Skip to main content

2014 | OriginalPaper | Buchkapitel

Tri-Dimensional A2-RAM Cell: Entering the Third Dimension

verfasst von : Francisco Gámiz, Noel Rodriguez, Carlos Navarro, Carlos Marquez, Sorin Cristoloveanu

Erschienen in: Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chapter we present an overview of a capacitor-less DRAM cell based on a 3D multibody transistor with high scalability, low-power consumption, long retention time, non-destructive reading, and wide memory window. High performance is demonstrated on a 20 nm channel length device, including ‘1’ to ‘0’ current ratio larger than 103 (with negligible ‘0’ current level), very low voltage bias operation and retention time longer than 20 ms at 85 °C in worst cases. Compared to previous equivalent 3D memory cells reported so far, the proposed cell shows longer retention time even though the gate length is shrunk by a factor of two. The voltages used to write and read the information are far smaller than the previously reported ones in comparable structures. We have confirmed by TCAD simulation that the improvements are attributed to an innovative operation concept: a dedicated body partitioning. This device exploits the working principle of the A2RAM memory cell recently introduced by researchers at the University of Granada and Grenoble INP. The principles of operation and key mechanisms for programming are described. The new concept of 3D (FinFET, trigate or nanowire) DRAM cell proposed features a N/P body partitioning which enables the physical separation of hole storage and sensing electron current. The hole concentration in a surrounding P-crust, controls the partial or full depletion of a N-core which short-circuits drain and source of the device. The status of the N-bridge (depleted or un-depleted) determines the two memory logic states. The cell is compatible with ultimate scaling and shows attractive performance (long retention, wide memory window, simple programming, nondestructive reading, and very low-power operation) for embedded systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hu, C., King, T.J., Hu, C.: A capacitorless double-gate DRAM cell. IEEE Electron Device Lett. 23(6), 345–347 (2002)CrossRef Hu, C., King, T.J., Hu, C.: A capacitorless double-gate DRAM cell. IEEE Electron Device Lett. 23(6), 345–347 (2002)CrossRef
2.
Zurück zum Zitat Okhonin, S., Nagoga, M., Carman, E., Beffa, R., Faraoni, E.: New generation of Z-RAM. In: IEEE International Electron Devices Meeting (IEDM), pp. 925–928. (December 2007) Okhonin, S., Nagoga, M., Carman, E., Beffa, R., Faraoni, E.: New generation of Z-RAM. In: IEEE International Electron Devices Meeting (IEDM), pp. 925–928. (December 2007)
3.
Zurück zum Zitat Ban, I., Avci, U.E., Shah, U., Barns, C.E., Kencke, D.L., Chang, P.: Floating body cell with independently-controlled double gates for high density memory. In: IEEE International Electron Devices Meeting, IEDM’06, pp. 1–4. (December 2006) Ban, I., Avci, U.E., Shah, U., Barns, C.E., Kencke, D.L., Chang, P.: Floating body cell with independently-controlled double gates for high density memory. In: IEEE International Electron Devices Meeting, IEDM’06, pp. 1–4. (December 2006)
4.
Zurück zum Zitat Okhonin, S., Nagoga, M., Sallese, J.M., Fazan, P.: A SOI capacitor-less 1T-DRAM concept. In: IEEE International SOI Conference, pp. 153–154. (2001) Okhonin, S., Nagoga, M., Sallese, J.M., Fazan, P.: A SOI capacitor-less 1T-DRAM concept. In: IEEE International SOI Conference, pp. 153–154. (2001)
5.
Zurück zum Zitat Hubert, A., Bawedin, M., Cristoloveanu, S., Ernst, T.: Dimensional effects and scalability of meta-stable Dip (MSD) memory effect for 1T-DRAM SOI MOSFETs. Solid-State Electron. 53(12), 1280–1286 (2009)CrossRef Hubert, A., Bawedin, M., Cristoloveanu, S., Ernst, T.: Dimensional effects and scalability of meta-stable Dip (MSD) memory effect for 1T-DRAM SOI MOSFETs. Solid-State Electron. 53(12), 1280–1286 (2009)CrossRef
6.
