Skip to main content

2014 | OriginalPaper | Buchkapitel

Trends in Recent Publications on Nanoscale Mechanics

Editor’s Notes

verfasst von : Vasyl Harik

Erschienen in: Trends in Nanoscale Mechanics

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This part of the edited volume highlights trends in recent publications by providing examples of important research papers in different areas of nanoscale mechanics. Research papers on novel applications of carbon nanotubes, nanocomposites, nanodevices, quantum anti-dots, and other nanostructures are noted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
More references on Mechanics of Carbon Nanotubes can be found in V. M. Harik, Mechanics of Carbon Nanotubes (Nanodesigns Press, Newark, Delaware, 2011). Also in V. M. Harik, Mechanics of Carbon Nanotubes (Lecture Notes), ASME CD, ASME Short Course (ASME Educational Institute, New York, New York, 2002). Lecture Notes, ASME Short Course, 2001 ASME Annual Meeting (ASME Educational Institute, New York, New York, 2001)
 
Literatur
1.
Zurück zum Zitat S. Gorantla, S. Avdoshenko, F. Börrnert, A. Bachmatiuk, M. Dimitrakopoulou, F. Schäffel, R. Schönfelder, J. Thomas, T. Gemming, J.H. Warner, G. Cuniberti, J. Eckert, B. Büchner, M.H. Rümmeli, Enhanced π–π interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube. Nano Res. 3, 92–97 (2010) S. Gorantla, S. Avdoshenko, F. Börrnert, A. Bachmatiuk, M. Dimitrakopoulou, F. Schäffel, R. Schönfelder, J. Thomas, T. Gemming, J.H. Warner, G. Cuniberti, J. Eckert, B. Büchner, M.H. Rümmeli, Enhanced π–π interactions between a C60 fullerene and a buckle bend on a double-walled carbon nanotube. Nano Res. 3, 92–97 (2010)
2.
Zurück zum Zitat V. Holovatsky, O. Voitsekhivska, I. Bernik, Effect of magnetic field on electron spectrum in spherical nano-structures. Condens. Matter Phys. 17(1), 13702:1–8 (2014) V. Holovatsky, O. Voitsekhivska, I. Bernik, Effect of magnetic field on electron spectrum in spherical nano-structures. Condens. Matter Phys. 17(1), 13702:1–8 (2014)
3.
Zurück zum Zitat C.M. Wang, A.N. Roy Chowdhury, S.J.A. Koh, Y.Y. Zhang, Molecular dynamics simulation and continuum shell model for buckling analysis of carbon nanotubes. in Modeling of Carbon Nanotubes, Graphene and their Composites, ed. by K.I. Tserpes, N. Silvestre. Springer Ser. Mater. Sci. 188, 239 (2014) C.M. Wang, A.N. Roy Chowdhury, S.J.A. Koh, Y.Y. Zhang, Molecular dynamics simulation and continuum shell model for buckling analysis of carbon nanotubes. in Modeling of Carbon Nanotubes, Graphene and their Composites, ed. by K.I. Tserpes, N. Silvestre. Springer Ser. Mater. Sci. 188, 239 (2014)
4.
Zurück zum Zitat K. Moth-Poulsen, T. Bjornholm, Molecular electronics with single molecules in solid-state devices. Nat. Nanotechnol. 4, 551–556 (2009) K. Moth-Poulsen, T. Bjornholm, Molecular electronics with single molecules in solid-state devices. Nat. Nanotechnol. 4, 551–556 (2009)
5.
Zurück zum Zitat H.-E. Schaefer, Carbon nanostructures—Tubes, graphene, fullerenes, wave-particle duality, nanoscience (Springer, Berlin, 2010) H.-E. Schaefer, Carbon nanostructures—Tubes, graphene, fullerenes, wave-particle duality, nanoscience (Springer, Berlin, 2010)
6.
Zurück zum Zitat X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Zhang, Q. Luo, C. Zhang, L. Gong, J. Chen, Y. Gogotsi, J. Zhou, Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 6, 1–9 (2014) X. Xiao, T. Li, Z. Peng, H. Jin, Q. Zhong, Q. Hu, B. Yao, Q. Zhang, Q. Luo, C. Zhang, L. Gong, J. Chen, Y. Gogotsi, J. Zhou, Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 6, 1–9 (2014)
7.
Zurück zum Zitat P. Egberts, Z. Ye, X.-Z. Liu, Y. Dong, A. Martini, R.W. Carpick, Environmental dependence of atomic-scale friction at graphite surface steps. Phys. Rev. B 88, 035409/1-0 (2013) P. Egberts, Z. Ye, X.-Z. Liu, Y. Dong, A. Martini, R.W. Carpick, Environmental dependence of atomic-scale friction at graphite surface steps. Phys. Rev. B 88, 035409/1-0 (2013)
8.
Zurück zum Zitat X. Li, W. Qi, D. Mei, M.L. Sushko, I. Aksay, J. Liu, Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocomposites. Adv. Mater. 24, 5136–5141 (2012) X. Li, W. Qi, D. Mei, M.L. Sushko, I. Aksay, J. Liu, Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocomposites. Adv. Mater. 24, 5136–5141 (2012)
9.
Zurück zum Zitat M. Xu, J.T. Paci, J. Oswald, T. Belytschko, A constitutive equation for graphene based on density functional theory. Int. J. Solids Struct. 49, 2582–2589 (2012) M. Xu, J.T. Paci, J. Oswald, T. Belytschko, A constitutive equation for graphene based on density functional theory. Int. J. Solids Struct. 49, 2582–2589 (2012)
10.
Zurück zum Zitat J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011) J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011)
11.
Zurück zum Zitat V.M. Harik, Mechanics of Carbon Nanotubes (Nanodesigns Press, Newark, Delaware, 2011) V.M. Harik, Mechanics of Carbon Nanotubes (Nanodesigns Press, Newark, Delaware, 2011)
12.
Zurück zum Zitat C. Efstathiou, H. Sehitoglu, J. Lambros, Multiscale strain measurements of plastically deforming polycrystalline titanium: role of deformation heterogeneities. Int. J. Plasticity 26, 93–106 (2010)MATH C. Efstathiou, H. Sehitoglu, J. Lambros, Multiscale strain measurements of plastically deforming polycrystalline titanium: role of deformation heterogeneities. Int. J. Plasticity 26, 93–106 (2010)MATH
13.
Zurück zum Zitat A.A. Pelegri (Mina), S.D. Tse, B.H. Kear, in Multifunctional Graphene Composites for Lightning Strike Protection: Structural Mechanics and System Integration (Rutgers University, Rutgers, 2012). A.A. Pelegri, X. Huang, Nanoindentation on soft film/hard substrate and hard film/soft substrate material systems with finite element analysis. Composites Sci. Techn. 68(1), 147–155 (2008) A.A. Pelegri (Mina), S.D. Tse, B.H. Kear, in Multifunctional Graphene Composites for Lightning Strike Protection: Structural Mechanics and System Integration (Rutgers University, Rutgers, 2012). A.A. Pelegri, X. Huang, Nanoindentation on soft film/hard substrate and hard film/soft substrate material systems with finite element analysis. Composites Sci. Techn. 68(1), 147–155 (2008)
14.
