Skip to main content

2013 | OriginalPaper | Buchkapitel

16. Tree and Network Building

verfasst von : Naruya Saitou

Erschienen in: Introduction to Evolutionary Genomics

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Construction of phylogenetic trees from nucleotide or amino acid sequence data is one of the important areas of evolutionary genomics. We start from classification of tree-building methods, both by type of data and by type of tree search algorithm. Various distance matrix methods including UPGMA, minimum deviation methods, minimum evolution methods, transformed distance methods, and neighbor-joining method are explained. Among character-state methods, maximum parsimony methods, maximum likelihood methods, and Bayesian method are explained. These many phylogenetic tree-making methods were compared mainly based on computer simulation studies. Phylogenetic network constructions from distance matrix and from multiply aligned sequences are also discussed as well as phylogeny construction without multiple alignments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
2.
Zurück zum Zitat Ohtsuka, H., Oyanagi, M., Mafune, Y., Miyashita, N., Shiroishi, T., Moriwaki, K., Kominami, R., & Saitou, N. (1996). The presence/absence polymorphism and evolution of p53 pseudogene within the genus Mus. Molecular Phylogenetics and Evolution, 5, 548–556.CrossRef Ohtsuka, H., Oyanagi, M., Mafune, Y., Miyashita, N., Shiroishi, T., Moriwaki, K., Kominami, R., & Saitou, N. (1996). The presence/absence polymorphism and evolution of p53 pseudogene within the genus Mus. Molecular Phylogenetics and Evolution, 5, 548–556.CrossRef
3.
Zurück zum Zitat Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.CrossRef Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.CrossRef
4.
Zurück zum Zitat Saitou, N. (1996). Reconstruction of gene trees from sequence data. In R. Doolittle (Ed.), Methods in enzymology, 266: Computer methods for macromolecular sequence analysis (pp. 427–449). San Diego: Academic Press.CrossRef Saitou, N. (1996). Reconstruction of gene trees from sequence data. In R. Doolittle (Ed.), Methods in enzymology, 266: Computer methods for macromolecular sequence analysis (pp. 427–449). San Diego: Academic Press.CrossRef
5.
Zurück zum Zitat Saitou, N. (2007). Genomu Shinkagaku Nyumon. Tokyo: Kyoritsu-Shuppan (in Japanese). Saitou, N. (2007). Genomu Shinkagaku Nyumon. Tokyo: Kyoritsu-Shuppan (in Japanese).
6.
Zurück zum Zitat Saitou, N., & Imanishi, T. (1989). Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Molecular Biology and Evolution, 6, 514–525. Saitou, N., & Imanishi, T. (1989). Relative efficiencies of the Fitch-Margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree. Molecular Biology and Evolution, 6, 514–525.
7.
Zurück zum Zitat Saitou, N., & Nei, M. (1986). The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution, 24, 189–204.CrossRef Saitou, N., & Nei, M. (1986). The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution, 24, 189–204.CrossRef
8.
Zurück zum Zitat Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy of Sciences, USA, 101, 11030–11035.CrossRef Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of National Academy of Sciences, USA, 101, 11030–11035.CrossRef
9.
Zurück zum Zitat Sneath, P. H. P., & Sokal, R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman.MATH Sneath, P. H. P., & Sokal, R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman.MATH
10.
Zurück zum Zitat Sokal, R., & Sneath, P. H. P. (1968) Principles of numerical taxonomy. Sokal, R., & Sneath, P. H. P. (1968) Principles of numerical taxonomy.
11.
Zurück zum Zitat Sokal, R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin, 38, 1409–1438. Sokal, R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationship. University of Kansas Science Bulletin, 38, 1409–1438.
12.
Zurück zum Zitat Nei, M. (1975). Molecular population genetics and evolution. Amsterdam: North-Holland. Nei, M. (1975). Molecular population genetics and evolution. Amsterdam: North-Holland.
13.
Zurück zum Zitat Chakraborty, R. (1977). Estimation of the time of divergence from phylogenetic studies. Canadian Journal of Genetics and Cytology, 19, 217–223. Chakraborty, R. (1977). Estimation of the time of divergence from phylogenetic studies. Canadian Journal of Genetics and Cytology, 19, 217–223.
14.
Zurück zum Zitat Fitch, W. M., & Margoliash, E. (1967). Construction of phylogenetic trees. Science, 155, 279–284.CrossRef Fitch, W. M., & Margoliash, E. (1967). Construction of phylogenetic trees. Science, 155, 279–284.CrossRef
15.