Zurück zum Zitat Bawedin, M., Cristoloveanu, S., Hubert, A., Park, K.H., Martinez, F.: Floating-Body SOI memory: the scaling tournament. In: Semiconductor-On-Insulator Materials for Nanoelectronics Applications, pp. 393–421. Springer, Berlin Heidelberg (2011) Bawedin, M., Cristoloveanu, S., Hubert, A., Park, K.H., Martinez, F.: Floating-Body SOI memory: the scaling tournament. In: Semiconductor-On-Insulator Materials for Nanoelectronics Applications, pp. 393–421. Springer, Berlin Heidelberg (2011)
7.
Zurück zum Zitat Eminente, S., Cristoloveanu, S., Clerc, R., Ohata, A., Ghibaudo, G.: Ultra-thin fully-depleted SOI MOSFETs: special charge properties and coupling effects. Solid-State Electron. 51(2), 239–244 (2007)CrossRef Eminente, S., Cristoloveanu, S., Clerc, R., Ohata, A., Ghibaudo, G.: Ultra-thin fully-depleted SOI MOSFETs: special charge properties and coupling effects. Solid-State Electron. 51(2), 239–244 (2007)CrossRef
8.
Zurück zum Zitat Hurkx, G.A.M., De Graaff, H.C., Kloosterman, W.J., Knuvers, M.P.G.: A new analytical diode model including tunneling and avalanche breakdown. IEEE Trans. Electron Devices 39(9), 2090–2098 (1992)CrossRef Hurkx, G.A.M., De Graaff, H.C., Kloosterman, W.J., Knuvers, M.P.G.: A new analytical diode model including tunneling and avalanche breakdown. IEEE Trans. Electron Devices 39(9), 2090–2098 (1992)CrossRef
9.
Zurück zum Zitat Colinge, J.-P.: In: Silicon-on-Insulator Technology: Materials to VLSI. Kluwer Academic Publishers, Boston (2004) Colinge, J.-P.: In: Silicon-on-Insulator Technology: Materials to VLSI. Kluwer Academic Publishers, Boston (2004)
10.
Zurück zum Zitat Avci, U.E., Ban, I., Kencke, D.L., Chang, P.L.D.: Floating body cell (FBC) memory for 16-nm technology with low variation on thin silicon and 10-nm BOX. In: Proceedings IEEE International SOI Conference, pp. 29–30. (October 2008) Avci, U.E., Ban, I., Kencke, D.L., Chang, P.L.D.: Floating body cell (FBC) memory for 16-nm technology with low variation on thin silicon and 10-nm BOX. In: Proceedings IEEE International SOI Conference, pp. 29–30. (October 2008)
11.
Zurück zum Zitat Ertosun, M.G., Kapur, P., Saraswat, K.C.: A highly scalable capacitorless double gate quantum well single transistor DRAM: 1T-QW DRAM. IEEE Electron Device Lett. 29(12), 1405–1407 (2008)CrossRef Ertosun, M.G., Kapur, P., Saraswat, K.C.: A highly scalable capacitorless double gate quantum well single transistor DRAM: 1T-QW DRAM. IEEE Electron Device Lett. 29(12), 1405–1407 (2008)CrossRef
12.
Zurück zum Zitat Cho, M.H., Shin, C., Liu, T.J.K.: Convex channel design for improved capacitorless DRAM retention time. In: IEEE International Conference on Simulation of Semiconductor Processes and Devices, SISPAD’09, pp. 1–4. (September, 2009) Cho, M.H., Shin, C., Liu, T.J.K.: Convex channel design for improved capacitorless DRAM retention time. In: IEEE International Conference on Simulation of Semiconductor Processes and Devices, SISPAD’09, pp. 1–4. (September, 2009)
13.
