Skip to main content

2017 | OriginalPaper | Buchkapitel

Trends in Electrochemical Sensing of Blood Gases

verfasst von : Bastiaan van der Weerd, Rudolf Bierl, Frank-Michael Matysik

Erschienen in: Trends in Bioelectroanalysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The monitoring of partial pressures of the blood gases carbon dioxide (pCO2) and oxygen (pO2) is of great importance in clinical diagnostics. The measure of pCO2 and pO2 provides essential information about the patient’s metabolism, gas exchange, ventilation, and acid–base homeostasis. The conventional electrochemical methods for clinical blood gas analysis are based on the potentiometric Severinghaus sensor for carbon dioxide and the amperometric Clark sensor for oxygen. These techniques are well established and are only shortly discussed in this overview. However, in recent years a variety of modifications of these classical sensor concepts and new approaches of electrochemical sensing of pCO2 and pO2 have been introduced. This review summarizes recent developments in this field and discusses the potential for future applications in clinical blood gas analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hieronymi U, Kramme R, Kronberg H (2011) Respiratory monitoring and pulse oximetry. In: Kramme R, Hoffmann K-P, Pozos RS (eds) Springer handbook of medical technology. Springer, Berlin-Heidelberg, pp 973–984 Hieronymi U, Kramme R, Kronberg H (2011) Respiratory monitoring and pulse oximetry. In: Kramme R, Hoffmann K-P, Pozos RS (eds) Springer handbook of medical technology. Springer, Berlin-Heidelberg, pp 973–984
2.
Zurück zum Zitat Crocetti J, Diaz-Abad M, Krachman SL (2010) Blood gas sampling. In: Criner GJ, Barnette RE, D’Alonzo GE (eds) Critical care study guide, 2nd edn. Springer, New York, pp 38–50 Crocetti J, Diaz-Abad M, Krachman SL (2010) Blood gas sampling. In: Criner GJ, Barnette RE, D’Alonzo GE (eds) Critical care study guide, 2nd edn. Springer, New York, pp 38–50
3.
Zurück zum Zitat Cristalli C, Manzoni A (1999) Basics of blood gas instrumentation. In: Bronzino JD (ed) The biomedical engineering handbook, 2nd edn. Boca Raton, CRC Cristalli C, Manzoni A (1999) Basics of blood gas instrumentation. In: Bronzino JD (ed) The biomedical engineering handbook, 2nd edn. Boca Raton, CRC
4.
Zurück zum Zitat Huttmann SE, Windisch W, Storre JH (2014) Techniques for the measurement and monitoring of carbon dioxide in the blood. Ann ATS 11(4):645–652CrossRef Huttmann SE, Windisch W, Storre JH (2014) Techniques for the measurement and monitoring of carbon dioxide in the blood. Ann ATS 11(4):645–652CrossRef
5.
Zurück zum Zitat Hogetveit JO, Kristiansen F, Pedersen TH (2006) Development of an instrument to indirectly monitor arterial pCO2 during cardiopulmonary bypass. Perfusion 21:13–19CrossRef Hogetveit JO, Kristiansen F, Pedersen TH (2006) Development of an instrument to indirectly monitor arterial pCO2 during cardiopulmonary bypass. Perfusion 21:13–19CrossRef
6.
Zurück zum Zitat Hogetveit JO, Kristiansen F, Roislien J (2009) A novel method for indirectly monitoring arterial pO2 during cardiopulmonary bypass. J Med Eng Technol 33(7):567–574CrossRef Hogetveit JO, Kristiansen F, Roislien J (2009) A novel method for indirectly monitoring arterial pO2 during cardiopulmonary bypass. J Med Eng Technol 33(7):567–574CrossRef
7.
Zurück zum Zitat Zaugg M, Lucchinetti E, Zalunardo MP, Zumstein S, Spahn DR, Pasch T, Zollinger A (1998) Substantial changes in arterial blood gases during thoracoscopic surgery can be missed by conventional intermittent laboratory blood gas analyses. Anesth Analg 87:647–653 Zaugg M, Lucchinetti E, Zalunardo MP, Zumstein S, Spahn DR, Pasch T, Zollinger A (1998) Substantial changes in arterial blood gases during thoracoscopic surgery can be missed by conventional intermittent laboratory blood gas analyses. Anesth Analg 87:647–653
8.