Zurück zum Zitat Z. Ounaies, C. Park, J. Harrison, P. Lillehei, Evidence of piezoelectricity in SWNT-polyimide and SWNT-PZT-polyimide composites. J. Thermoplas. Compos. Mater. 21(5), 393–409 (2008) Z. Ounaies, C. Park, J. Harrison, P. Lillehei, Evidence of piezoelectricity in SWNT-polyimide and SWNT-PZT-polyimide composites. J. Thermoplas. Compos. Mater. 21(5), 393–409 (2008)
15.
Zurück zum Zitat M. Rahmat, P. Hubert, Carbon nanotube–polymer interactions in nanocomposites: a review. Compos. Sci. Techn. 72, 72–84 (2011) M. Rahmat, P. Hubert, Carbon nanotube–polymer interactions in nanocomposites: a review. Compos. Sci. Techn. 72, 72–84 (2011)
16.
Zurück zum Zitat L. Wang, A.K. Prasad, S.G. Advani, Composite membrane based on SiO2-MWCNTs and nafion for PEMFCs. J. Electrochem. Soc. 159(8), F490–F493 (2012) L. Wang, A.K. Prasad, S.G. Advani, Composite membrane based on SiO2-MWCNTs and nafion for PEMFCs. J. Electrochem. Soc. 159(8), F490–F493 (2012)
17.
Zurück zum Zitat T.E. Chang, L.R. Jensen, A. Kisliuk, R.B. Pipes, R. Pyrz, A.P. Sokolov, Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer 46, 439–444 (2005) T.E. Chang, L.R. Jensen, A. Kisliuk, R.B. Pipes, R. Pyrz, A.P. Sokolov, Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer 46, 439–444 (2005)
18.
Zurück zum Zitat S.C. Chowdhury, B.Z. Haque(Gama), J.W. Gillespie Jr., R. Hartman, Molecular simulations of pristine and defective carbon nanotubes under monotonic and combined loading. Comput. Mater. Sci., 65, 133–143 (2012) S.C. Chowdhury, B.Z. Haque(Gama), J.W. Gillespie Jr., R. Hartman, Molecular simulations of pristine and defective carbon nanotubes under monotonic and combined loading. Comput. Mater. Sci., 65, 133–143 (2012)
19.
Zurück zum Zitat K.Z. Milowska, J.A. Majewski, Elastic properties of functionalized carbon nanotubes. Phys. Chem. Chem. Phys. 15, 14303–14309 (2013) K.Z. Milowska, J.A. Majewski, Elastic properties of functionalized carbon nanotubes. Phys. Chem. Chem. Phys. 15, 14303–14309 (2013)
20.
Zurück zum Zitat B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012) B. Arash, Q. Wang, A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)
21.
Zurück zum Zitat A.H. Korayem, W.H. Duan, X.L. Zhao, C.M. Wang, Buckling behaviour of short multi-walled carbon nanotubes under axial compression loads. Int. J. Struct. Stab. Dyn. 12, 1250045 (2012) A.H. Korayem, W.H. Duan, X.L. Zhao, C.M. Wang, Buckling behaviour of short multi-walled carbon nanotubes under axial compression loads. Int. J. Struct. Stab. Dyn. 12, 1250045 (2012)
22.
Zurück zum Zitat Y. Zheng, X. Lanqing, F. Zheyong, N. Wei, Y. Lu, Z. Huang, Mechanical properties of graphene nanobuds: a molecular dynamics study. Curr. Nanosci. 8, 89–96 (2012) Y. Zheng, X. Lanqing, F. Zheyong, N. Wei, Y. Lu, Z. Huang, Mechanical properties of graphene nanobuds: a molecular dynamics study. Curr. Nanosci. 8, 89–96 (2012)
23.
Zurück zum Zitat X. Li, K. Maute, M.L. Dunn, R. Yang, Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010) X. Li, K. Maute, M.L. Dunn, R. Yang, Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010)
24.
Zurück zum Zitat Z. Huang, Z. Tang, J. Yu, S. Bai, Temperature-dependent thermal conductivity of bent carbon nanotubes by molecular dynamics simulation. J. Appl. Phys. 109, 104316 (2011) Z. Huang, Z. Tang, J. Yu, S. Bai, Temperature-dependent thermal conductivity of bent carbon nanotubes by molecular dynamics simulation. J. Appl. Phys. 109, 104316 (2011)
25.
Zurück zum Zitat Z. Xu, M.J. Buehler, Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. ACS Nano. 4, 3869–3876 (2010) Z. Xu, M.J. Buehler, Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. ACS Nano. 4, 3869–3876 (2010)
26.
Zurück zum Zitat J. Wackerfuß, Molecular mechanics in the context of the finite element method. Int. J. Numer Meth Eng. 77, 969–997 (2009)MATH J. Wackerfuß, Molecular mechanics in the context of the finite element method. Int. J. Numer Meth Eng. 77, 969–997 (2009)MATH
27.
Zurück zum Zitat S.J. Heo, S.B. Sinnott, Investigation of influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations. J. Nanosci. Nanotechnol. 7, 1518–1524 (2007) S.J. Heo, S.B. Sinnott, Investigation of influence of thermostat configurations on the mechanical properties of carbon nanotubes in molecular dynamics simulations. J. Nanosci. Nanotechnol. 7, 1518–1524 (2007)
28.
Zurück zum Zitat R. Li, G.A. Kardomateas, Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. J. Appl. Mech. 74(3), 399–405 (2006) R. Li, G.A. Kardomateas, Thermal buckling of multi-walled carbon nanotubes by nonlocal elasticity. J. Appl. Mech. 74(3), 399–405 (2006)
29.
Zurück zum Zitat F. Khademolhosseini, N. Rajapakse, A. Nojeh, Application of nonlocal elasticity shell model for axial buckling of single-walled carbon nanotubes. Sens. Trans. 7, 88–100 (2009) F. Khademolhosseini, N. Rajapakse, A. Nojeh, Application of nonlocal elasticity shell model for axial buckling of single-walled carbon nanotubes. Sens. Trans. 7, 88–100 (2009)
30.
Zurück zum Zitat Y. Huang, J. Wu, K. Hwang, Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006) Y. Huang, J. Wu, K. Hwang, Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)
31.
Zurück zum Zitat J. Peng, J. Wu, K.C. Hwang, J. Song, Y. Huang, Can a single-wall carbon nanotube be modeled as a thin shell? J. Mech. Phys. Solids 56, 2213–2224 (2008)MATHMathSciNet J. Peng, J. Wu, K.C. Hwang, J. Song, Y. Huang, Can a single-wall carbon nanotube be modeled as a thin shell? J. Mech. Phys. Solids 56, 2213–2224 (2008)MATHMathSciNet
32.
Zurück zum Zitat K. Chandraseker, S. Mukherjee, Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes. Comput. Mater. Sci. 40, 147–158 (2007) K. Chandraseker, S. Mukherjee, Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes. Comput. Mater. Sci. 40, 147–158 (2007)
33.
Zurück zum Zitat N. Silvestre, Length dependence of critical measures in single-walled carbon nanotubes. Int. J. Solids Struct. 45, 4902–4920 (2008)MATH N. Silvestre, Length dependence of critical measures in single-walled carbon nanotubes. Int. J. Solids Struct. 45, 4902–4920 (2008)MATH
34.
