1752CrossRef Goitisolo I, Eguiazábal JI, Nazábal J (2008) Effects of reprocessing on the structure and properties of polyamide 6 nanocomposites. Polym Degrad Stab 93(10):1747–1752CrossRef
4.
Zurück zum Zitat Hou LL, Liu HZ, Yang GS (2006) A novel approach to the preparation of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization of ε-caprolactam. Polym Int 55(6):643–649CrossRef Hou LL, Liu HZ, Yang GS (2006) A novel approach to the preparation of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization of ε-caprolactam. Polym Int 55(6):643–649CrossRef
5.
Zurück zum Zitat Bondan F, Ernzen JR, Amalvy J, Machado AV, Martins JDN, Bianchi O (2016) Influence of dynamic crosslinking on the morphology, crystallization, and dynamic mechanical properties of PA6,12/EVA blends. J Appl Polym Sci 133(46):44206 (44212p)CrossRef Bondan F, Ernzen JR, Amalvy J, Machado AV, Martins JDN, Bianchi O (2016) Influence of dynamic crosslinking on the morphology, crystallization, and dynamic mechanical properties of PA6,12/EVA blends. J Appl Polym Sci 133(46):44206 (44212p)CrossRef
6.
Zurück zum Zitat Hou L, Liu H, Yang G (2006) Preparation and characterization of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization of ϵ-caprolactam. Polym Eng Sci 46(9):1196–1203CrossRef Hou L, Liu H, Yang G (2006) Preparation and characterization of thermoplastic polyurethane elastomer and polyamide 6 blends by in situ anionic ring-opening polymerization of ϵ-caprolactam. Polym Eng Sci 46(9):1196–1203CrossRef
7.
Zurück zum Zitat Zhou S, Huang J, Zhang Q (2014) Mechanical and tribological properties of polyamide-based composites modified by thermoplastic polyurethane. J Thermoplast Compos Mater 27(1):18–34CrossRef Zhou S, Huang J, Zhang Q (2014) Mechanical and tribological properties of polyamide-based composites modified by thermoplastic polyurethane. J Thermoplast Compos Mater 27(1):18–34CrossRef
8.
Zurück zum Zitat Yi C, Peng Z, Wang H, Li M, Wang C (2011) Synthesis and characteristics of thermoplastic elastomer based on polyamide-6. Polym Int 60(12):1728–1736CrossRef Yi C, Peng Z, Wang H, Li M, Wang C (2011) Synthesis and characteristics of thermoplastic elastomer based on polyamide-6. Polym Int 60(12):1728–1736CrossRef
9.
Zurück zum Zitat Genovese A, Shanks RA (2001) Simulation of the specific interactions between polyamide-6 and a thermoplastic polyurethane. Comput Theor Polymer Sci 11(1):57–62CrossRef Genovese A, Shanks RA (2001) Simulation of the specific interactions between polyamide-6 and a thermoplastic polyurethane. Comput Theor Polymer Sci 11(1):57–62CrossRef
10.
Zurück zum Zitat GunaSingh C, Soundararajan S, Palanivelu K (2013) Studies on mechanical, thermal properties and characterization of nanocomposites of nylon-6–thermoplastics poly urethane rubber [TPUR] blend. IOSR J Appl Chem 4(1):65–75CrossRef GunaSingh C, Soundararajan S, Palanivelu K (2013) Studies on mechanical, thermal properties and characterization of nanocomposites of nylon-6–thermoplastics poly urethane rubber [TPUR] blend. IOSR J Appl Chem 4(1):65–75CrossRef
11.
Zurück zum Zitat Rätzsch M, Haudel G, Pompe G, Meyer E (1990) Interaction between polymers. J Macromol Sci A 27(13–14):1631–1655 Rätzsch M, Haudel G, Pompe G, Meyer E (1990) Interaction between polymers. J Macromol Sci A 27(13–14):1631–1655
12.
Zurück zum Zitat Haponiuk J, Balas A (1995) Thermal properties of polyamide 6/polyurethane blends. J Therm Anal Calorim 43(1):211–214CrossRef Haponiuk J, Balas A (1995) Thermal properties of polyamide 6/polyurethane blends. J Therm Anal Calorim 43(1):211–214CrossRef
13.
Zurück zum Zitat Hentschel T, Münstedt H (2001) Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer 42(7):3195–3203CrossRef Hentschel T, Münstedt H (2001) Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer 42(7):3195–3203CrossRef
14.
Zurück zum Zitat Deepa P, Jayakannan M (2008) Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J Polym Sci A Polym Chem 46(7):2445–2458CrossRef Deepa P, Jayakannan M (2008) Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J Polym Sci A Polym Chem 46(7):2445–2458CrossRef
15.