Zurück zum Zitat Ganter M, Zollinger A (2003) Continuous intravascular blood gas monitoring: development, current techniques, and clinical use of a commercial device. Brit J Anaesth 91(3):397–407CrossRef Ganter M, Zollinger A (2003) Continuous intravascular blood gas monitoring: development, current techniques, and clinical use of a commercial device. Brit J Anaesth 91(3):397–407CrossRef
9.
Zurück zum Zitat Rosner V, Hannhart B, Chabot F, Polu JM (1999) Validity of transcutaneous oxygen/carbon dioxide pressure measurement in the monitoring of mechanical ventilation in stable chronic respiratory failure. Eur Respir J 13:1044–1047CrossRef Rosner V, Hannhart B, Chabot F, Polu JM (1999) Validity of transcutaneous oxygen/carbon dioxide pressure measurement in the monitoring of mechanical ventilation in stable chronic respiratory failure. Eur Respir J 13:1044–1047CrossRef
10.
Zurück zum Zitat Sanders MH, Costantino JP, Strollo PJ, Coates JA (1994) Accuracy of end-tidal and transcutaneous pCO2 monitoring during sleep. Chest 106(2):472–483CrossRef Sanders MH, Costantino JP, Strollo PJ, Coates JA (1994) Accuracy of end-tidal and transcutaneous pCO2 monitoring during sleep. Chest 106(2):472–483CrossRef
11.
Zurück zum Zitat Stücker M, Memmel U, Altmeyer P (2000) Transkutane Sauerstoffpartialdruck- und Kohlendioxidpartialdruckmessung – Verfahrenstechnik und Anwendungsgebiete. Phlebologie 29:81–91 Stücker M, Memmel U, Altmeyer P (2000) Transkutane Sauerstoffpartialdruck- und Kohlendioxidpartialdruckmessung – Verfahrenstechnik und Anwendungsgebiete. Phlebologie 29:81–91
12.
Zurück zum Zitat Restrepo RD, Hirst KR, Wittnebel L, Wettstein R (2012) AARC Clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012. Resp Care 57(11):1955–1962CrossRef Restrepo RD, Hirst KR, Wittnebel L, Wettstein R (2012) AARC Clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012. Resp Care 57(11):1955–1962CrossRef
13.
Zurück zum Zitat Hinkelbein J, Floss F, Denz C, Krieter H (2008) Accuracy and precision of three different methods to determine pCO2 (paCO2 vs. petCO2 vs. ptcCO2) during interhospital ground transport of critically ill and ventilated adults. J Trauma 65(1):10–18CrossRef Hinkelbein J, Floss F, Denz C, Krieter H (2008) Accuracy and precision of three different methods to determine pCO2 (paCO2 vs. petCO2 vs. ptcCO2) during interhospital ground transport of critically ill and ventilated adults. J Trauma 65(1):10–18CrossRef
14.
Zurück zum Zitat Müller T, Lubnow M, Bein T, Philipp A, Pfeifer M (2009) Extrakorporale Lungenunterstützungsverfahren beim ARDS des Erwachsenen: eine Standortbestimmung. Intensivmed 46:109–119CrossRef Müller T, Lubnow M, Bein T, Philipp A, Pfeifer M (2009) Extrakorporale Lungenunterstützungsverfahren beim ARDS des Erwachsenen: eine Standortbestimmung. Intensivmed 46:109–119CrossRef
15.
Zurück zum Zitat D’Orazio P, Meyerhoff ME (2008) Electrochemistry and chemical sensors. In: Sawyer BG (ed) Fundamentals of clinical chemistry, 6th edn. Saunders, Missouri, pp 84–101 D’Orazio P, Meyerhoff ME (2008) Electrochemistry and chemical sensors. In: Sawyer BG (ed) Fundamentals of clinical chemistry, 6th edn. Saunders, Missouri, pp 84–101
16.
Zurück zum Zitat Clark LC (1956) Monitor and control of blood and tissue oxygen tension. ASAIO Trans 2(1):41–48 Clark LC (1956) Monitor and control of blood and tissue oxygen tension. ASAIO Trans 2(1):41–48
17.
Zurück zum Zitat Linek V (1988) Measurement of oxygen by membrane-covered probes: guidelines for applications in chemical and biochemical engineering. Ellis Horwood, Chichester; Halsted, New York Linek V (1988) Measurement of oxygen by membrane-covered probes: guidelines for applications in chemical and biochemical engineering. Ellis Horwood, Chichester; Halsted, New York
18.