Zurück zum Zitat Tateno, Y., Nei, M., & Tajima, F. (1982). Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. Journal of Molecular Evolution, 18, 387–404.CrossRef Tateno, Y., Nei, M., & Tajima, F. (1982). Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. Journal of Molecular Evolution, 18, 387–404.CrossRef
16.
Zurück zum Zitat Cavalli-Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. American Journal of Human Genetics, 19, 233–257. Cavalli-Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. American Journal of Human Genetics, 19, 233–257.
17.
Zurück zum Zitat Rzhetsky, A., & Nei, M. (1992). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. Journal of Molecular Evolution, 35, 367–375.CrossRef Rzhetsky, A., & Nei, M. (1992). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. Journal of Molecular Evolution, 35, 367–375.CrossRef
18.
Zurück zum Zitat Edwards, A. W. F., & Cavalli-Sforza, L. L. (1964). A method for cluster analysis. Biometrics, 21, 362–375.CrossRef Edwards, A. W. F., & Cavalli-Sforza, L. L. (1964). A method for cluster analysis. Biometrics, 21, 362–375.CrossRef
19.
Zurück zum Zitat Courant, R., Robbins, H., & Stewart, I. (1996). What is mathematics? Second edition: Oxford University Press. Courant, R., Robbins, H., & Stewart, I. (1996). What is mathematics? Second edition: Oxford University Press.
20.
Zurück zum Zitat Rzhetsky, A., & Nei, M. (1992). A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution, 9, 945–967. Rzhetsky, A., & Nei, M. (1992). A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution, 9, 945–967.
21.
22.
Zurück zum Zitat Nei, M., Kumar, S., & Takahashi, K. (1998). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of National Academy of Sciences, USA, 95, 12390–12397.CrossRef Nei, M., Kumar, S., & Takahashi, K. (1998). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of National Academy of Sciences, USA, 95, 12390–12397.CrossRef
23.
Zurück zum Zitat Pauplin, Y. (2000). Direct calculation of a tree length using a distance matrix. Journal of Molecular Evolution, 51, 41–47. Pauplin, Y. (2000). Direct calculation of a tree length using a distance matrix. Journal of Molecular Evolution, 51, 41–47.
24.
25.
Zurück zum Zitat Gascuel, O., & Steel, M. (2006). Neighbor-joining revealed. Molecular Biology and Evolution, 23, 1997–2000.CrossRef Gascuel, O., & Steel, M. (2006). Neighbor-joining revealed. Molecular Biology and Evolution, 23, 1997–2000.CrossRef
26.
Zurück zum Zitat Mihaescu, R., & Pachter, L. (2008). Combinatorics of least-squares trees. Proceedings of the National Academy of Sciences of the United States of America, 105, 13206–13211.MATHMathSciNetCrossRef Mihaescu, R., & Pachter, L. (2008). Combinatorics of least-squares trees. Proceedings of the National Academy of Sciences of the United States of America, 105, 13206–13211.MATHMathSciNetCrossRef
27.
Zurück zum Zitat Price, M., Dehal, P. S., & Arkin, A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641–1650.CrossRef Price, M., Dehal, P. S., & Arkin, A. P. (2009). FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641–1650.CrossRef
28.
Zurück zum Zitat Farris, J. S. (1972). Estimating phylogenetic trees from distance matrices. American Naturalist, 106, 645–668.CrossRef Farris, J. S. (1972). Estimating phylogenetic trees from distance matrices. American Naturalist, 106, 645–668.CrossRef
29.
Zurück zum Zitat Faith, D. P. (1985). Distance methods and the approximation of most-parsimonious trees. Systematic Zoology, 34, 312–325.CrossRef Faith, D. P. (1985). Distance methods and the approximation of most-parsimonious trees. Systematic Zoology, 34, 312–325.CrossRef
30.
Zurück zum Zitat Farris, J. S., Kluge, A. G., & Exkardt, M. J. (1970). A numerical approach to phylogenetic systematics. Systematic Zoology, 19, 172–191.CrossRef Farris, J. S., Kluge, A. G., & Exkardt, M. J. (1970). A numerical approach to phylogenetic systematics. Systematic Zoology, 19, 172–191.CrossRef
31.
Zurück zum Zitat Klotz, L. C., & Blanken, R. L. (1981). A practical method for calculating evolutionary trees from sequence data. Journal of Theoretical Biology, 91, 261–272.CrossRef Klotz, L. C., & Blanken, R. L. (1981). A practical method for calculating evolutionary trees from sequence data. Journal of Theoretical Biology, 91, 261–272.CrossRef
32.
Zurück zum Zitat Li, W.-H. (1981). Simple method for constructing phylogenetic trees from distance matrices. Proceedings of National Academy of Sciences, USA, 78, 1085–1089.MATHCrossRef Li, W.-H. (1981). Simple method for constructing phylogenetic trees from distance matrices. Proceedings of National Academy of Sciences, USA, 78, 1085–1089.MATHCrossRef
33.