Zurück zum Zitat B.W. Jeong, J.K. Lim, S.B. Sinnott, Turning stiffness of carbon nanotube systems. Appl. Phys. Lett. 91, 093102 (2007) B.W. Jeong, J.K. Lim, S.B. Sinnott, Turning stiffness of carbon nanotube systems. Appl. Phys. Lett. 91, 093102 (2007)
35.
Zurück zum Zitat C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008) C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)
36.
Zurück zum Zitat D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 19, 075609 (2008). C.Y. Li, T.-W. Chou, Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405/1-4 (2003) D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology, 19, 075609 (2008). C.Y. Li, T.-W. Chou, Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405/1-4 (2003)
37.
Zurück zum Zitat Q. Zheng, Q. Jiang, Carbon nanotubes as oscillators. Phys. Rev. Lett. 88, 045503/1-3 (2002). C.Y. Li, T.-W. Chou, Vibrational behaviors of multi-walled carbon nanotube-based nanomechancial resonators. Appl Phys Lett. 84, 121–123 (2004) Q. Zheng, Q. Jiang, Carbon nanotubes as oscillators. Phys. Rev. Lett. 88, 045503/1-3 (2002). C.Y. Li, T.-W. Chou, Vibrational behaviors of multi-walled carbon nanotube-based nanomechancial resonators. Appl Phys Lett. 84, 121–123 (2004)
38.
Zurück zum Zitat H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, K.C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003) H. Jiang, P. Zhang, B. Liu, Y. Huang, P.H. Geubelle, H. Gao, K.C. Hwang, The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)
39.
Zurück zum Zitat A. Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)MATH A. Pantano, D.M. Parks, M.C. Boyce, Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)MATH
40.
Zurück zum Zitat X. Wang, H.K. Yang, Bending stability of multiwalled carbon nanotubes. Phys. Rev. B 73, 085409 (2006) X. Wang, H.K. Yang, Bending stability of multiwalled carbon nanotubes. Phys. Rev. B 73, 085409 (2006)
41.
Zurück zum Zitat C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294, 1060–1072 (2006) C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294, 1060–1072 (2006)
42.
Zurück zum Zitat S. Zhang, R. Khare, T. Belytschko, K.J. Hsia, S.L. Mielke, G.C. Schatz, Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 73, 075423 (2006) S. Zhang, R. Khare, T. Belytschko, K.J. Hsia, S.L. Mielke, G.C. Schatz, Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 73, 075423 (2006)
43.
Zurück zum Zitat Y. Shibutani, S. Ogata, Mechanical integrity of carbon nanotubes for bending and torsion. Model. Simul. Mater. Sci. Eng. 12, 599–610 (2004) Y. Shibutani, S. Ogata, Mechanical integrity of carbon nanotubes for bending and torsion. Model. Simul. Mater. Sci. Eng. 12, 599–610 (2004)
44.
Zurück zum Zitat A. Kutana, K.P. Giapis, Transient deformation regime in bending of single-walled carbon nanotubes. Phys. Rev. Lett. 97, 245501 (2006) A. Kutana, K.P. Giapis, Transient deformation regime in bending of single-walled carbon nanotubes. Phys. Rev. Lett. 97, 245501 (2006)
45.
Zurück zum Zitat H.K. Yang, X. Wang, Bending stability of multi-wall carbon nanotubes embedded in an elastic medium. Model. Simul. Mater. Sci. Eng. 14, 99–116 (2006) H.K. Yang, X. Wang, Bending stability of multi-wall carbon nanotubes embedded in an elastic medium. Model. Simul. Mater. Sci. Eng. 14, 99–116 (2006)
46.
Zurück zum Zitat O. Liba, D. Kauzlaric, Z.R. Abrams, Y. Hanein, A. Greiner, J.G. Korvink, A dissipative particle dynamics model of carbon nanotubes. Mol. Simul. 34, 737–748 (2008) O. Liba, D. Kauzlaric, Z.R. Abrams, Y. Hanein, A. Greiner, J.G. Korvink, A dissipative particle dynamics model of carbon nanotubes. Mol. Simul. 34, 737–748 (2008)
47.
Zurück zum Zitat Z. Xia, P. Guduru, W. Curtin, Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging. Phys. Rev. Lett. 98, 245501 (2007) Z. Xia, P. Guduru, W. Curtin, Enhancing mechanical properties of multiwall carbon nanotubes via sp3 interwall bridging. Phys. Rev. Lett. 98, 245501 (2007)
48.
Zurück zum Zitat A.N. Roy Chowdhury, C.M. Wang, S.J.A. Koh, Continuum shell model for buckling of armchair carbon nanotubes under compression or torsion. Int. J. Appl. Mech. 6(1) (2014) A.N. Roy Chowdhury, C.M. Wang, S.J.A. Koh, Continuum shell model for buckling of armchair carbon nanotubes under compression or torsion. Int. J. Appl. Mech. 6(1) (2014)
49.
Zurück zum Zitat S.D. Akbarov, Microbuckling of a doublewalled carbon nanotube embedded in an elastic matrix. Int. J. Solids Struct. 50(1), 2584–2596 (2013)MathSciNet S.D. Akbarov, Microbuckling of a doublewalled carbon nanotube embedded in an elastic matrix. Int. J. Solids Struct. 50(1), 2584–2596 (2013)MathSciNet
50.
Zurück zum Zitat J. Feliciano, C. Chun Tang, Y.Y. Zhang, C.F. Chen, Aspect ratio dependent buckling mode transition in single-walled carbon nanotubes under compression. J. Appl. Phys. 109, 084323 (2011) J. Feliciano, C. Chun Tang, Y.Y. Zhang, C.F. Chen, Aspect ratio dependent buckling mode transition in single-walled carbon nanotubes under compression. J. Appl. Phys. 109, 084323 (2011)
51.
Zurück zum Zitat A.H. Korayem, W.H. Duan, X.L. Zhao, Investigation on buckling behavior of short MWCNT. Proc. Eng. 14, 250–255 (2011) A.H. Korayem, W.H. Duan, X.L. Zhao, Investigation on buckling behavior of short MWCNT. Proc. Eng. 14, 250–255 (2011)
52.
Zurück zum Zitat C.M. Wang, Z.Y. Tay, A.N.R. Chowdhuary, W.H. Duan, Y.Y. Zhang, N. Silvestre, Examination of cylindrical shell theories for buckling of carbon nanotubes. Int. J. Struct. Stab. Dyn. 11, 1035–1058 (2011) C.M. Wang, Z.Y. Tay, A.N.R. Chowdhuary, W.H. Duan, Y.Y. Zhang, N. Silvestre, Examination of cylindrical shell theories for buckling of carbon nanotubes. Int. J. Struct. Stab. Dyn. 11, 1035–1058 (2011)
53.
Zurück zum Zitat R. Ansari, S. Rouhi, Atomistic finite element model for axial buckling of single-walled carbon nanotubes. Phys. E 43, 58–69 (2010) R. Ansari, S. Rouhi, Atomistic finite element model for axial buckling of single-walled carbon nanotubes. Phys. E 43, 58–69 (2010)
54.
Zurück zum Zitat Y.Y. Zhang, C.M. Wang, W.H. Duan, Y. Xiang, Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20, 395707 (2009) Y.Y. Zhang, C.M. Wang, W.H. Duan, Y. Xiang, Z. Zong, Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. Nanotechnology 20, 395707 (2009)
55.