Zurück zum Zitat Stow RW, Randall BF (1954) Electrical measurement of pCO2 of blood. Am J Physiol 179:678–681 Stow RW, Randall BF (1954) Electrical measurement of pCO2 of blood. Am J Physiol 179:678–681
19.
Zurück zum Zitat Severinghaus JW, Bradley AF (1958) Electrodes for blood pO2 and pCO2 determination. J Apply Phys 13(3):515–520 Severinghaus JW, Bradley AF (1958) Electrodes for blood pO2 and pCO2 determination. J Apply Phys 13(3):515–520
20.
Zurück zum Zitat Lewenstam A (2007) Clinical analysis of blood gases and electrolytes by ion-selective sensors. In: Alegret S, Merkoci A (ed) Compr Anal Chem, vol 49. Elsevier, Oxford, pp 5–24 Lewenstam A (2007) Clinical analysis of blood gases and electrolytes by ion-selective sensors. In: Alegret S, Merkoci A (ed) Compr Anal Chem, vol 49. Elsevier, Oxford, pp 5–24
21.
Zurück zum Zitat Zosel J, Oelßner W, Decker M, Gerlach G, Guth U (2011) The measurement of dissolved and gaseous carbon dioxide concentration. Meas Sci Technol 22(072001):1–45 Zosel J, Oelßner W, Decker M, Gerlach G, Guth U (2011) The measurement of dissolved and gaseous carbon dioxide concentration. Meas Sci Technol 22(072001):1–45
22.
Zurück zum Zitat Hutton L, Newton ME, Unwin PR, Macpherson JV (2009) Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode. Anal Chem 81(3):1023–1032CrossRef Hutton L, Newton ME, Unwin PR, Macpherson JV (2009) Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode. Anal Chem 81(3):1023–1032CrossRef
23.
Zurück zum Zitat Preidel W, Rao JR, Mund K, Schunck O, David E (1995) A new principle for an electrochemical oxygen sensor. Sens Actuators B 28:71–74CrossRef Preidel W, Rao JR, Mund K, Schunck O, David E (1995) A new principle for an electrochemical oxygen sensor. Sens Actuators B 28:71–74CrossRef
24.
Zurück zum Zitat Koley G, Liu J, Nomani MW, Yim M, Wen X, Hsia T-Y (2009) Miniaturized implantable pressure and oxygen sensors based on polydimethylsiloxane thin film. Mater Sci Eng C 29:685–690CrossRef Koley G, Liu J, Nomani MW, Yim M, Wen X, Hsia T-Y (2009) Miniaturized implantable pressure and oxygen sensors based on polydimethylsiloxane thin film. Mater Sci Eng C 29:685–690CrossRef
25.
Zurück zum Zitat Kudo H, Iguchi S, Yamada T, kawase T, Saito H, Otsuka K, Mitsubayashi K (2007) A flexible transcutaneous oxygen sensor using polymer membranes. Biomed Microdevices 9:1–6 Kudo H, Iguchi S, Yamada T, kawase T, Saito H, Otsuka K, Mitsubayashi K (2007) A flexible transcutaneous oxygen sensor using polymer membranes. Biomed Microdevices 9:1–6
26.
Zurück zum Zitat Mitsubayashi K, Wakabayashi Y, Murotomi D, Yamada T, Kawase T, Iwagaki S, Karube I (2003) Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring. Sens Actuators B 95:373–377CrossRef Mitsubayashi K, Wakabayashi Y, Murotomi D, Yamada T, Kawase T, Iwagaki S, Karube I (2003) Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring. Sens Actuators B 95:373–377CrossRef
27.
Zurück zum Zitat Iguchi S, Mitsubayashi K, Uehara T, Ogawa M (2005) A wearable oxygen sensor for transcutaneous blood gas monitoring at the conjunctiva. Sens Actuators B 108:733–737CrossRef Iguchi S, Mitsubayashi K, Uehara T, Ogawa M (2005) A wearable oxygen sensor for transcutaneous blood gas monitoring at the conjunctiva. Sens Actuators B 108:733–737CrossRef
28.
Zurück zum Zitat Beyenal H, Davis CC, Lewandowski Z (2004) An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms. Sens Actuators b 97:202–210CrossRef Beyenal H, Davis CC, Lewandowski Z (2004) An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms. Sens Actuators b 97:202–210CrossRef
29.