Zurück zum Zitat OOta, S. (1998). ThreeTree: A new method to reconstruct phylogenetic trees. Genome Informatics, 9, 340–341. OOta, S. (1998). ThreeTree: A new method to reconstruct phylogenetic trees. Genome Informatics, 9, 340–341.
34.
35.
Zurück zum Zitat Buneman, P. (1971). The recovery of trees from measurements of dissimilarity. In F. R. Hodson, D. G. Kendall, & P. Tautu (Eds.), Mathematics in the archeological and historical sciences (pp. 387–395). Edinburgh: Edinburgh University Press. Buneman, P. (1971). The recovery of trees from measurements of dissimilarity. In F. R. Hodson, D. G. Kendall, & P. Tautu (Eds.), Mathematics in the archeological and historical sciences (pp. 387–395). Edinburgh: Edinburgh University Press.
36.
Zurück zum Zitat Fitch, W. M. (1981). A non-sequential method for constructing trees and hierarchical classifications. Journal of Molecular Evolution, 18, 30–37.CrossRef Fitch, W. M. (1981). A non-sequential method for constructing trees and hierarchical classifications. Journal of Molecular Evolution, 18, 30–37.CrossRef
37.
Zurück zum Zitat Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42, 319–345.CrossRef Sattath, S., & Tversky, A. (1977). Additive similarity trees. Psychometrika, 42, 319–345.CrossRef
38.
Zurück zum Zitat Saitou N. (1986). Theoretical studies on the methods of reconstructing phylogenetic trees from DNA sequence data. Ph.D. dissertation. Graduate University of Biomedical Sciences, University of Texas Health Science Center at Houston. Saitou N. (1986). Theoretical studies on the methods of reconstructing phylogenetic trees from DNA sequence data. Ph.D. dissertation. Graduate University of Biomedical Sciences, University of Texas Health Science Center at Houston.
39.
Zurück zum Zitat Studier, J. A., & Keppler, K. J. (1988). A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution, 5, 729–731. Studier, J. A., & Keppler, K. J. (1988). A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution, 5, 729–731.
40.
Zurück zum Zitat Ishida, N., Oyunsuren, T., Mashima, S., Mukoyama, H., & Saitou, N. (1995). Mitochondrial DNA sequences of various species of the genus Equus with a special reference to the phylogenetic relationship between Przewalskii’s wild horse and domestic horse. Journal of Molecular Evolution, 41, 180–188.CrossRef Ishida, N., Oyunsuren, T., Mashima, S., Mukoyama, H., & Saitou, N. (1995). Mitochondrial DNA sequences of various species of the genus Equus with a special reference to the phylogenetic relationship between Przewalskii’s wild horse and domestic horse. Journal of Molecular Evolution, 41, 180–188.CrossRef
41.
Zurück zum Zitat Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14, 685–695.CrossRef Gascuel, O. (1997). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14, 685–695.CrossRef
42.
Zurück zum Zitat Bruno, W. J., Socci, N. D., & Halpern, A. L. (2000). Weighted neighbor joining: A likelihood-based approach to distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17, 189–197.CrossRef Bruno, W. J., Socci, N. D., & Halpern, A. L. (2000). Weighted neighbor joining: A likelihood-based approach to distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17, 189–197.CrossRef
43.
Zurück zum Zitat Kumar, S. (1996). A stepwise algorithm for finding minimum evolution trees. Molecular Biology and Evolution, 13, 584–593.CrossRef Kumar, S. (1996). A stepwise algorithm for finding minimum evolution trees. Molecular Biology and Evolution, 13, 584–593.CrossRef
44.
Zurück zum Zitat Pearson, W. R., Robins, G., & Zhang, T. (1999). Generalized neighbor-joining: More reliable phylogenetic tree reconstruction. Molecular Biology and Evolution, 16, 806–816.CrossRef Pearson, W. R., Robins, G., & Zhang, T. (1999). Generalized neighbor-joining: More reliable phylogenetic tree reconstruction. Molecular Biology and Evolution, 16, 806–816.CrossRef
45.
Zurück zum Zitat Dress, A. (1984). Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces. Advances in Mathematics, 53, 321–402.MATHMathSciNetCrossRef Dress, A. (1984). Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces. Advances in Mathematics, 53, 321–402.MATHMathSciNetCrossRef
46.