Zurück zum Zitat X. Huang, H.Y. Yuan, K.J. Hsia, S.L. Zhang, Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Res. 3, 32–42 (2010) X. Huang, H.Y. Yuan, K.J. Hsia, S.L. Zhang, Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Res. 3, 32–42 (2010)
56.
Zurück zum Zitat Y.D. Kuang, X.Q. He, C.Y. Chen, G.Q. Li, Buckling of functionalized single- walled nanotubes under axial compression. Carbon 47, 279–285 (2009) Y.D. Kuang, X.Q. He, C.Y. Chen, G.Q. Li, Buckling of functionalized single- walled nanotubes under axial compression. Carbon 47, 279–285 (2009)
57.
Zurück zum Zitat X. Yao, Q. Han, H. Xin, Bending buckling behaviors of single- and multi-walled carbon nanotubes. Comput. Mater. Sci, 43, 579–590 (2008). H. Xin, Q. Han, X.H. Yao, Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon, 45, 2486–2495 (2007). Y.Y. Zhang, Y. Xiang, C.M. Wang, Buckling of defective carbon nanotubes. J. Appl. Phys. 106, 113503 (2009) X. Yao, Q. Han, H. Xin, Bending buckling behaviors of single- and multi-walled carbon nanotubes. Comput. Mater. Sci, 43, 579–590 (2008). H. Xin, Q. Han, X.H. Yao, Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon, 45, 2486–2495 (2007). Y.Y. Zhang, Y. Xiang, C.M. Wang, Buckling of defective carbon nanotubes. J. Appl. Phys. 106, 113503 (2009)
58.
Zurück zum Zitat H.C. Cheng, Y.L. Liu, Y.C. Hsu, W.H. Chen, Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solids Struct. 46, 1695–1704 (2009)MATH H.C. Cheng, Y.L. Liu, Y.C. Hsu, W.H. Chen, Atomistic-continuum modeling for mechanical properties of single-walled carbon nanotubes. Int. J. Solids Struct. 46, 1695–1704 (2009)MATH
59.
Zurück zum Zitat J. Ma, J.N. Wang, X.X. Wang, Large-diameter and water-dispersible single-walled carbon nanotubes: Synthesis, characterization and applications. J. Mater. Chem. 19, 3033–3041 (2009) J. Ma, J.N. Wang, X.X. Wang, Large-diameter and water-dispersible single-walled carbon nanotubes: Synthesis, characterization and applications. J. Mater. Chem. 19, 3033–3041 (2009)
60.
Zurück zum Zitat J. Zhu, Z.Y. Pan, Y.X. Wang, L. Zhou, Q. Jiang, The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes. Nanotechnology 18, 275702 (2007) J. Zhu, Z.Y. Pan, Y.X. Wang, L. Zhou, Q. Jiang, The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes. Nanotechnology 18, 275702 (2007)
61.
Zurück zum Zitat T. Chang, J. Hou, Molecular dynamics simulations on buckling of multiwalled carbon nanotubes under bending. J. Appl. Phys. 100:114327 (2006). T.C. Chang, J.Y. Geng, X.M. Guo, Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Appl. Phys. Lett. 87(25), 251929 (2005). X. Guo, A.Y.T. Leung, H. Jiang, X.Q. He, Y. Huang, Critical strain of carbon nanotubes: an atomic-scale finite element study. J. Appl. Mech. 74, 347–351 (2007) T. Chang, J. Hou, Molecular dynamics simulations on buckling of multiwalled carbon nanotubes under bending. J. Appl. Phys. 100:114327 (2006). T.C. Chang, J.Y. Geng, X.M. Guo, Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Appl. Phys. Lett. 87(25), 251929 (2005). X. Guo, A.Y.T. Leung, H. Jiang, X.Q. He, Y. Huang, Critical strain of carbon nanotubes: an atomic-scale finite element study. J. Appl. Mech. 74, 347–351 (2007)
62.
Zurück zum Zitat A.Y.T. Leung, X. Guo, X.Q. He, H. Jiang, Y. Huang, Postbuckling of carbon nanotubes by atomic-scale finite element. J. Appl. Phys. 99(12), 124308 (2006) A.Y.T. Leung, X. Guo, X.Q. He, H. Jiang, Y. Huang, Postbuckling of carbon nanotubes by atomic-scale finite element. J. Appl. Phys. 99(12), 124308 (2006)
63.
Zurück zum Zitat G. Cao, X. Chen, Buckling of single-walled carbon nanotubes upon bending: molecular dynamics and finite element simulations. Phys. Rev. B 73, 155435 (2006) G. Cao, X. Chen, Buckling of single-walled carbon nanotubes upon bending: molecular dynamics and finite element simulations. Phys. Rev. B 73, 155435 (2006)
64.
Zurück zum Zitat Y.Y. Zhang, V.B.C. Tan, and C.M. Wang, Effect of chirality on buckling behavior of single-walled carbon nanotubes, J. Appl. Phys., 100(7):074304 (2006). C.Y. Wang, Y.Y. Zhang, C.M. Wang, V.B.C. Tan, Buckling of carbon nanotubes: A literature survey. J. Nanosci. Nanotechnol. 7:4221–4247 (2007). Y.Y. Zhang, M. Wang, V.B.C. Tan, Examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations. J. Appl. Phys. 103 053505 (2008). C.M. Wang, Y.Y. Zhang, Y.Xiang, J.N. Reddy, Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev., 63:030804 (2010) Y.Y. Zhang, V.B.C. Tan, and C.M. Wang, Effect of chirality on buckling behavior of single-walled carbon nanotubes, J. Appl. Phys., 100(7):074304 (2006). C.Y. Wang, Y.Y. Zhang, C.M. Wang, V.B.C. Tan, Buckling of carbon nanotubes: A literature survey. J. Nanosci. Nanotechnol. 7:4221–4247 (2007). Y.Y. Zhang, M. Wang, V.B.C. Tan, Examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations. J. Appl. Phys. 103 053505 (2008). C.M. Wang, Y.Y. Zhang, Y.Xiang, J.N. Reddy, Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev., 63:030804 (2010)
65.
Zurück zum Zitat Q. Wang, K.M. Liew, W.H. Duan, Modeling of the Mechanical Instability of Carbon Nanotubes. Carbon 46(2), 285–290 (2008) Q. Wang, K.M. Liew, W.H. Duan, Modeling of the Mechanical Instability of Carbon Nanotubes. Carbon 46(2), 285–290 (2008)
66.
Zurück zum Zitat J.F., Waters, P. R. Gudurua, J.M. Xu Nanotube mechanics—Recent progress in shell buckling mechanics and quantum electromechanical coupling. Compos. Sci. Technol. 66, 1141–1150 (2006). J.F. Waters, L. Riester, M. Jouzi, P.R. Guduru, J.M. Xu, Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression. Appl. Phys. Lett., 85, 1787–1789 (2004). J.F. Waters, P.R. Guduru, M. Jouzi, J.M. Xu, T. Hanlon, S. Suresh, Shell buckling of individual multi-walled carbon nanotubes using nano indentation Appl. Phys. Lett.,87, 103109 (2005) J.F., Waters, P. R. Gudurua, J.M. Xu Nanotube mechanics—Recent progress in shell buckling mechanics and quantum electromechanical coupling. Compos. Sci. Technol. 66, 1141–1150 (2006). J.F. Waters, L. Riester, M. Jouzi, P.R. Guduru, J.M. Xu, Buckling instabilities in multiwalled carbon nanotubes under uniaxial compression. Appl. Phys. Lett., 85, 1787–1789 (2004). J.F. Waters, P.R. Guduru, M. Jouzi, J.M. Xu, T. Hanlon, S. Suresh, Shell buckling of individual multi-walled carbon nanotubes using nano indentation Appl. Phys. Lett.,87, 103109 (2005)
67.