Zurück zum Zitat Lewandowski Z, Beyenal H (2003) Use of microsensors to study biofilms. In: Lens P, O’Flaherty V, Moran AP, Stoodley P, Mahony T (eds) Biofilms in medicine, industry and environmental biotechnology. IWA, London, pp 375–412 Lewandowski Z, Beyenal H (2003) Use of microsensors to study biofilms. In: Lens P, O’Flaherty V, Moran AP, Stoodley P, Mahony T (eds) Biofilms in medicine, industry and environmental biotechnology. IWA, London, pp 375–412
30.
Zurück zum Zitat Hanstein S, de Beer D, Felle HH (2001) Miniaturised carbon dioxide sensor designed for measurements within plant leaves. Sens Actuators B 81:107–114CrossRef Hanstein S, de Beer D, Felle HH (2001) Miniaturised carbon dioxide sensor designed for measurements within plant leaves. Sens Actuators B 81:107–114CrossRef
31.
Zurück zum Zitat Bezbaruah AN, Zhang TC (2002) Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies. Anal Chem 74:5726–5733CrossRef Bezbaruah AN, Zhang TC (2002) Fabrication of anodically electrodeposited iridium oxide film pH microelectrodes for microenvironmental studies. Anal Chem 74:5726–5733CrossRef
32.
Zurück zum Zitat van Kempen LHJ, Kreuzer F (1975) The CO2 conductivity electrode, a fast-responding CO2 microelectrode. Respir Physiol 24(1):89–106CrossRef van Kempen LHJ, Kreuzer F (1975) The CO2 conductivity electrode, a fast-responding CO2 microelectrode. Respir Physiol 24(1):89–106CrossRef
33.
Zurück zum Zitat Mirtaheri P, Grimnes S, Martinsen OG, Tonnessen TI (2004) A new biomedical sensor for measuring pCO2. Physiol Meas 25:421–436CrossRef Mirtaheri P, Grimnes S, Martinsen OG, Tonnessen TI (2004) A new biomedical sensor for measuring pCO2. Physiol Meas 25:421–436CrossRef
34.
Zurück zum Zitat Mirtaheri P, Omtveit T, Klotzbuecher T, Grimnes S, Martinsen OG, Tonnessen TI (2004) Miniaturization of a biomedical gas sensor. Physiol Meas 25:1511–1522CrossRef Mirtaheri P, Omtveit T, Klotzbuecher T, Grimnes S, Martinsen OG, Tonnessen TI (2004) Miniaturization of a biomedical gas sensor. Physiol Meas 25:1511–1522CrossRef
35.
Zurück zum Zitat Zosel J, Wex K, Gambert R, Oeßner W (2004) Kohlendioxidsensor. DE 10 2004 058 135 A1, Dec 2004 Zosel J, Wex K, Gambert R, Oeßner W (2004) Kohlendioxidsensor. DE 10 2004 058 135 A1, Dec 2004
36.
Zurück zum Zitat Lee I, Akbar SA (2014) Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode. Ionics 20:563–569CrossRef Lee I, Akbar SA (2014) Potentiometric carbon dioxide sensor based on thin Li3PO4 electrolyte and Li2CO3 sensing electrode. Ionics 20:563–569CrossRef
37.
Zurück zum Zitat Wiegärtner S, Kita J, Hagen G, Schmaus C, Kießig A, Glaser E, Bolz A, Moos R (2014) Development and application of a fast solid-state potentiometric CO2-Sensor in thick-film technology. Procedia Eng 87:1031–1034CrossRef Wiegärtner S, Kita J, Hagen G, Schmaus C, Kießig A, Glaser E, Bolz A, Moos R (2014) Development and application of a fast solid-state potentiometric CO2-Sensor in thick-film technology. Procedia Eng 87:1031–1034CrossRef
38.
Zurück zum Zitat Shin JH, Lee JS, Choi SH, Lee DK, Nam H, Cha GS (2000) A planar pCO2 sensor with enhanced electrochemical properties. Anal Chem 72(18):4468–4473CrossRef Shin JH, Lee JS, Choi SH, Lee DK, Nam H, Cha GS (2000) A planar pCO2 sensor with enhanced electrochemical properties. Anal Chem 72(18):4468–4473CrossRef
39.
