Skip to main content
Erschienen in: Complex & Intelligent Systems 3/2020

Open Access 01.06.2020 | Original Article

Triangular interval type-2 fuzzy soft set and its application

verfasst von: M. Lathamaheswari, D. Nagarajan, J. Kavikumar, Said Broumi

Erschienen in: Complex & Intelligent Systems | Ausgabe 3/2020

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Decision-making is an essential task in Science and Engineering. Since most of the real-world problems have uncertainty in nature, making the decision is challengeable one for the decision makers. Soft set has the advantage of free from the deficiency of the parameterization tools of existing theories, namely probability, fuzzy theory and the theory of rough sets. Linguistic terms mean different things to different people, so variability in expert's acceptance degree is possible. Here usage of type-1 fuzzy leads to noisy and uncertain, and the parameters also may be noisy and hence type-2 fuzzy sets may be used to address the mentioned issues. Therefore, a triangular interval type-2 fuzzy soft set has been considered in the present work by combining triangular interval type-2 fuzzy set and soft set. In this paper, a triangular interval type-2 fuzzy soft weighted arithmetic operator (TIT2FSWA) has been proposed with its desired mathematical properties; also applied the proposed methodology in a decision-making problem for profit analysis. Further comparative analysis has been made with the existing methods to show the effectiveness of the proposed method.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Decision-making is a very important process for leadership and management. There are processes and techniques available for decision-making and improve the quality of the decision as well. This process involves numerous information, and the collected information need to be aggregated to find the desired result. Hence, aggregation operators are playing a vital role especially in the decision-making process. Triangular inequalities were protracted by the theoretical concept of triangular norms which are introduced from the scope of prospect metric [1]. To date, different operators have been used under different set environments. As the real-world problems contain uncertainty we need to use the concept of fuzzy and its extensions. Soft set theory is a general mathematical tool to handle with uncertainty of the real-world problems. Some of the operations on soft sets have been introduced and applied in various fields. The application of fuzzy soft set in decision-making problem has received more attention among the researchers. It has been applied in the field of engineering, economics and all the environmental areas as it deals with uncertainties successfully than other set environments by getting free from difficulties [16, 19].
Most of the objectives in real-time applications are communicated in linguistic terms, but a concise mathematical formula is not applicable in management decisions. If the objective of the decision is correctable, then the constraints of the decision may be flexible. Modeling decision-making process using soft set is more realistic and applied fruitfully to various problems. Representation of a soft set is described by the soft matrix and has many advantages in collecting the information and applying matrices. An algebraic structure of soft set theory has two types of soft sets like a soft set with a fixed set of parameters and with different sets of parameters with new operations, and this may be either similar or different [2027, 52]. Soft set theory normally solves the problem using rough and fuzzy soft sets. Many of the conventional techniques for explicit modeling, logic, and calculations are crisp, precise and acceptable. But the data obtained from real-world problems are not always crisp. Because of this situation, one faces uncertainty in the real problems. The available theories, namely the theory of FSs, IFSs, vague sets, interval mathematics, rough sets are playing as the mathematical tool to handle the uncertainties. But still, all of these theories have their complication due to the insufficient parameterization mechanism of the mentioned theories. Hence, Molodtsov introduced the notion of soft theory to clear the impreciseness which is exempted from these kinds of difficulties.
A fuzzy set is the principle idea of fuzzy logic. It contributes a lot in dealing with uncertainties by including some impreciseness corresponding to the membership functions. Fuzzy sets are also called type-1 fuzzy sets (T1FSs) [17]. General additional operations in the interval [0, 1] are t norms and t conorms called triangular norms ever-present in the theory and applications of Type-2 FS (T2FSs). Generalization of T1FS to interval-valued FSs (IVFSs) can be done by generalizing the triangular norms to interval-based cases [18]. Many of the real-time problems are described by the flexibility of the constraint. Particularly in the decision-making process, this kind of flexibility could accompany workable solutions, where the aim and conditions identified by various parties convoluted in the decision-making are determined to one another and delighted to different degrees. This kind of soft constraints can be modeled by fuzzy sets.