Zurück zum Zitat R.C. Batra, Buckling of multiwalled carbon nanotubes under axial compression.. Phys. Rev. B 73 085410 (2006) R.C. Batra, Buckling of multiwalled carbon nanotubes under axial compression.. Phys. Rev. B 73 085410 (2006)
68.
Zurück zum Zitat B. Ni, S.B. Sinnott, P.T. Mikulski, J.A. Harrison, Compression of carbon nanotubes filled with C60, CH4, or Ne: Predictions from molecular dynamics simulations. Phys. Rev. Lett. 88, 205505 (2002) B. Ni, S.B. Sinnott, P.T. Mikulski, J.A. Harrison, Compression of carbon nanotubes filled with C60, CH4, or Ne: Predictions from molecular dynamics simulations. Phys. Rev. Lett. 88, 205505 (2002)
69.
Zurück zum Zitat M.J. Buehler, J. Kong, H.J. Gao, Deformation mechanism of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 245–249 (2004) M.J. Buehler, J. Kong, H.J. Gao, Deformation mechanism of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 245–249 (2004)
70.
Zurück zum Zitat A. Pantano, M.C. Boyce, D.M. Parks, Mechanics of axial compression of single-and multi-wall carbon nanotubes. J. Eng. Mater. Technol. 126, 279–284 (2004) A. Pantano, M.C. Boyce, D.M. Parks, Mechanics of axial compression of single-and multi-wall carbon nanotubes. J. Eng. Mater. Technol. 126, 279–284 (2004)
71.
Zurück zum Zitat G. Weick, F. von Oppen, F. Pistolesi, Euler buckling instability and enhanced current blockade in suspended single-electron transistors. Phys. Rev. B 83, 035420 (2011) G. Weick, F. von Oppen, F. Pistolesi, Euler buckling instability and enhanced current blockade in suspended single-electron transistors. Phys. Rev. B 83, 035420 (2011)
72.
Zurück zum Zitat H.W. Yap, R.S. Lakes, R.W. Carpick, Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Lett. 7, 1149–1154 (2007) H.W. Yap, R.S. Lakes, R.W. Carpick, Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression. Nano Lett. 7, 1149–1154 (2007)
73.
Zurück zum Zitat A. Misra, P.K. Tyagi, P. Rai, D.R. Mahopatra, J. Ghatak, P.V. Satyam, D.K. Avasthi, D.S. Misra, Axial buckling and compressive behavior of nickel-encapsulated multiwalled carbon nanotubes. Phys. Rev. B 76, 014108 (2007) A. Misra, P.K. Tyagi, P. Rai, D.R. Mahopatra, J. Ghatak, P.V. Satyam, D.K. Avasthi, D.S. Misra, Axial buckling and compressive behavior of nickel-encapsulated multiwalled carbon nanotubes. Phys. Rev. B 76, 014108 (2007)
74.
Zurück zum Zitat J. Zhao, M.R. He, S. Dai, J.Q. Huang, F. Wei, J. Zhu, TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes. Carbon 49, 206–213 (2011) J. Zhao, M.R. He, S. Dai, J.Q. Huang, F. Wei, J. Zhu, TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes. Carbon 49, 206–213 (2011)
75.
Zurück zum Zitat N. Hu, K. Nunoya, D. Pan, T. Okabe, H. Fukunaga, Prediction of buckling characteristics of carbon nanotubes. Int. J Solids Struct. 44 6535–6550 (2007) N. Hu, K. Nunoya, D. Pan, T. Okabe, H. Fukunaga, Prediction of buckling characteristics of carbon nanotubes. Int. J Solids Struct. 44 6535–6550 (2007)
76.
Zurück zum Zitat C.Q. Ru, Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B, 62 16962–16967 (2000). K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64 235406 (2001). C.Q. Ru, Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B, 62 16962–16967 (2000). K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64 235406 (2001).
77.
Zurück zum Zitat H.S. Shen, Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure. Int. J. Solids Struct. 41, 2643–2657 (2004)MATH H.S. Shen, Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure. Int. J. Solids Struct. 41, 2643–2657 (2004)MATH
78.
Zurück zum Zitat X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)MATH X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)MATH
79.
Zurück zum Zitat D.D.T.K Kulathunga, K.K Ang, J.N. Reddy, Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories. J. Phys. Condens. Mater. 21, 435301 (2009). D.D.T.K. Kulathunga, K.K. Ang, J.N. Reddy, Molecular dynamics analysis on buckling of defective carbon nanotubes. J. Phys. Condens. Mater., 22:345301 (2010) D.D.T.K Kulathunga, K.K Ang, J.N. Reddy, Accurate modeling of buckling of single- and double-walled carbon nanotubes based on shell theories. J. Phys. Condens. Mater. 21, 435301 (2009). D.D.T.K. Kulathunga, K.K. Ang, J.N. Reddy, Molecular dynamics analysis on buckling of defective carbon nanotubes. J. Phys. Condens. Mater., 22:345301 (2010)
80.
Zurück zum Zitat N. Silvestre, C.M. Wang, Y.Y. Zhang, Y. Xiang, Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos. Struct. 93, 1683–1691 (2011) N. Silvestre, C.M. Wang, Y.Y. Zhang, Y. Xiang, Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos. Struct. 93, 1683–1691 (2011)
81.
Zurück zum Zitat J. Wu, K.C. Hwang, Y. Huang, A shell theory for carbon nanotubes based on the interatomic potential and atomic structure, in Advances in Applied Mechanics, Chap. 1. Elsevier, 1–68 (2009) J. Wu, K.C. Hwang, Y. Huang, A shell theory for carbon nanotubes based on the interatomic potential and atomic structure, in Advances in Applied Mechanics, Chap. 1. Elsevier, 1–68 (2009)
82.
Zurück zum Zitat J.A. Elliott, L.K.W. Sandler, A.H. Windle, R.J. Young, M.S.P. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92, 095501 (2004) J.A. Elliott, L.K.W. Sandler, A.H. Windle, R.J. Young, M.S.P. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92, 095501 (2004)
83.
Zurück zum Zitat Q. Wang, K.M. Liew, X.Q. He, Y. Xiang, Local buckling of carbon nanotubes under bending. Appl. Phys. Lett. 73, 093128 (2007) Q. Wang, K.M. Liew, X.Q. He, Y. Xiang, Local buckling of carbon nanotubes under bending. Appl. Phys. Lett. 73, 093128 (2007)
84.
Zurück zum Zitat X.J. Duan, C. Tang, J. Zhang, W.L. Guo, Z.F. Liu, Two distinct buckling modes in carbon nanotube bending. Nano Lett. 7, 143–148 (2007) X.J. Duan, C. Tang, J. Zhang, W.L. Guo, Z.F. Liu, Two distinct buckling modes in carbon nanotube bending. Nano Lett. 7, 143–148 (2007)
85.