Zurück zum Zitat Puaux JP, Cassagnau P, Bozga G, Nagy I (2006) Modeling of polyurethane synthesis by reactive extrusion. Chem Eng Process 45(6):481–487CrossRef Puaux JP, Cassagnau P, Bozga G, Nagy I (2006) Modeling of polyurethane synthesis by reactive extrusion. Chem Eng Process 45(6):481–487CrossRef
16.
Zurück zum Zitat Lu QW, Hoye TR, Macosko CW (2002) Reactivity of common functional groups with urethanes: models for reactive compatibilization of thermoplastic polyurethane blends. J Polym Sci A Polym Chem 40(14):2310–2328CrossRef Lu QW, Hoye TR, Macosko CW (2002) Reactivity of common functional groups with urethanes: models for reactive compatibilization of thermoplastic polyurethane blends. J Polym Sci A Polym Chem 40(14):2310–2328CrossRef
17.
Zurück zum Zitat Shi X, Zhang J, Jin J, Chen S (2008) Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents. Express Polym Lett 2(9):623–629CrossRef Shi X, Zhang J, Jin J, Chen S (2008) Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents. Express Polym Lett 2(9):623–629CrossRef
18.
Zurück zum Zitat Chiang C-R, Chang F-C (1997) Polymer blends of polyamide-6 (PA6) and poly (phenylene oxide) (PPO) compatibilized by styrene-maleic anhydride (SMA) copolymer. Polymer 38(19):4807–4817CrossRef Chiang C-R, Chang F-C (1997) Polymer blends of polyamide-6 (PA6) and poly (phenylene oxide) (PPO) compatibilized by styrene-maleic anhydride (SMA) copolymer. Polymer 38(19):4807–4817CrossRef
19.
Zurück zum Zitat Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier Van Krevelen DW, Te Nijenhuis K (2009) Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier
20.
Zurück zum Zitat Wu Q, Liu X, Berglund LA (2002) FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites. Polymer 43(8):2445–2449CrossRef Wu Q, Liu X, Berglund LA (2002) FT-IR spectroscopic study of hydrogen bonding in PA6/clay nanocomposites. Polymer 43(8):2445–2449CrossRef
21.
Zurück zum Zitat Kong W, Yang Y, Liu Z, Lei J (2017) Structure-property relations of novel polyamide-6 elastomers prepared through reactive processing. J Polym Res 24(10):168CrossRef Kong W, Yang Y, Liu Z, Lei J (2017) Structure-property relations of novel polyamide-6 elastomers prepared through reactive processing. J Polym Res 24(10):168CrossRef
22.
Zurück zum Zitat Lee BS, Chun BC, Chung Y-C, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34(18):6431–6437CrossRef Lee BS, Chun BC, Chung Y-C, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34(18):6431–6437CrossRef
23.
Zurück zum Zitat Seymour R, Estes G, Cooper SL (1970) Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding. Macromolecules 3(5):579–583CrossRef Seymour R, Estes G, Cooper SL (1970) Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding. Macromolecules 3(5):579–583CrossRef
24.
Zurück zum Zitat Skrockienė V, Žukienė K, Jankauskaitė V, Baltušnikas A, Petraitienė S (2016) Properties of mechanically recycled polycaprolactone-based thermoplastic polyurethane/polycaprolactone blends and their nanocomposites. J Elastom Plast 48(3):266–286CrossRef Skrockienė V, Žukienė K, Jankauskaitė V, Baltušnikas A, Petraitienė S (2016) Properties of mechanically recycled polycaprolactone-based thermoplastic polyurethane/polycaprolactone blends and their nanocomposites. J Elastom Plast 48(3):266–286CrossRef
25.
Zurück zum Zitat Franke C, Pötschke P, Rätzsch M, Pompe G, Sahre K, Voigt D, Janke A (1993) Wirkung von Diisocyanat als reaktiver Koppler in TPU/PA6-Blends. Angew Makromol Chem 206(1):21–38CrossRef Franke C, Pötschke P, Rätzsch M, Pompe G, Sahre K, Voigt D, Janke A (1993) Wirkung von Diisocyanat als reaktiver Koppler in TPU/PA6-Blends. Angew Makromol Chem 206(1):21–38CrossRef
26.
Zurück zum Zitat Tuominen J, Kylmä J, Seppälä J (2002) Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1,6-hexamethylene diisocyanate and 2,2′-bis(2-oxazoline). Polymer 43(1):3–10CrossRef Tuominen J, Kylmä J, Seppälä J (2002) Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1,6-hexamethylene diisocyanate and 2,2′-bis(2-oxazoline). Polymer 43(1):3–10CrossRef
27.
Zurück zum Zitat Stephens JS, Chase DB, Rabolt JF (2004) Effect of the electrospinning process on polymer crystallization chain conformation in nylon-6 and nylon-12. Macromolecules 37(3):877–881CrossRef Stephens JS, Chase DB, Rabolt JF (2004) Effect of the electrospinning process on polymer crystallization chain conformation in nylon-6 and nylon-12. Macromolecules 37(3):877–881CrossRef
28.