Zurück zum Zitat Dress, A., Huber, K. H., Koolen, J., Moulton, V., & Spillner, A. (2012). Basic phylogenetic combinatorics. Cambridge: Cambridge University Press. Dress, A., Huber, K. H., Koolen, J., Moulton, V., & Spillner, A. (2012). Basic phylogenetic combinatorics. Cambridge: Cambridge University Press.
47.
Zurück zum Zitat Bandelt, H. J., & Dress, A. W. (1992). Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1, 242–252.CrossRef Bandelt, H. J., & Dress, A. W. (1992). Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1, 242–252.CrossRef
48.
Zurück zum Zitat Kitano, T., Noda, R., Takenaka, O., & Saitou, N. (2009). Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis. Molecular Phylogenetics and Evolution, 51, 465–471.CrossRef Kitano, T., Noda, R., Takenaka, O., & Saitou, N. (2009). Relic of ancient recombinations in gibbon ABO blood group genes deciphered through phylogenetic network analysis. Molecular Phylogenetics and Evolution, 51, 465–471.CrossRef
49.
Zurück zum Zitat Bryant, D., & Moulton, V. (2004). Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255–265.CrossRef Bryant, D., & Moulton, V. (2004). Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution, 21, 255–265.CrossRef
50.
Zurück zum Zitat Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.CrossRef Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267.CrossRef
51.
Zurück zum Zitat Camin, J. H., & Sokal, R. R. (1965). A method for deducing branching sequences in phylogeny. Evolution, 19, 311–326.CrossRef Camin, J. H., & Sokal, R. R. (1965). A method for deducing branching sequences in phylogeny. Evolution, 19, 311–326.CrossRef
52.
Zurück zum Zitat Eck, R. V., & Dayhoff, M. (1966). Atlas of protein sequence and structure. Silver Spring: National Biomedical Research Foundation. Eck, R. V., & Dayhoff, M. (1966). Atlas of protein sequence and structure. Silver Spring: National Biomedical Research Foundation.
53.
Zurück zum Zitat Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer Associates. Felsenstein, J. (2004). Inferring phylogenies. Sunderland: Sinauer Associates.
54.
Zurück zum Zitat Fitch, W. M. (1977). On the problem of discovering the most parsimonious tree. American Naturalist, 111, 223–257.CrossRef Fitch, W. M. (1977). On the problem of discovering the most parsimonious tree. American Naturalist, 111, 223–257.CrossRef
55.
Zurück zum Zitat Hartigan, J. A. (1973). Minimum mutation fits to a given tree. Biometrics, 29, 53–65.CrossRef Hartigan, J. A. (1973). Minimum mutation fits to a given tree. Biometrics, 29, 53–65.CrossRef
56.
Zurück zum Zitat Zharkikh, A. A. (1977). Algorithm for constructing phylogenetic trees from amino acid sequences. In V. A. Ratner (Ed.), Mathematical models of evolution and selection (pp. 5–52). Novosibirsk: Institute of Cytology and Genetics (in Russian). Zharkikh, A. A. (1977). Algorithm for constructing phylogenetic trees from amino acid sequences. In V. A. Ratner (Ed.), Mathematical models of evolution and selection (pp. 5–52). Novosibirsk: Institute of Cytology and Genetics (in Russian).
57.
Zurück zum Zitat Zharkikh, A. A., & Ratner, V. A. (1996). Methods for studying the evolution of macromolecules. In V. A. Ratner et al. (Eds.), Molecular evolution (pp. 71–91). Berlin/New York: Springer-Verlag. Zharkikh, A. A., & Ratner, V. A. (1996). Methods for studying the evolution of macromolecules. In V. A. Ratner et al. (Eds.), Molecular evolution (pp. 71–91). Berlin/New York: Springer-Verlag.
58.
Zurück zum Zitat Saitou, N. (1998). Simultaneous sequence joining (SSJ): A new method for reconstruction of phylogenetic networks of closely related sequences (Abstract). Anthropological Science, 106, 141–142. Saitou, N. (1998). Simultaneous sequence joining (SSJ): A new method for reconstruction of phylogenetic networks of closely related sequences (Abstract). Anthropological Science, 106, 141–142.
59.
Zurück zum Zitat Tateno, Y. (1990). A method for molecular phylogeny construction by direct use of nucleotide sequence data. Journal of Molecular Evolution, 30, 85–93.CrossRef Tateno, Y. (1990). A method for molecular phylogeny construction by direct use of nucleotide sequence data. Journal of Molecular Evolution, 30, 85–93.CrossRef
60.
Zurück zum Zitat Wilson, A. O. (1965). A consistency test for phylogenies based on contemporaneous species. Systematic Zoology, 14, 214–220.CrossRef Wilson, A. O. (1965). A consistency test for phylogenies based on contemporaneous species. Systematic Zoology, 14, 214–220.CrossRef
61.