Zurück zum Zitat X. Wang, B. Sun, H.K. Yang, Stability of multi-walled carbon nanotubes under combined bending and axial compression loading. Nanotechnology. 17, 815–823 (2006). X.Wang, G.X. Lu, Y.J. Lu, Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading. Int. J. Solids Struct. 44, 336–351 (2007)MATH X. Wang, B. Sun, H.K. Yang, Stability of multi-walled carbon nanotubes under combined bending and axial compression loading. Nanotechnology. 17, 815–823 (2006). X.Wang, G.X. Lu, Y.J. Lu, Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading. Int. J. Solids Struct. 44, 336–351 (2007)MATH
86.
Zurück zum Zitat C.L. Zhang, H.S. Shen, Buckling and postbuckling of single-walled carbon nanotubes under combined axial compression and torsion in thermal environments. Phys. Rev. B 75, 045408 (2007) C.L. Zhang, H.S. Shen, Buckling and postbuckling of single-walled carbon nanotubes under combined axial compression and torsion in thermal environments. Phys. Rev. B 75, 045408 (2007)
87.
Zurück zum Zitat H.Y. Wang, M. Zhao, S.X. Mao, Radial moduli of individual single-walled carbon nanotubes with and without electric current flow. Appl. Phys. Lett. 89, 211906 (2006) H.Y. Wang, M. Zhao, S.X. Mao, Radial moduli of individual single-walled carbon nanotubes with and without electric current flow. Appl. Phys. Lett. 89, 211906 (2006)
88.
Zurück zum Zitat M. Hasegawa, K. Nishidate, Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure. Phys. Rev. B 74, 115401 (2006) M. Hasegawa, K. Nishidate, Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure. Phys. Rev. B 74, 115401 (2006)
89.
Zurück zum Zitat H. Shima, M. Sato, Multiple radial corrugations in multiwall carbon nanotubes under pressure. Nanotechnology. 19, 495705 (2008). Mater. 5, 76 (2012) H. Shima, M. Sato, Multiple radial corrugations in multiwall carbon nanotubes under pressure. Nanotechnology. 19, 495705 (2008). Mater. 5, 76 (2012)
90.
Zurück zum Zitat B.W. Jeong, J.K. Lim, S.B. Sinnott, Tuning the torsional properties of carbon nanotube systems with axial prestress. Appl. Phys. Lett. 92, 253114 (2008) B.W. Jeong, J.K. Lim, S.B. Sinnott, Tuning the torsional properties of carbon nanotube systems with axial prestress. Appl. Phys. Lett. 92, 253114 (2008)
91.
Zurück zum Zitat A.P.M. Barboza, H. Chacham, B.R.A. Neves, Universal response of single-wall carbon nanotubes to radial compression. Phys. Rev. Lett. 102, 025501 (2009) A.P.M. Barboza, H. Chacham, B.R.A. Neves, Universal response of single-wall carbon nanotubes to radial compression. Phys. Rev. Lett. 102, 025501 (2009)
92.
Zurück zum Zitat H. Shima, S. Ghosh, M. Arroyo, K. Iiboshi, M. Sato, Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes. Comput. Mater. Sci. 52, 90–94 (2012) H. Shima, S. Ghosh, M. Arroyo, K. Iiboshi, M. Sato, Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes. Comput. Mater. Sci. 52, 90–94 (2012)
93.
Zurück zum Zitat Y.H. Yang, W.Z. Li, Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl. Phys. Lett. 98, 041901 (2011) Y.H. Yang, W.Z. Li, Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Appl. Phys. Lett. 98, 041901 (2011)
94.
Zurück zum Zitat X. Huang, W. Liang, S. Zhang, Radial corrugations of multi-walled carbon nanotubes driven by inter-wall nonbonding interactions. Nanoscale Res. Lett. 6, 53 (2011) X. Huang, W. Liang, S. Zhang, Radial corrugations of multi-walled carbon nanotubes driven by inter-wall nonbonding interactions. Nanoscale Res. Lett. 6, 53 (2011)
95.
Zurück zum Zitat B.W. Jeong, J.K. Lim, S.B. Sinnott, Tuning the torsional properties of carbon nanotube systems with axial prestress. Appl. Phys. Lett. 92, 253114 (2008) B.W. Jeong, J.K. Lim, S.B. Sinnott, Tuning the torsional properties of carbon nanotube systems with axial prestress. Appl. Phys. Lett. 92, 253114 (2008)
96.
Zurück zum Zitat H.K. Yang, X.Wang, Torsional buckling of multi-wall carbon nanotubes embedded in an elastic medium. Compos. Struct., 77:182–192 (2007). Mater. 5, 77 (2012) H.K. Yang, X.Wang, Torsional buckling of multi-wall carbon nanotubes embedded in an elastic medium. Compos. Struct., 77:182–192 (2007). Mater. 5, 77 (2012)
97.
Zurück zum Zitat Y.Y. Zhang, C.M. Wang, Torsional responses of double-walled carbon nanotubes via molecular dynamics simulations. J. Phys. Condens. Mat. 20, 455214 (2008) Y.Y. Zhang, C.M. Wang, Torsional responses of double-walled carbon nanotubes via molecular dynamics simulations. J. Phys. Condens. Mat. 20, 455214 (2008)
98.
Zurück zum Zitat Q. Wang, Torsional buckling of double-walled carbon nanotubes. Carbon 46, 1172–1174 (2008) Q. Wang, Torsional buckling of double-walled carbon nanotubes. Carbon 46, 1172–1174 (2008)
99.
Zurück zum Zitat Q. Wang, Transportation of hydrogen molecules using carbon nanotube in torsion. Carbon 47, 1870–1873 (2009) Q. Wang, Transportation of hydrogen molecules using carbon nanotube in torsion. Carbon 47, 1870–1873 (2009)
100.
Zurück zum Zitat B.W. Jeong, S.B. Sinnott, Unique buckling responses of multi-walled carbon nanotubes incorporated as torsion springs. Carbon 48, 1697–1701 (2010) B.W. Jeong, S.B. Sinnott, Unique buckling responses of multi-walled carbon nanotubes incorporated as torsion springs. Carbon 48, 1697–1701 (2010)
101.
Zurück zum Zitat E.M. Byrne, M.A. McCarthy, Z. Xia, W.A. Curtin, Multiwall nanotubes can be stronger than single wall nanotubes and implications for nanocomposite design. Phys. Rev. Lett. 103, 045502 (2009) E.M. Byrne, M.A. McCarthy, Z. Xia, W.A. Curtin, Multiwall nanotubes can be stronger than single wall nanotubes and implications for nanocomposite design. Phys. Rev. Lett. 103, 045502 (2009)
102.
Zurück zum Zitat S.G. Advani, Processing and properties of nanocomposites (World Scientific Publishing Co, London, 2007) S.G. Advani, Processing and properties of nanocomposites (World Scientific Publishing Co, London, 2007)
103.
Zurück zum Zitat P.J.F. Harris, Carbon nanotube composites. Int. Mater. Rev. 49, 31–43 (2004) P.J.F. Harris, Carbon nanotube composites. Int. Mater. Rev. 49, 31–43 (2004)
104.