Zurück zum Zitat Zo HJ, Joo SH, Kim T, Seo PS, Kim JH, Park JS (2014) Enhanced mechanical and thermal properties of carbon fiber composites with polyamide and thermoplastic polyurethane blends. Fiber Polym 15(5):1071–1077CrossRef Zo HJ, Joo SH, Kim T, Seo PS, Kim JH, Park JS (2014) Enhanced mechanical and thermal properties of carbon fiber composites with polyamide and thermoplastic polyurethane blends. Fiber Polym 15(5):1071–1077CrossRef
29.
Zurück zum Zitat Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959CrossRef Njuguna J, Pielichowski K, Desai S (2008) Nanofiller-reinforced polymer nanocomposites. Polym Adv Technol 19(8):947–959CrossRef
30.
Zurück zum Zitat Guo B, Zuo Q, Lei Y, Du M, Liu M, Jia D (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484(1–2):48–56CrossRef Guo B, Zuo Q, Lei Y, Du M, Liu M, Jia D (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484(1–2):48–56CrossRef
31.
Zurück zum Zitat Liu Y, Yang G (2010) Non-isothermal crystallization kinetics of polyamide-6/graphite oxide nanocomposites. Thermochim Acta 500(1–2):13–20CrossRef Liu Y, Yang G (2010) Non-isothermal crystallization kinetics of polyamide-6/graphite oxide nanocomposites. Thermochim Acta 500(1–2):13–20CrossRef
32.
Zurück zum Zitat Haponiuk J (2000) Phase transitions of polyamide 6/polyurethane blends compatibilized by copolyurethaneamides. J Therm Anal Calorim 60(1):45–52CrossRef Haponiuk J (2000) Phase transitions of polyamide 6/polyurethane blends compatibilized by copolyurethaneamides. J Therm Anal Calorim 60(1):45–52CrossRef
33.
Zurück zum Zitat Nadkarni VM, Bulakh NN, Jog JP (1993) Assessing polymer crystallizability from nonisothermal crystallization behavior. Adv Polym Technol 12(1):73–79CrossRef Nadkarni VM, Bulakh NN, Jog JP (1993) Assessing polymer crystallizability from nonisothermal crystallization behavior. Adv Polym Technol 12(1):73–79CrossRef
34.
Zurück zum Zitat Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J polym sci C: Polym symp 6(1):183–195CrossRef Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J polym sci C: Polym symp 6(1):183–195CrossRef
35.
Zurück zum Zitat Li W, Liu J, Zhang X, Zhao Y, Wang D (2012) Synergetic effect of polyamide 1212 and diisocyanate on performance improving of thermoplastic polyurethane via melt compounding. J Appl Polym Sci 125(2):1077–1083CrossRef Li W, Liu J, Zhang X, Zhao Y, Wang D (2012) Synergetic effect of polyamide 1212 and diisocyanate on performance improving of thermoplastic polyurethane via melt compounding. J Appl Polym Sci 125(2):1077–1083CrossRef
36.
Zurück zum Zitat Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the nonisothermal crystallization of a polymer melt. Macromol Rapid Commun 23(13):766–770CrossRef Vyazovkin S, Sbirrazzuoli N (2002) Isoconversional analysis of the nonisothermal crystallization of a polymer melt. Macromol Rapid Commun 23(13):766–770CrossRef
37.
Zurück zum Zitat Vyazovkin S, Sbirrazzuoli N (2003) Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B 107(3):882–888CrossRef Vyazovkin S, Sbirrazzuoli N (2003) Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B 107(3):882–888CrossRef
38.
Zurück zum Zitat Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25(6):733–738CrossRef Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 25(6):733–738CrossRef
39.
Zurück zum Zitat Chan TW, Isayev AI (1994) Quiescent polymer crystallization: modelling and measurements. Polym Eng Sci 34(6):461–471CrossRef Chan TW, Isayev AI (1994) Quiescent polymer crystallization: modelling and measurements. Polym Eng Sci 34(6):461–471CrossRef
40.
Zurück zum Zitat Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441CrossRef Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441CrossRef
41.
Zurück zum Zitat Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168CrossRef Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(2):164–168CrossRef
42.
Zurück zum Zitat Huang JW, Chang CC, Kang CC, Yeh MY (2008) Crystallization kinetics and nucleation parameters of nylon 6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim Acta 468(1–2):66–74CrossRef Huang JW, Chang CC, Kang CC, Yeh MY (2008) Crystallization kinetics and nucleation parameters of nylon 6 and poly(ethylene-co-glycidyl methacrylate) blend. Thermochim Acta 468(1–2):66–74CrossRef
43.