Zurück zum Zitat Le Quesne, W. J. (1969). A method of selection of characters in numerical taxonomy. Systematic Zoology, 18, 201–205.CrossRef Le Quesne, W. J. (1969). A method of selection of characters in numerical taxonomy. Systematic Zoology, 18, 201–205.CrossRef
62.
Zurück zum Zitat Saitou, N. (1989). A theoretical study of the underestimation of branch lengths by the maximum parsimony principle. Systematic Zoology, 38, 1–5.CrossRef Saitou, N. (1989). A theoretical study of the underestimation of branch lengths by the maximum parsimony principle. Systematic Zoology, 38, 1–5.CrossRef
63.
Zurück zum Zitat Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27, 401–410.CrossRef Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27, 401–410.CrossRef
64.
Zurück zum Zitat Zharkikh, A., & Li, W.-H. (1993). Inconsistency of the maximum parsimony method: The case of five taxa with a molecular clock. Systematic Biology, 42, 113–125. Zharkikh, A., & Li, W.-H. (1993). Inconsistency of the maximum parsimony method: The case of five taxa with a molecular clock. Systematic Biology, 42, 113–125.
65.
Zurück zum Zitat Takezaki, N., & Nei, M. (1994). Inconsistency of the maximum parsimony method when the rate of nucleotide substitution is constant. Journal of Molecular Evolution, 39, 210–218. Takezaki, N., & Nei, M. (1994). Inconsistency of the maximum parsimony method when the rate of nucleotide substitution is constant. Journal of Molecular Evolution, 39, 210–218.
66.
Zurück zum Zitat Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.
67.
Zurück zum Zitat Saitou, N., & Ueda, S. (1994). Evolutionary rate of insertions and deletions in non-coding nucleotide sequences of primates. Molecular Biology and Evolution, 11, 504–512. Saitou, N., & Ueda, S. (1994). Evolutionary rate of insertions and deletions in non-coding nucleotide sequences of primates. Molecular Biology and Evolution, 11, 504–512.
68.
Zurück zum Zitat Bernstein, F. (1925). Zusammenfassende betrachtungen uber die erblichen blutstrukturen des menschen. Molecular and General Genetics, 37, 237–370. Bernstein, F. (1925). Zusammenfassende betrachtungen uber die erblichen blutstrukturen des menschen. Molecular and General Genetics, 37, 237–370.
69.
Zurück zum Zitat Yasuda, N., & Kimura, M. (1968). A gene-counting method of maximum likelihood for estimating gene frequencies in ABO and ABO-like systems. Annals of Human Genetics, 31, 409–420.CrossRef Yasuda, N., & Kimura, M. (1968). A gene-counting method of maximum likelihood for estimating gene frequencies in ABO and ABO-like systems. Annals of Human Genetics, 31, 409–420.CrossRef
70.
Zurück zum Zitat Neyman, J. (1971). Molecular studies of evolution: A source of novel statistical problems. In S. S. Gupta & J. Yackel (Eds.), Statistical decision theory and related topics (pp. 1–27). New York: Academic Press. Neyman, J. (1971). Molecular studies of evolution: A source of novel statistical problems. In S. S. Gupta & J. Yackel (Eds.), Statistical decision theory and related topics (pp. 1–27). New York: Academic Press.
71.
Zurück zum Zitat Felsenstein, J. (1973). Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25, 471–492. Felsenstein, J. (1973). Maximum-likelihood estimation of evolutionary trees from continuous characters. American Journal of Human Genetics, 25, 471–492.
72.
Zurück zum Zitat Felsenstein, J. (1973). Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology, 22, 240–249.CrossRef Felsenstein, J. (1973). Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology, 22, 240–249.CrossRef
73.
Zurück zum Zitat Kashap, R. L., & Subas, S. (1974). Statistical estimation of parameters in a phylogenetic tree using a dynamic model of the substitutional process. Journal of Theoretical Biology, 47, 75–101.CrossRef Kashap, R. L., & Subas, S. (1974). Statistical estimation of parameters in a phylogenetic tree using a dynamic model of the substitutional process. Journal of Theoretical Biology, 47, 75–101.CrossRef
74.
Zurück zum Zitat Langley, C., & Fitch, W. M. (1974). An examination of the constancy of the rate of molecular evolution. Journal of Molecular Evolution, 3, 161–177.CrossRef Langley, C., & Fitch, W. M. (1974). An examination of the constancy of the rate of molecular evolution. Journal of Molecular Evolution, 3, 161–177.CrossRef
75.
Zurück zum Zitat Thompson, E. A. (1975). Human evolutionary trees. Cambridge/New York: Cambridge University Press. Thompson, E. A. (1975). Human evolutionary trees. Cambridge/New York: Cambridge University Press.
