Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.07.2022

Trapezoidal Microstrip Patch Antenna Array for Low Frequency Medical Applications

verfasst von: S. Suganthi, P. T. Selvan

Erschienen in: Wireless Personal Communications

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This paper presents the design of low cost FR4 substrate trapezoidal patch microstrip feed antenna array for low frequency wireless medical applications. Initially, single element trapezoidal patch antenna having size of 70 × 30 mm2 has been designed and then the 2 × 2 array has been achieved for bandwidth improvement with low loss in same dimension. The array resonates at 1.891 GHz with impedance bandwidth of 80 MHz and low return loss of − 26.19 dB. The VSWR of 1.103 validate the activeness of the proposed antenna array having maximum surface current 133.1 (A/m) and directivity of 4.48 dBi. The antenna array exhibit the H-Field strength of 160.52 (A/m) and E-Field of 36,093.4 (V/m) prove the radiation capability at low frequency on body application. The antenna has been simulated in low frequency L band from 1 to 2 GHz and compared with other works in literature. The radiation property of proposed array validate it uses in low frequency biological imaging application for visual representation of interior body for medical diagnosis and interventions.
Literatur
12.
Zurück zum Zitat Alqadami, A. S. M., Nguyen-Trong, N., Mohammed, B., Stancombe, A. E., Heitzmann, M. T., & Abbosh, A. (2020). Compact unidirectional conformal antenna based on flexible high-permittivity custom-made substrate for wearable wideband EM head imaging system. IEEE Transaction on Antennas Propagation., 68(1), 183–194. https://​doi.​org/​10.​1109/​TAP.​2019.​2938849 CrossRef Alqadami, A. S. M., Nguyen-Trong, N., Mohammed, B., Stancombe, A. E., Heitzmann, M. T., & Abbosh, A. (2020). Compact unidirectional conformal antenna based on flexible high-permittivity custom-made substrate for wearable wideband EM head imaging system. IEEE Transaction on Antennas Propagation., 68(1), 183–194. https://​doi.​org/​10.​1109/​TAP.​2019.​2938849 CrossRef
13.
Zurück zum Zitat Zhu, S., Liu, H., Liu, H., Chen, Z., & Xu, H. (2020). Vivaldi antenna array using defected ground structure for edge effect restraint and back radiation suppression. IEEE antennas and wireless propagation letters, 19(1), 84–88. CrossRef Zhu, S., Liu, H., Liu, H., Chen, Z., & Xu, H. (2020). Vivaldi antenna array using defected ground structure for edge effect restraint and back radiation suppression. IEEE antennas and wireless propagation letters, 19(1), 84–88. CrossRef
14.
Zurück zum Zitat Alqadami, A. S. M., Bialkowski, K. S., Mobashsher, A. T., & Abbosh, A. M. (2019). Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis. IEEE Transaction on Biomedical Circuits Systems, 13(1), 124–134. CrossRef Alqadami, A. S. M., Bialkowski, K. S., Mobashsher, A. T., & Abbosh, A. M. (2019). Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis. IEEE Transaction on Biomedical Circuits Systems, 13(1), 124–134. CrossRef
16.
Zurück zum Zitat Pozar, D. M., & Schaubert, D. H. (1995). Microstrip antennas, the analysis and design of microstrip antennas and arrays. IEEE Press. Pozar, D. M., & Schaubert, D. H. (1995). Microstrip antennas, the analysis and design of microstrip antennas and arrays. IEEE Press.
17.
Zurück zum Zitat Chen, D., Wang, K., Zhu, W., & Wang, L. (2018). A 2–40 GHz dual-band dual-polarized nested Vivaldi antenna. IEEE Antennas and Wireless Propagation Letters, 13(2), 163–170. Chen, D., Wang, K., Zhu, W., & Wang, L. (2018). A 2–40 GHz dual-band dual-polarized nested Vivaldi antenna. IEEE Antennas and Wireless Propagation Letters, 13(2), 163–170.
20.
Zurück zum Zitat Federico, G., Caratelli, D., Theis, G., Smolders, A. B. (2021). A review of antenna array technologies for point-to-point and point-to-multipoint wireless communications at millimeter-wave frequencies. International Journal of Antennas and Propagation, 2021, 1–18, Article ID 5559765. 10.1155 /2021/5559765. Federico, G., Caratelli, D., Theis, G., Smolders, A. B. (2021). A review of antenna array technologies for point-to-point and point-to-multipoint wireless communications at millimeter-wave frequencies. International Journal of Antennas and Propagation, 2021, 1–18, Article ID 5559765. 10.1155 /2021/5559765.
30.
Zurück zum Zitat Naik, K. K., Seelam, C. S., Teja Sailaja, B. V. S., & Vijaya Sri, P. A. (2020). Design of flexible parasitic element patch antenna for biomedical application. Progress in Electromagnetics Research M, 94, 143–153. CrossRef Naik, K. K., Seelam, C. S., Teja Sailaja, B. V. S., & Vijaya Sri, P. A. (2020). Design of flexible parasitic element patch antenna for biomedical application. Progress in Electromagnetics Research M, 94, 143–153. CrossRef
33.
Zurück zum Zitat Ozyalcm, M.O. (2002). Modeling and Simulation of Electromagnetic Problems via Transmission Line Matrix Method, Ph.D. Dissertation, Istanbul Technical University, Institute of Science. Ozyalcm, M.O. (2002). Modeling and Simulation of Electromagnetic Problems via Transmission Line Matrix Method, Ph.D. Dissertation, Istanbul Technical University, Institute of Science.
35.
Zurück zum Zitat Woo, M. K., DelaBarre, L., Waks, M., Lee, J., Lagore, R. L., Jungst, S., Grant, A., Eryaman, Y., Ugurbil, K., & Adriany, G. (2021). Comparison of 16-channel asymmetric sleeve antenna and dipole antenna transceiver arrays at 10.5 tesla MRI. IEEE Transactions on Medical Imaging, 40(4), 1147–1156. CrossRef Woo, M. K., DelaBarre, L., Waks, M., Lee, J., Lagore, R. L., Jungst, S., Grant, A., Eryaman, Y., Ugurbil, K., & Adriany, G. (2021). Comparison of 16-channel asymmetric sleeve antenna and dipole antenna transceiver arrays at 10.5 tesla MRI. IEEE Transactions on Medical Imaging, 40(4), 1147–1156. CrossRef
36.
Zurück zum Zitat Lee, K. J., & Son, S. H. (2021). Ring-shaped antenna array for multistatic microwave breast imaging systems. Microwave and Optical Technology Letters, 63(7), 1906–1912. CrossRef Lee, K. J., & Son, S. H. (2021). Ring-shaped antenna array for multistatic microwave breast imaging systems. Microwave and Optical Technology Letters, 63(7), 1906–1912. CrossRef
Metadaten
Titel
Trapezoidal Microstrip Patch Antenna Array for Low Frequency Medical Applications
verfasst von
S. Suganthi
P. T. Selvan
Publikationsdatum
04.07.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09818-4