Fuzzy set theory contributes to a methodology of representing and handling flexible or soft constraints. In many cases, there is imperfect knowledge of the data and hence, uncertainties should be taken care of in many dimensions and kinds. Choosing membership functions of linguistic terms is the essential one for dealing with uncertainty [5]. In T1FSs, the membership grade of the element is taken from the unit interval [0, 1] and is crisp. T2FSs are generally used for modeling imprecision and uncertainty in an enhanced way with the membership value itself is fuzzy. It is characterized by upper and lower membership functions. The interval between these membership functions represents the footprint of uncertainty, which is used to define the uncertainty level. In T2FSs, two membership functions (MFs) are available, namely primary and secondary membership functions. For all the values of the primary variable x on the universal set X, the function has membership rather than a characteristic value. Secondary membership function provides three-dimensional T2FS, where the third dimension produces a certain degree of freedom to deal with uncertainties. Also, this set can provide more parameters, so that more uncertainties can be handled [8, 9, 11, 42, 67, 68].
The generalized type-2 fuzzy set has more computational complexity for defuzzification and hence, it is necessary to use interval type-2 fuzzy sets. Interval type-2 fuzzy sets have been used in traffic control management, image processing, image extraction, control system, and pattern recognition. At the beginning stage of fuzzy sets, the analysis was made regarding the fact that the membership function of a conventional fuzzy set has no ambiguity connected with it which contradicts the word fuzzy though it implies lots of uncertainty. Hierarchical type-2 fuzzy logic control design has been proposed for autonomous mobile robots that express the efficiency of type-2 fuzzy sets than type-2 fuzzy sets. Due to the computational complexity of general type-2 fuzzy sets, interval type-2 fuzzy sets have been used. All of the results that are needed to implement an interval type-2 fuzzy set can be obtained using type-2 fuzzy mathematics. All of the results that are required to implement an interval type-2 fuzzy logic system can be acquired using type-1 fuzzy set. An interval type-2 fuzzy system has the benefit of direct and indirect approaches. In the direct method, rules are developed through the extraction of knowledge and in the latter case, through historical data. From this concept, it is concluded that interval type-2 fuzzy set is a hybrid approach of these two approaches.
A system with type-2 fuzzy sets allows modeling the uncertainties between the rules and parameters related to data analysis [23, 24, 43]. The concept of interval-valued fuzzy soft set or interval type-2 fuzzy soft set is the combination of interval type-2 fuzzy sets and soft set [25]. Generally, real-world problems are described by huge levels of numerical and linguistic uncertainties. Since the type-1 fuzzy system cannot handle these huge levels of uncertainties completely available in real-world applications, the type-2 fuzzy set has been used to overcome this issue and getting successful results [26].
Many aggregation operators have been introduced for aggregating the information so far. Different types of uncertainties are represented and solved by various methods. In the decision-making process, information is collected from several experts by preparing a survey using linguistic terms where uncertainty naturally exists as different words mean different things. This can be solved by T2 fuzziness, where the FSs have degrees of membership that themselves fuzzy rather than type-1 fuzzy sets [21, 58, 62].
If there are multiple numbers of inputs, then they can be accumulated into interval type-2 input MFs using the methodologies [31, 39]. T2FS is an expansion of T1FSs. The mathematical functions which are applied to combine the information are called aggregation operators. They play a vital aspect in the field of computational intelligence due to their capacity for combining pieces of linguistic information. Fuzzy logic is an engineering mechanism and is explained in a broad sense and is a multi-valued function [33, 34]. Some of the well-known fuzzy numbers are triangular, trapezoidal, right and left shoulder and piecewise linear functions. Fuzzy logic contributes to compositional calculation of degrees of truth. The set operations namely union, intersection, complement, and implication are working on the case of fuzzy using t-norm and t-conorm [15, 38, 41, 47, 49].