Zurück zum Zitat Okhonin, S., Nagoga, M., Lee, C.-W., Colinge, J.P., Afzalian, A., Yan, R., Dehdashti Akhavan, N., Xiong, W., Sverdlov, V., Selberherr, S., Mazure, C.: Ultrascaled ZRAM cell. In: IEEE International SOI Conference, pp. 157-158 (2008) Okhonin, S., Nagoga, M., Lee, C.-W., Colinge, J.P., Afzalian, A., Yan, R., Dehdashti Akhavan, N., Xiong, W., Sverdlov, V., Selberherr, S., Mazure, C.: Ultrascaled ZRAM cell. In: IEEE International SOI Conference, pp. 157-158 (2008)
14.
Zurück zum Zitat Rodriguez, N., Gamiz, F., Cristoloveanu, S.: A-RAM memory cell: concept and operation. IEEE Electron Device Lett. 31(9), 972–974 (2010)CrossRef Rodriguez, N., Gamiz, F., Cristoloveanu, S.: A-RAM memory cell: concept and operation. IEEE Electron Device Lett. 31(9), 972–974 (2010)CrossRef
15.
Zurück zum Zitat Rodriguez, N., Cristoloveanu, S., Gamiz, F.: Capacitor-less A-RAM SOI memory: principles, scaling and expected performance. Solid-State Electron. 59(1), 44–49 (2011)CrossRef Rodriguez, N., Cristoloveanu, S., Gamiz, F.: Capacitor-less A-RAM SOI memory: principles, scaling and expected performance. Solid-State Electron. 59(1), 44–49 (2011)CrossRef
16.
Zurück zum Zitat Cristoloveanu, S.I., Rodriguez, N., Gamiz, F.: US Patent Application 13/264, 203 (2010) Cristoloveanu, S.I., Rodriguez, N., Gamiz, F.: US Patent Application 13/264, 203 (2010)
17.
Zurück zum Zitat Rodriguez, N., Cristoloveanu, S., Gamiz, F.: A-RAM: novel capacitor-less DRAM memory. In: IEEE International SOI Conference, pp. 1–2. (October 2009) Rodriguez, N., Cristoloveanu, S., Gamiz, F.: A-RAM: novel capacitor-less DRAM memory. In: IEEE International SOI Conference, pp. 1–2. (October 2009)
18.
Zurück zum Zitat Jurczak, M., Skotnicki, T., Paoli, M., Tormen, B., Martins, J., Regolini, J.L., Monfray, S.: Silicon-on-nothing (SON)-an innovative process for advanced CMOS. IEEE Trans. Electron Devices 47(11), 2179–2187 (2000)CrossRef Jurczak, M., Skotnicki, T., Paoli, M., Tormen, B., Martins, J., Regolini, J.L., Monfray, S.: Silicon-on-nothing (SON)-an innovative process for advanced CMOS. IEEE Trans. Electron Devices 47(11), 2179–2187 (2000)CrossRef
19.
Zurück zum Zitat Yoshida, E., Tanaka, T.: A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory. IEEE Trans. Electron Devices 53(4), 692–697 (2006)CrossRef Yoshida, E., Tanaka, T.: A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory. IEEE Trans. Electron Devices 53(4), 692–697 (2006)CrossRef
20.
Zurück zum Zitat Rodriguez, N., Cristoloveanu, S., Gamiz, F.: Novel capacitorless 1T-DRAM cell for 22-nm node compatible with bulk and SOI substrates. IEEE Trans. Electron Devices 58(8), 2371–2377 (2011)CrossRef Rodriguez, N., Cristoloveanu, S., Gamiz, F.: Novel capacitorless 1T-DRAM cell for 22-nm node compatible with bulk and SOI substrates. IEEE Trans. Electron Devices 58(8), 2371–2377 (2011)CrossRef
21.