76.
Zurück zum Zitat Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.CrossRef Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.CrossRef
77.
Zurück zum Zitat Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.CrossRef Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.CrossRef
78.
Zurück zum Zitat Saitou, N. (1988). Property and efficiency of the maximum likelihood method for molecular phylogeny. Journal of Molecular Evolution, 27, 261–273.CrossRef Saitou, N. (1988). Property and efficiency of the maximum likelihood method for molecular phylogeny. Journal of Molecular Evolution, 27, 261–273.CrossRef
79.
Zurück zum Zitat Saitou, N. (1990). Maximum likelihood methods. Methods in Enzymology, 183, 584–598. Saitou, N. (1990). Maximum likelihood methods. Methods in Enzymology, 183, 584–598.
80.
Zurück zum Zitat Hixson, J., & Brown, W. M. (1986). A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications. Molecular Biology and Evolution, 3, 1–18. Hixson, J., & Brown, W. M. (1986). A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications. Molecular Biology and Evolution, 3, 1–18.
81.
Zurück zum Zitat Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.CrossRef Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.CrossRef
82.
Zurück zum Zitat Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., & Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proceedings of the National Academy of Sciences of the United States of America, 92, 532–536.CrossRef Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., & Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proceedings of the National Academy of Sciences of the United States of America, 92, 532–536.CrossRef
83.
Zurück zum Zitat Adachi, J., & Hasegawa, M. (1996). MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, 28, 1–150. Adachi, J., & Hasegawa, M. (1996). MOLPHY version 2.3: Programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs, 28, 1–150.
84.
Zurück zum Zitat Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS Applications Note, 13, 555–556. Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. CABIOS Applications Note, 13, 555–556.
85.
Zurück zum Zitat Strimmer, K., & von Haeseler, A. (1996). Quartet puzzling: A quartet maximum-likelihood method for constructing phylogenetic trees. Molecular Biology and Evolution, 13, 1401–1409.CrossRef Strimmer, K., & von Haeseler, A. (1996). Quartet puzzling: A quartet maximum-likelihood method for constructing phylogenetic trees. Molecular Biology and Evolution, 13, 1401–1409.CrossRef
86.
Zurück zum Zitat Ota, S., & Li, W.-H. (2000). NJML: A hybrid algorithm for the neighbor-joining and maximum-likelihood methods. Molecular Biology and Evolution, 17, 1401–1409.CrossRef Ota, S., & Li, W.-H. (2000). NJML: A hybrid algorithm for the neighbor-joining and maximum-likelihood methods. Molecular Biology and Evolution, 17, 1401–1409.CrossRef
87.
Zurück zum Zitat Ota, S., & Li, W.-H. (2001). NJML+: An extension of the NJML method to handle protein sequence data and computer software implementation. Molecular Biology and Evolution, 18, 1983–1992.CrossRef Ota, S., & Li, W.-H. (2001). NJML+: An extension of the NJML method to handle protein sequence data and computer software implementation. Molecular Biology and Evolution, 18, 1983–1992.CrossRef
88.
Zurück zum Zitat Yule, G. U. (1924). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S (Philosophical transaction of royal society of London, series B, Vol. 213, pp. 21–87). London: Harrison and Sons. Yule, G. U. (1924). A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S (Philosophical transaction of royal society of London, series B, Vol. 213, pp. 21–87). London: Harrison and Sons.
89.
Zurück zum Zitat Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 17, 368–376. Rannala, B., & Yang, Z. (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. Journal of Molecular Evolution, 17, 368–376.
90.
Zurück zum Zitat Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogenetic trees and its impact on evolutionary biology. Science, 294, 2310–2314.CrossRef Huelsenbeck, J. P., Ronquist, F., Nielsen, R., & Bollback, J. P. (2001). Bayesian inference of phylogenetic trees and its impact on evolutionary biology. Science, 294, 2310–2314.CrossRef
91.
Zurück zum Zitat Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.
92.
Zurück zum Zitat Li, W.-H., & Guoy, M. (1991). Statistical methods for testing molecular phylogenies. In M. M. Miyamoto & J. Cracraft (Eds.), Phylogenetic analysis of DNA sequences (pp. 249–277). New York: Oxford University Press. Li, W.-H., & Guoy, M. (1991). Statistical methods for testing molecular phylogenies. In M. M. Miyamoto & J. Cracraft (Eds.), Phylogenetic analysis of DNA sequences (pp. 249–277). New York: Oxford University Press.
93.