Decision-making process using fuzzy logic is a red-hot area for the research community. It contains the method of choosing the best alternatives from possible alternatives in consideration of many attributes, where the information of the decision is generally with fuzziness is contributed by several experts in the fuzzy setting. Recently, many methods have been established for decision-making problem. Fuzzy soft games for two persons and the work has been extended to n-persons. Also probabilistic equilibrium solution has been provided [44, 57]. The aggregation operators under interval type-2 fuzzy environment are based on the theorem of alpha cut decomposition and derived from the fuzzy extension principle; whereas, the operators under other fuzzy settings are derived by triangular norms. Further decision-making problem has been solved under interval-valued fuzzy soft sets based on the concept of level soft sets. Robust aggregation operators have been proposed with their mathematical properties under an intuitionistic fuzzy soft set environment and applied in decision-making problem.
Uncertainty of the real world with its related problems can be dealt with well using soft set theory [29, 40, 61]. Since there is an increasing difficulty in the real-world environment and the inadequate data of the problem, decision-makers may give their preferences about alternatives in the form of interval-valued fuzzy numbers. Matrices are playing a crucial role in the wide area of engineering and science [35, 37]. The conventional theory of matrices could not solve the problems which contain impreciseness. The matrix portrayal of the fuzzy soft set employed in decision-making problem [30, 50, 56, 60].
Fuzzy soft sets on strong pre-continuity have been introduced in later decay. Some of the comments have been made on interval-valued hesitant fuzzy soft sets and generalized trapezoidal fuzzy soft sets in medical diagnosis. Patients’ prioritization has been analyzed under a fuzzy soft environment. New aggregations operators are applied in the decision making problem under triangular interval type-2 fuzzy soft set environment. Also, bipolar FPSS-theory has been introduced and applied in a decision-making problem. Theoretical concepts like convex and concave sets based on fuzzy set and fuzzy soft set environments [6979]. In type-1 fuzzy logic systems, uncertainty may exist due to the following reasons: words are foul-mouthed different things to different people, knowledge may be drawn out from a group of experts who do not agree cooperatively, measurements may be uncertain, and noisy tuning parameters. Hence, fuzzy set membership functions are uncertain. Conventional fuzzy sets, where membership functions are crisp, cannot deal with such uncertainties precisely.
Type-2 fuzzy sets are the sets whose membership functions are fuzzy and take values from the real unit interval [0, 1]. It enhances the inference better than conventional fuzzy with increasing uncertainty, imprecision, and obscurity of information and, hence, acquiring more popularity. In many of the real-time applications, evaluation of parameters is uncertain due to the usage of linguistic terms and represented by fuzzy sets instead of exact numerical values, interval numbers, and fuzzy numbers under intuitionistic and interval-valued intuitionistic environment. Also, it is very difficult for the conventional soft set and its extensions to deal with the above issue and hence, it is mandatory that soft set theory entertains the situation in which the evaluation of parameters is fuzzy. As a type-2 fuzzy set can be applied directly to express the fuzziness for the same, we used a triangular interval type-2 fuzzy soft set in this paper.
The rest of the paper is organized as follows. In section “Literature review”, a literature review is presented related to the proposed work. In section “Basic concepts”, some of the basic concepts are given for a better understanding of the work. In section “Proposed methodology”, a new aggregation operator called a triangular interval type-2 fuzzy soft weighted arithmetic operator is proposed with its desired properties. In Sect. Proposed algorithm, a new algorithm is proposed based on the proposed aggregation operator and profit analysis has been examined using the proposed algorithm. In section “Comparative analysis”, comparative analysis has been made with the existing methods to show the potential of the proposed algorithm. In section Conclusion”, a conclusion is given with the future direction.