Zurück zum Zitat E.T. Thostenson, Z.F. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Comp. Sci. Tech, 61, 1899–1912 (2001). E. T. Thostenson, T.-W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D: Appl. Phys. 35(16), L77-L80 (2002). E. T. Thostenson, T.-W. Chou, On the elastic properties of carbon nanotube-based composites: modeling and characterization. J. Phys. D: Appl. Phys. 36, 573–582 (2003) E.T. Thostenson, Z.F. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Comp. Sci. Tech, 61, 1899–1912 (2001). E. T. Thostenson, T.-W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J. Phys. D: Appl. Phys. 35(16), L77-L80 (2002). E. T. Thostenson, T.-W. Chou, On the elastic properties of carbon nanotube-based composites: modeling and characterization. J. Phys. D: Appl. Phys. 36, 573–582 (2003)
105.
Zurück zum Zitat K.-T. Hsiao, J. Alms, S.G. Advani, Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14, 791 (2003) K.-T. Hsiao, J. Alms, S.G. Advani, Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14, 791 (2003)
106.
Zurück zum Zitat K.T. Lau, Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 370(3–4), 399–405 (2003) K.T. Lau, Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 370(3–4), 399–405 (2003)
107.
Zurück zum Zitat V. Lordi, N. Yao, Molecular mechanics of binding in carbon nanotube-polymer composites. J. Materials Res. 15, 2770–2779 (2000) V. Lordi, N. Yao, Molecular mechanics of binding in carbon nanotube-polymer composites. J. Materials Res. 15, 2770–2779 (2000)
108.
Zurück zum Zitat H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998) H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998)
109.
Zurück zum Zitat L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73, 3842–3844 (1998) L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73, 3842–3844 (1998)
110.
Zurück zum Zitat D. Qian, E.C. Dickey, R. Andrews et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000) D. Qian, E.C. Dickey, R. Andrews et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)
111.
Zurück zum Zitat I. Elishakoff, D. Pentaras, K. Dujat, C. Versaci, G. Muscolino, J. Storch, S. Bucas, N. Challamel, T. Natsuki, Y. Zhang, C.M. Wang, G. Ghyselinck, Carbon Nanotubes and Nanosensors: Vibration, Buckling and Ballistic Impact (ISTE Ltd and Wiley, New York, 2013) I. Elishakoff, D. Pentaras, K. Dujat, C. Versaci, G. Muscolino, J. Storch, S. Bucas, N. Challamel, T. Natsuki, Y. Zhang, C.M. Wang, G. Ghyselinck, Carbon Nanotubes and Nanosensors: Vibration, Buckling and Ballistic Impact (ISTE Ltd and Wiley, New York, 2013)
112.
Zurück zum Zitat V.A. Holovatsky, O.M. Makhanets, O.M. Voitsekhivska, Oscillator strengths of electron quantum transitions in spherical nanosystems with donor impurity in the center, Physica E, 41:1522–1526 (2009). V. Holovatsky, O. Makhanets and I. Frankiv, Quasi-stationary electron states in spherical anti-dot with donor impurity, Rom. Journ. Phys., 57(9–10): 1285–1292 (Bucharest, 2012). V. Holovatsky, I. Bernik and O. Voitsekhivska, Oscillator Strengths of Quantum Transitions in Spherical Quantum Dot GaAs/AlxGa1-xAs/GaAs/AlxGa1-xAs with On-Center Donor Impurity. Acta Physica Polonica A 125(1), 1–5 (2014) V.A. Holovatsky, O.M. Makhanets, O.M. Voitsekhivska, Oscillator strengths of electron quantum transitions in spherical nanosystems with donor impurity in the center, Physica E, 41:1522–1526 (2009). V. Holovatsky, O. Makhanets and I. Frankiv, Quasi-stationary electron states in spherical anti-dot with donor impurity, Rom. Journ. Phys., 57(9–10): 1285–1292 (Bucharest, 2012). V. Holovatsky, I. Bernik and O. Voitsekhivska, Oscillator Strengths of Quantum Transitions in Spherical Quantum Dot GaAs/AlxGa1-xAs/GaAs/AlxGa1-xAs with On-Center Donor Impurity. Acta Physica Polonica A 125(1), 1–5 (2014)
113.
Zurück zum Zitat R. Yatskiv, J. Grym, V.V. Brus, O. Cernohorsky, P.D. Maryanchuk, C. Bazioti, G.P. Dimitrakopulos, Ph. Komninou, Transport properties of metal–semiconductor junctions on n-type InP prepared by electrophoretic deposition of Pt nanoparticles, Semicond. Sci. Technol. 29:045017 (1–8) (2014) R. Yatskiv, J. Grym, V.V. Brus, O. Cernohorsky, P.D. Maryanchuk, C. Bazioti, G.P. Dimitrakopulos, Ph. Komninou, Transport properties of metal–semiconductor junctions on n-type InP prepared by electrophoretic deposition of Pt nanoparticles, Semicond. Sci. Technol. 29:045017 (1–8) (2014)
114.
Zurück zum Zitat L. Guangyong, L. Liming, Carbon nanotubes for organic solar cells. Nanotechnology Magazine, IEEE 5, 18–24 (2011) L. Guangyong, L. Liming, Carbon nanotubes for organic solar cells. Nanotechnology Magazine, IEEE 5, 18–24 (2011)
115.
Zurück zum Zitat D.M. Sun, M.Y. Timmermans, Y. Tian, A.G. Nasibulin, E.I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol. 6, 156–161 (2011) D.M. Sun, M.Y. Timmermans, Y. Tian, A.G. Nasibulin, E.I. Kauppinen, S. Kishimoto, T. Mizutani, Y. Ohno, Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol. 6, 156–161 (2011)
116.
Zurück zum Zitat G. Weick, F. Pistolesi, E. Mariani, F. von Oppen, Discontinuous Euler instability in nanoelectromechanical systems. Phys. Rev. B 81, 121409 (2010) G. Weick, F. Pistolesi, E. Mariani, F. von Oppen, Discontinuous Euler instability in nanoelectromechanical systems. Phys. Rev. B 81, 121409 (2010)
117.
Zurück zum Zitat A.K. Naieni, P. Yaghoobi, D.J. Woodsworth, A. Nojeh, Structural deformations and current oscillations in armchair-carbon nanotube cross devices: A theoretical study. J. Phys. D Appl. Phys. 44, 085402 (2011) A.K. Naieni, P. Yaghoobi, D.J. Woodsworth, A. Nojeh, Structural deformations and current oscillations in armchair-carbon nanotube cross devices: A theoretical study. J. Phys. D Appl. Phys. 44, 085402 (2011)
118.
Zurück zum Zitat A.R. Hall, M.R. Falvo, R. Superfine, S. Washburn, A self-sensing nanomechanical resonator built on a single-walled carbon nanotube. Nano Lett., 8:3746–3749 (2008). Hall A. R., Falvo M. R., Superfine R., Washburn S., Electromechanical response of single walled carbon nanotubes to torsional strain in a self-contained device. Nat. Nanotechnol. 2, 413–416 (2007) A.R. Hall, M.R. Falvo, R. Superfine, S. Washburn, A self-sensing nanomechanical resonator built on a single-walled carbon nanotube. Nano Lett., 8:3746–3749 (2008). Hall A. R., Falvo M. R., Superfine R., Washburn S., Electromechanical response of single walled carbon nanotubes to torsional strain in a self-contained device. Nat. Nanotechnol. 2, 413–416 (2007)
119.
Zurück zum Zitat I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Struct. 15(3), 737–748 (2006) I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Struct. 15(3), 737–748 (2006)
120.