Zurück zum Zitat Yang, Z. H. (1996). Phylogenetic analysis using parsimony and likelihood methods. Journal of Molecular Evolution, 42, 294–307.CrossRef Yang, Z. H. (1996). Phylogenetic analysis using parsimony and likelihood methods. Journal of Molecular Evolution, 42, 294–307.CrossRef
94.
Zurück zum Zitat Felsenstein, J. (1984). The statistical approach to inferring evolutionary trees and what it tells us about parsimony and compatibility. In T. Duncan & T. F. Steussy (Eds.), Cladistics: Perspectives on the reconstruction of evolutionary history (pp. 169–191). New York: Columbia University Press. Felsenstein, J. (1984). The statistical approach to inferring evolutionary trees and what it tells us about parsimony and compatibility. In T. Duncan & T. F. Steussy (Eds.), Cladistics: Perspectives on the reconstruction of evolutionary history (pp. 169–191). New York: Columbia University Press.
95.
Zurück zum Zitat Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.CrossRef Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48.CrossRef
96.
Zurück zum Zitat Kruskal, J. B. (1956). On the shortest spanning subtree of the graph and the travelling salesman problem. Proceedings of the American Mathematical Society, 7, 48–57.MATHMathSciNetCrossRef Kruskal, J. B. (1956). On the shortest spanning subtree of the graph and the travelling salesman problem. Proceedings of the American Mathematical Society, 7, 48–57.MATHMathSciNetCrossRef
97.
Zurück zum Zitat FarrisJ, S. (1970). Methods for computing Wagner trees. Systematic Zoology, 19, 83–92.CrossRef FarrisJ, S. (1970). Methods for computing Wagner trees. Systematic Zoology, 19, 83–92.CrossRef
98.
Zurück zum Zitat Jinam, T. A., Hong, L. -C., Phipps, M. E., Stoneking, M., Ameen, M., Edo, J., HUGO Pan-Asian SNP Consortium, & Saitou, N. (2012). Evolutionary history of Continental Southeast Asians: “Early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Molecular Biology and Evolution, 29, 3513–3527. Jinam, T. A., Hong, L. -C., Phipps, M. E., Stoneking, M., Ameen, M., Edo, J., HUGO Pan-Asian SNP Consortium, & Saitou, N. (2012). Evolutionary history of Continental Southeast Asians: “Early train” hypothesis based on genetic analysis of mitochondrial and autosomal DNA data. Molecular Biology and Evolution, 29, 3513–3527.
99.
Zurück zum Zitat Kryukov, K., & Saitou, N. (2003). Netview: Application software for constructing and visually exploring phylogenetic networks. Genome Informatics, 14, 280–281. Kryukov, K., & Saitou, N. (2003). Netview: Application software for constructing and visually exploring phylogenetic networks. Genome Informatics, 14, 280–281.
100.
Zurück zum Zitat Grunewald, S., Farslund, K., Dress, A., & Moulton, V. (2007). QNet: An agglomerative method for the construction of phylogenetic networks from weighted quartets. Molecular Biology and Evolution, 24, 532–538.CrossRef Grunewald, S., Farslund, K., Dress, A., & Moulton, V. (2007). QNet: An agglomerative method for the construction of phylogenetic networks from weighted quartets. Molecular Biology and Evolution, 24, 532–538.CrossRef
101.
Zurück zum Zitat Wooley, S., Posada, D., & Crandall, K. A. (2007). A comparison of phylogenetic network methods using computer simulation. PLoS One, 3, e1913.CrossRef Wooley, S., Posada, D., & Crandall, K. A. (2007). A comparison of phylogenetic network methods using computer simulation. PLoS One, 3, e1913.CrossRef
102.
Zurück zum Zitat Takahashi, K., & Nei, M. (2000). Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Molecular Biology and Evolution, 17, 1251–1258.CrossRef Takahashi, K., & Nei, M. (2000). Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Molecular Biology and Evolution, 17, 1251–1258.CrossRef
103.
Zurück zum Zitat DeBry, R. W. (1992). The consistency of several phylogeny-inference methods under varying evolutionary rates. Molecular Biology and Evolution, 9, 537–551. DeBry, R. W. (1992). The consistency of several phylogeny-inference methods under varying evolutionary rates. Molecular Biology and Evolution, 9, 537–551.
104.
Zurück zum Zitat Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19, 153–170.CrossRef Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19, 153–170.CrossRef
105.
Zurück zum Zitat Tateno, Y., Takezaki, N., & Nei, M. (1994). Relative efficiencies of the maximum likelihood, neighbor-joining, and maximum parsimony methods when substitution rate varies with site. Molecular Biology and Evolution, 11, 261–277. Tateno, Y., Takezaki, N., & Nei, M. (1994). Relative efficiencies of the maximum likelihood, neighbor-joining, and maximum parsimony methods when substitution rate varies with site. Molecular Biology and Evolution, 11, 261–277.