Zurück zum Zitat Ekwinska MA, Jaroszewicz B, Domanski K, Grabiec P, Zaborowski M, Tomaszewski D, Palko T, Przytulski J, Lukaski W, Dawgul M, Pijanowska D (2012) A transcutaneous blood capnometry sensor head based in a back-side contacted ISFET. In: Jablonski R, Brezina T (eds) Mechatronics. Springer, Berlin-Heidelberg, pp 607–614 Ekwinska MA, Jaroszewicz B, Domanski K, Grabiec P, Zaborowski M, Tomaszewski D, Palko T, Przytulski J, Lukaski W, Dawgul M, Pijanowska D (2012) A transcutaneous blood capnometry sensor head based in a back-side contacted ISFET. In: Jablonski R, Brezina T (eds) Mechatronics. Springer, Berlin-Heidelberg, pp 607–614
40.
Zurück zum Zitat Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE T Bio-Med Eng 17(1):70–71CrossRef Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE T Bio-Med Eng 17(1):70–71CrossRef
41.
Zurück zum Zitat Suzuki H, Hirakawa T, Sasaki S, Karube I (2000) An integrated module for sensing pO2, pCO2 and pH. Anal Chim Acta 405:57–65CrossRef Suzuki H, Hirakawa T, Sasaki S, Karube I (2000) An integrated module for sensing pO2, pCO2 and pH. Anal Chim Acta 405:57–65CrossRef
42.
Zurück zum Zitat Tsukada K, Miyahara Y, Shibata Y, Miyagi H (1990) An integrated chemical sensor with multiple ion and gas sensors. Sens Actuators B 2:291–295CrossRef Tsukada K, Miyahara Y, Shibata Y, Miyagi H (1990) An integrated chemical sensor with multiple ion and gas sensors. Sens Actuators B 2:291–295CrossRef
43.
Zurück zum Zitat Shoji S, Esashi M (1992) micro flow cell for blood gas analysis realizing very small sample volume. Sens Actuators B 8:205–208CrossRef Shoji S, Esashi M (1992) micro flow cell for blood gas analysis realizing very small sample volume. Sens Actuators B 8:205–208CrossRef
44.
Zurück zum Zitat Arquint P, van den Berg A, van der Schoot BH, de Rooij NF, Bühler H, Morf WE, Dürselen LFJ (1993) Integrated blood-gas sensor for pO2, pCO2 and pH. Sens Actuators B 13:340–344CrossRef Arquint P, van den Berg A, van der Schoot BH, de Rooij NF, Bühler H, Morf WE, Dürselen LFJ (1993) Integrated blood-gas sensor for pO2, pCO2 and pH. Sens Actuators B 13:340–344CrossRef
45.
Zurück zum Zitat Fasching R, Kohl F, Urban G (2003) A miniaturized amperometric CO2 sensor based on dissociation of copper complexes. Sens Actuators B 93:197–204CrossRef Fasching R, Kohl F, Urban G (2003) A miniaturized amperometric CO2 sensor based on dissociation of copper complexes. Sens Actuators B 93:197–204CrossRef
46.
Zurück zum Zitat Xie X, Bakker E (2013) Non-Severinghaus potentiometric dissolved CO2 sensor with improved characteristics. Anal Chem 85:1332–1336CrossRef Xie X, Bakker E (2013) Non-Severinghaus potentiometric dissolved CO2 sensor with improved characteristics. Anal Chem 85:1332–1336CrossRef
47.
Zurück zum Zitat Guth U, Vonau W, Zosel J (2009) Recent developments in electrochemical sensor application and technology – a review. Meas Sci Technol 20(042002):1–14 Guth U, Vonau W, Zosel J (2009) Recent developments in electrochemical sensor application and technology – a review. Meas Sci Technol 20(042002):1–14
48.
Zurück zum Zitat Anjos TG, Hahn EW (2008) The development of a membrane-covered microelectrode array gas sensor for oxygen and carbon dioxide measurement. Sens Actuators B 135:224–229CrossRef Anjos TG, Hahn EW (2008) The development of a membrane-covered microelectrode array gas sensor for oxygen and carbon dioxide measurement. Sens Actuators B 135:224–229CrossRef
Metadaten
Titel
Trends in Electrochemical Sensing of Blood Gases
verfasst von
Bastiaan van der Weerd
Rudolf Bierl
Frank-Michael Matysik
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/11663_2016_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.