Zurück zum Zitat X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nanodevice motion at microwave frequencies. Nat. 421, 496 (2003) X.M.H. Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nanodevice motion at microwave frequencies. Nat. 421, 496 (2003)
121.
Zurück zum Zitat M. Freitag, M. Radosavljevic, Y. Zhou, A.T. Johnson, W.F. Smith, Controlled creation of a carbon nanotube diode by a scanned gate. Appl. Phys. Lett. 79, 3326 (2001) M. Freitag, M. Radosavljevic, Y. Zhou, A.T. Johnson, W.F. Smith, Controlled creation of a carbon nanotube diode by a scanned gate. Appl. Phys. Lett. 79, 3326 (2001)
122.
Zurück zum Zitat R.S. Ruoff, J. Tersoff, D.C. Lorents, S. Subramoney, B. Chan, Radial deformation of carbon nanotubes by van der Waals’ forces. Nature 364, 514–516 (1993) R.S. Ruoff, J. Tersoff, D.C. Lorents, S. Subramoney, B. Chan, Radial deformation of carbon nanotubes by van der Waals’ forces. Nature 364, 514–516 (1993)
123.
Zurück zum Zitat B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett., 76:2511 (1996). B.I. Yakobson, T. Dimitrica, In: V.M. Harik, M. Salas by ed., Trends in Nanoscale Mechanics. pp. 3–33, Kluwer Academic Publishers, The Netherlands (2003) B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett., 76:2511 (1996). B.I. Yakobson, T. Dimitrica, In: V.M. Harik, M. Salas by ed., Trends in Nanoscale Mechanics. pp. 3–33, Kluwer Academic Publishers, The Netherlands (2003)
124.
Zurück zum Zitat M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature, 381:680 (1996). Wong E. W., P. E. Sheehan, C. M. Lieber. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971–1975 (1997) M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature, 381:680 (1996). Wong E. W., P. E. Sheehan, C. M. Lieber. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277, 1971–1975 (1997)
125.
Zurück zum Zitat V. M. Harik, Solid State Comm., 120(7–8):331–335 (2001). V.M. Harik, Mechanics of carbon nanotubes: applicability of the continuum-beam models. Compt. Mat. Sci., 24(3):328–342 (2002). V.M. Harik, Ranges of applicability for the continuum-beam model in the constitutive analysis of carbon nanotubes: nanotubes or nano-beams? NASA/CR-2001–211013 (NASA Langley Research Center, Hampton, Virginia, June (2001) V. M. Harik, Solid State Comm., 120(7–8):331–335 (2001). V.M. Harik, Mechanics of carbon nanotubes: applicability of the continuum-beam models. Compt. Mat. Sci., 24(3):328–342 (2002). V.M. Harik, Ranges of applicability for the continuum-beam model in the constitutive analysis of carbon nanotubes: nanotubes or nano-beams? NASA/CR-2001–211013 (NASA Langley Research Center, Hampton, Virginia, June (2001)
126.
Zurück zum Zitat C.Y. Wang, C.Q. Ru, A. Mioduchowski, Elastic buckling of multiwall carbon nanotubes under high pressure. J. Nanosci. Nanotechnol. 3, 199–208 (2003) C.Y. Wang, C.Q. Ru, A. Mioduchowski, Elastic buckling of multiwall carbon nanotubes under high pressure. J. Nanosci. Nanotechnol. 3, 199–208 (2003)
127.
Zurück zum Zitat C.Y. Li, T.-W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct., 40:2487–2499 (2002). C.Y. Li, T.-W. Chou, Elastic properties of single-walled carbon nanotubes in transverse directions. Phys. Rev. B 69, 073401/1-4 (2004) C.Y. Li, T.-W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct., 40:2487–2499 (2002). C.Y. Li, T.-W. Chou, Elastic properties of single-walled carbon nanotubes in transverse directions. Phys. Rev. B 69, 073401/1-4 (2004)
128.
Zurück zum Zitat D. Srivastava, M. Menon, K.J. Cho, Computational Nanotechnology with Carbon Nanotubes and Fullerenes. Comp. Sci. Engng 3, 42–55 (2001) D. Srivastava, M. Menon, K.J. Cho, Computational Nanotechnology with Carbon Nanotubes and Fullerenes. Comp. Sci. Engng 3, 42–55 (2001)
129.
Zurück zum Zitat Qian D., G. J. Wagner, W. K. Liu, M. F. Yu and R. S. Ruoff, Mechanics of carbon nanotubes (The topic of this review paper was requested by Dr. V. M. Harik (ICASE Institute, NASA Langley Research Center), who is the author of a short course “Mechanics of Carbon Nanotubes” © 2001, through Dr. A. Noor (Old Dominion University and NASA Langley Research Center), who was an editor of Applied Mechanics Reviews, for a special volume on Mechanics of Carbon Nanotubes and Nanocomposites designed to address the needs of NASA Langley Research Center (Hampton, Virginia) for the state-of-the-art reviews of research in nanoscale mechanics), Appl. Mech. Rev. 55(6):495–532 (2002) Qian D., G. J. Wagner, W. K. Liu, M. F. Yu and R. S. Ruoff, Mechanics of carbon nanotubes (The topic of this review paper was requested by Dr. V. M. Harik (ICASE Institute, NASA Langley Research Center), who is the author of a short course “Mechanics of Carbon Nanotubes” © 2001, through Dr. A. Noor (Old Dominion University and NASA Langley Research Center), who was an editor of Applied Mechanics Reviews, for a special volume on Mechanics of Carbon Nanotubes and Nanocomposites designed to address the needs of NASA Langley Research Center (Hampton, Virginia) for the state-of-the-art reviews of research in nanoscale mechanics), Appl. Mech. Rev. 55(6):495–532 (2002)
130.
Zurück zum Zitat P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials. Int. J. Solids Structr. 39, 3893–3906 (2002)MATH P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials. Int. J. Solids Structr. 39, 3893–3906 (2002)MATH
131.
Zurück zum Zitat M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 287, 637–640 (2000) M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science 287, 637–640 (2000)
132.
Zurück zum Zitat W.H. Knechtel, G.S. Dusberg, W.J. Blau, E. Hernandez, A. Rubio, Reversible bending of carbon nanotubes using a transmission electron microscope. Appl. Phys. Lett., 73, 1961–1963 (1998). M.R. Falvo, G.J. Clary, R.M.Taylor, II., V. Chi, F.P. Brooks, Jr., S. Washburn, R. Superfine, Bending and buckling of carbon nanotubes under large strain. Nat., 389, 582–584 (1997). O. Lourie, D.M. Cox, H.D. Wagner, Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638–1641 (1998) W.H. Knechtel, G.S. Dusberg, W.J. Blau, E. Hernandez, A. Rubio, Reversible bending of carbon nanotubes using a transmission electron microscope. Appl. Phys. Lett., 73, 1961–1963 (1998). M.R. Falvo, G.J. Clary, R.M.Taylor, II., V. Chi, F.P. Brooks, Jr., S. Washburn, R. Superfine, Bending and buckling of carbon nanotubes under large strain. Nat., 389, 582–584 (1997). O. Lourie, D.M. Cox, H.D. Wagner, Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638–1641 (1998)
133.
Zurück zum Zitat D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990) D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)
Metadaten
Titel
Trends in Recent Publications on Nanoscale Mechanics
verfasst von
Vasyl Harik
Copyright-Jahr
2014
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-017-9263-9_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.