106.
Zurück zum Zitat Kuhner, M. K., & Felsenstein, J. (1994). A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution, 11, 459–468. Erratum in: Molecular Biology and Evolution, 12, p. 525. Kuhner, M. K., & Felsenstein, J. (1994). A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution, 11, 459–468. Erratum in: Molecular Biology and Evolution, 12, p. 525.
107.
Zurück zum Zitat Nei, M., Kumar, S., & Takahashi, K. (1998). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of the National Academy of Sciences of the United States of America, 95, 12390–12397.CrossRef Nei, M., Kumar, S., & Takahashi, K. (1998). The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of the National Academy of Sciences of the United States of America, 95, 12390–12397.CrossRef
108.
Zurück zum Zitat Russo, C., Takezaki, N., & Nei, M. (1996). Efficiencies of different genes and different tree-making methods in recovering a known vertebrate phylogeny. Molecular Biology and Evolution, 13, 525–536.CrossRef Russo, C., Takezaki, N., & Nei, M. (1996). Efficiencies of different genes and different tree-making methods in recovering a known vertebrate phylogeny. Molecular Biology and Evolution, 13, 525–536.CrossRef
109.
Zurück zum Zitat Nguyen, M. A. H., Klaere, S., & von Haeseler, A. (2011). MISFITS: Evaluating the goodness of fit between a phylogenetic model and an alignment. Molecular Biology and Evolution, 28, 143–152.CrossRef Nguyen, M. A. H., Klaere, S., & von Haeseler, A. (2011). MISFITS: Evaluating the goodness of fit between a phylogenetic model and an alignment. Molecular Biology and Evolution, 28, 143–152.CrossRef
110.
Zurück zum Zitat Nguyen, M. A. H., Gesell, T., & von Haeseler, A. (2012). ImOSM: Intermittent evolution and robustness of phylogenetic methods. Molecular Biology and Evolution, 29, 663–673.CrossRef Nguyen, M. A. H., Gesell, T., & von Haeseler, A. (2012). ImOSM: Intermittent evolution and robustness of phylogenetic methods. Molecular Biology and Evolution, 29, 663–673.CrossRef
111.
Zurück zum Zitat Karlin, S., & Ladunga, I. (1994). Comparisons of eukaryotic genomic sequences. Proceedings of the National Academy of Sciences of the United States of America, 91, 12832–12836.CrossRef Karlin, S., & Ladunga, I. (1994). Comparisons of eukaryotic genomic sequences. Proceedings of the National Academy of Sciences of the United States of America, 91, 12832–12836.CrossRef
112.
Zurück zum Zitat Nakashima, H., Nishikawa, K., & Ooi, T. (1997). Differences in dinucleotide frequencies of human, yeast, and Escherichia coli genes. DNA Research, 4, 185–192.CrossRef Nakashima, H., Nishikawa, K., & Ooi, T. (1997). Differences in dinucleotide frequencies of human, yeast, and Escherichia coli genes. DNA Research, 4, 185–192.CrossRef
113.
Zurück zum Zitat Karlin, S., Mrazek, J., & Campbell, A. (1997). Compositional biases of bacterial genomes and evolutionary implications. Journal of Bacteriology, 179, 3899–3913. Karlin, S., Mrazek, J., & Campbell, A. (1997). Compositional biases of bacterial genomes and evolutionary implications. Journal of Bacteriology, 179, 3899–3913.
114.
Zurück zum Zitat Abe, T., et al. (2003). Informatics for unveiling hidden genome signatures. Genome Research, 13, 693–702.CrossRef Abe, T., et al. (2003). Informatics for unveiling hidden genome signatures. Genome Research, 13, 693–702.CrossRef
115.
Zurück zum Zitat Pride, D. T., Meinersmann, R. J., Wassenaar, T. M., & Blaser, M. J. (2003). Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Research, 13, 145–155.CrossRef Pride, D. T., Meinersmann, R. J., Wassenaar, T. M., & Blaser, M. J. (2003). Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Research, 13, 145–155.CrossRef
116.
Zurück zum Zitat Takahashi, M., Kryukov, K., & Saitou, N. (2009). Estimation of bacterial species phylogeny through oligonucleotide frequency distances. Genomics, 93, 525–533.CrossRef Takahashi, M., Kryukov, K., & Saitou, N. (2009). Estimation of bacterial species phylogeny through oligonucleotide frequency distances. Genomics, 93, 525–533.CrossRef
117.
Zurück zum Zitat Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.
Metadaten
Titel
Tree and Network Building
verfasst von
Naruya Saitou
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5304-7_16