Zurück zum Zitat ATHENA: User’s manual. Silvac, Santa Clara, CA (2013) ATHENA: User’s manual. Silvac, Santa Clara, CA (2013)
22.
Zurück zum Zitat Ranica, R., Villaret, A., Malinge, P., Mazoyer, P., Lenoble, D., Candelier, P., Skotnicki, T.: A one transistor cell on bulk substrate (1T-Bulk) for low-cost and high density eDRAM. In: IEEE Symposium on VLSI Technology, Digest of Technical Papers, pp. 128–129. (June 2004) Ranica, R., Villaret, A., Malinge, P., Mazoyer, P., Lenoble, D., Candelier, P., Skotnicki, T.: A one transistor cell on bulk substrate (1T-Bulk) for low-cost and high density eDRAM. In: IEEE Symposium on VLSI Technology, Digest of Technical Papers, pp. 128–129. (June 2004)
23.
Zurück zum Zitat Rodriguez, N., Navarro, C., Gamiz, F., Andrieu, F., Faynot, O., Cristoloveanu, S.: Experimental demonstration of capacitorless A2RAM cells on silicon-on-insulator. IEEE Electron Device Lett. 33(12), 1717–1719 (2012)CrossRef Rodriguez, N., Navarro, C., Gamiz, F., Andrieu, F., Faynot, O., Cristoloveanu, S.: Experimental demonstration of capacitorless A2RAM cells on silicon-on-insulator. IEEE Electron Device Lett. 33(12), 1717–1719 (2012)CrossRef
24.
Zurück zum Zitat Kim, S., Choi, S.J., Moon, D.I., Choi, Y.K.: Carrier lifetime engineering for floating-body cell memory. IEEE Trans. Electron Devices 59(2), 367–373 (2012)CrossRef Kim, S., Choi, S.J., Moon, D.I., Choi, Y.K.: Carrier lifetime engineering for floating-body cell memory. IEEE Trans. Electron Devices 59(2), 367–373 (2012)CrossRef
25.
Zurück zum Zitat Damaraju, S., George, V., Jahagirdar, S., Khondker, T., Milstrey, R., Sarkar, S., Subbiah, A.: A 22 nm IA multi-CPU and GPU system-on-chip. In: IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 56–57. (February 2012) Damaraju, S., George, V., Jahagirdar, S., Khondker, T., Milstrey, R., Sarkar, S., Subbiah, A.: A 22 nm IA multi-CPU and GPU system-on-chip. In: IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 56–57. (February 2012)
26.
Zurück zum Zitat Hurkx, G.A.M., Klaassen, D.B.M., Knuvers, M.P.G.: A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 39(2), 331–338 (1992)CrossRef Hurkx, G.A.M., Klaassen, D.B.M., Knuvers, M.P.G.: A new recombination model for device simulation including tunneling. IEEE Trans. Electron Devices 39(2), 331–338 (1992)CrossRef
27.
Zurück zum Zitat Song, K.W., Jeong, H., Lee, J.W., Hong, S.I., Tak, N.K., Kim, Y.T., Kim, C.: 55 nm capacitor-less 1T DRAM cell transistor with non-overlap structure. In: IEEE International Electron Devices Meeting (IEDM), pp. 1–4. (December 2008) Song, K.W., Jeong, H., Lee, J.W., Hong, S.I., Tak, N.K., Kim, Y.T., Kim, C.: 55 nm capacitor-less 1T DRAM cell transistor with non-overlap structure. In: IEEE International Electron Devices Meeting (IEDM), pp. 1–4. (December 2008)
Metadaten
Titel
Tri-Dimensional A2-RAM Cell: Entering the Third Dimension
verfasst von
Francisco Gámiz
Noel Rodriguez
Carlos Navarro
Carlos Marquez
Sorin Cristoloveanu
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-08804-4_6

Neuer Inhalt