Zurück zum Zitat Lauritzen Jr JI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44(10):4340–4352CrossRef Lauritzen Jr JI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44(10):4340–4352CrossRef
44.
Zurück zum Zitat Lonkar SP, Morlat-Therias S, Caperaa N, Leroux F, Gardette JL, Singh RP (2009) Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites. Polymer 50(6):1505–1515CrossRef Lonkar SP, Morlat-Therias S, Caperaa N, Leroux F, Gardette JL, Singh RP (2009) Preparation and nonisothermal crystallization behavior of polypropylene/layered double hydroxide nanocomposites. Polymer 50(6):1505–1515CrossRef
45.
Zurück zum Zitat Tsanaktsis V, Bikiaris DN, Guigo N, Exarhopoulos S, Papageorgiou DG, Sbirrazzuoli N, Papageorgiou GZ (2015) Synthesis, properties and thermal behavior of poly(decylene-2,5-furanoate): a biobased polyester from 2,5-furan dicarboxylic acid. RSC Adv 5(91):74592–74604CrossRef Tsanaktsis V, Bikiaris DN, Guigo N, Exarhopoulos S, Papageorgiou DG, Sbirrazzuoli N, Papageorgiou GZ (2015) Synthesis, properties and thermal behavior of poly(decylene-2,5-furanoate): a biobased polyester from 2,5-furan dicarboxylic acid. RSC Adv 5(91):74592–74604CrossRef
46.
Zurück zum Zitat Ferreira CI, Bianchi O, Oviedo MAS, Oliveira RVBD, Mauler RS (2013) Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites. Polímeros 23(4):456–461CrossRef Ferreira CI, Bianchi O, Oviedo MAS, Oliveira RVBD, Mauler RS (2013) Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites. Polímeros 23(4):456–461CrossRef
47.
Zurück zum Zitat Bianchi O, Júnior HLO, Canto LB, Mauler RS, de Oliveira RVB (2016) Viscoelastic properties of PS–POSS hybrid materials prepared by reactive processing. Polym Test 54:159–167CrossRef Bianchi O, Júnior HLO, Canto LB, Mauler RS, de Oliveira RVB (2016) Viscoelastic properties of PS–POSS hybrid materials prepared by reactive processing. Polym Test 54:159–167CrossRef
48.
Zurück zum Zitat Cox W, Merz E (1959) Rheology of polymer melts – a correlation of dynamic and steady flow measurements. In: International symposium on plastics testing and standardization. ASTM International Cox W, Merz E (1959) Rheology of polymer melts – a correlation of dynamic and steady flow measurements. In: International symposium on plastics testing and standardization. ASTM International
49.
Zurück zum Zitat Liu Y, Li S-C, Liu H (2013) Melt rheological properties of LLDPE/PP blends compatibilized by cross-linked LLDPE/PP blends (LLDPE-PP). Polym Plast Technol Eng 52(8):841–846CrossRef Liu Y, Li S-C, Liu H (2013) Melt rheological properties of LLDPE/PP blends compatibilized by cross-linked LLDPE/PP blends (LLDPE-PP). Polym Plast Technol Eng 52(8):841–846CrossRef
50.
Zurück zum Zitat do Amaral FCN, Ernzen JR, Fiorio R, Martins JDN, Dias FTG, Avolio R, Bianchi O (2018) Effect of the partially hydrolyzed EVA-h content on the morphology, rheology, and mechanical properties of PA12/EVA blends. Polym Eng Sci 58(3):335–344CrossRef do Amaral FCN, Ernzen JR, Fiorio R, Martins JDN, Dias FTG, Avolio R, Bianchi O (2018) Effect of the partially hydrolyzed EVA-h content on the morphology, rheology, and mechanical properties of PA12/EVA blends. Polym Eng Sci 58(3):335–344CrossRef
51.
Zurück zum Zitat Piao H, Kiryu Y, Chen L, Yamashita S, Ohsawa I, Takahashi J (2019) Influence of water absorption on the mechanical properties of discontinuous carbon fiber reinforced polyamide 6. J Polym Res 26(3):63CrossRef Piao H, Kiryu Y, Chen L, Yamashita S, Ohsawa I, Takahashi J (2019) Influence of water absorption on the mechanical properties of discontinuous carbon fiber reinforced polyamide 6. J Polym Res 26(3):63CrossRef
Metadaten
Titel
Transurethanization reaction as an alternative for melt modification of polyamide 6
verfasst von
Lucas Dall Agnol
Hérlon Luiz Ceratti
Diana Favero
Silvana Pereira Rempel
Licia da Silva Alves Schiavo
Juliano Roberto Ernzen
Fernanda Trindade Gonzalez Dias
Otávio Bianchi
Publikationsdatum
01.05.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1787-4

Weitere Artikel der Ausgabe 5/2019

Journal of Polymer Research 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.