Literature review

Gupta and Qi [1] introduced the theory of t-norms and fuzzy inference methods. John [2] examined the theory type-2 fuzzy sets and their applications. Karthik and Mendel [3] proposed the operations of type-2 fuzzy sets. Maji et al. [4] introduced a soft set theory. Garibaldi and John [5] introduced the way of choosing membership functions of linguistic terms. Hagras [6] proposed the architecture of a hierarchical type-2 fuzzy logic and applied for autonomous mobile robots. Mendel et al. [7] explained how an interval type-2 fuzzy logic system is made simple. Castillo et al. [8] introduced the theory and applications of type-2 fuzzy logic. Castillo and Melin [9] introduced the interval type-2 fuzzy logic intelligent system.
Coupland and John [10] introduced a fast geometric method for defuzzification under the type-2 fuzzy environment. Zarandi et al. [11] analyzed stock price using the model of type-2 rule-based expert system. Mendel [12] explained the way of how to learn type-2 fuzzy sets and systems. Yang et al. [13] introduced interval-valued fuzzy soft set. Ahmad and Kharal [14] proposed the concepts of fuzzy soft sets. Rickard et al. [15] proposed type-2 fuzzy trust aggregation. Feng et al. [16] applied interval-valued fuzzy soft sets in a decision-making process. Chetia and Das [17] dealt with medical diagnosis using interval-valued fuzzy soft sets. Cagman and Enginoglu [18] applied the theory of soft matrix in decision-making. Min [19] summarized soft topological spaces. Ali et al. [20] proposed the structure of the soft set and its operations. Qin et al. [21] introduced an adjustable approach and applied in a decision-making process under interval-valued intuitionistic fuzzy soft environment. Alkhazaleh et al. [22] introduced a parameterized interval-valued fuzzy soft set.
Zarandi et al. [23] proposed the hybrid approach for developing an interval type-2 fuzzy logic system. Zarandi et al. [24] predicted for carbon monoxide concentration in mega-cities using an interval type-2 fuzzy expert system. Min [25] proposed the concept of similarity in soft set theory. Hagras and Wagner [26] analyzed the widespread of the type-2 fuzzy logic system in real-time applications. Zhang and Zhang [27] solved a decision-making problem using the type-2 fuzzy soft set. Borah et al. [28] examined some of the operations of fuzzy soft sets. Rajarajeswari and Dhanalakshmi [29] applied a similarity measure of fuzzy soft set based on distance in a decision-making problem. Basu et al. [30] determined the best alternative using various types of fuzzy soft set matrices. Wang et al. [31] proposed interval-valued intuitionistic fuzzy aggregation operators. Zhang and Zhang [32] applied a type-2 fuzzy soft set in a decision-making problem. Wang and Liu [27] proposed intuitionistic fuzzy aggregation operators using Einstein operations.
Cagman and Deli [33] introduced products of FP-soft sets and applied in a decision-making problem and the same authors [34] proposed means of FP-soft sets and applied in a decision-making problem. Hernandez et al. [35] analyzed the role of t-norms on type-2 fuzzy sets. Bobillo and Straccia [36] introduced aggregation operators for fuzzy ontologies. Mondal and Roy [37] projected the theory of fuzzy soft matrix and its application in a decision-making process. Xie et al. [38] applied the concept of fuzzy soft sets in medical diagnosis for gray relational analysis. Muthumeenakshi and Muralikrishna [39] examined SFPM analysis using a fuzzy soft set. Liang et al. [40] proposed new aggregation operators under triangular intuitionistic fuzzy numbers and applied in a decision-making problem. Qin et al. [41] proposed novel aggregation operators for triangular interval type-2 fuzzy set using Frank triangular norms. Rajarajeswari and Dhanalakshmi [42] introduced theoretical concepts of interval-valued intuitionistic fuzzy soft matrix. Chen et al. [43] analyzed dynamic decision-making using interval-valued triangular fuzzy soft set. Castillo et al. [44] commented on interval type-2 fuzzy sets and intuitionistic fuzzy sets. Sola et al. [45] described the relationship between interval type-2 fuzzy sets and generalization of interval-valued fuzzy sets. Alcantud [46] introduced a novel alternative approach and applied in a decision-making problem. Tripathy and Sooraj [47] solved a decision-making problem using interval-valued fuzzy soft sets. Sellappan et al. [48] evaluated the risk priority number in design failure mode and examined the effects using factor analysis. Hernandez et al. [49] proposed the model of type-2 fuzzy sets. Deli and Cagman [50] introduced two person fuzzy soft games and extended to n-person fuzzy soft games. Deli and Cagman [51] contributed a probabilistic equilibrium solution of soft games. Bajestani et al. [52] analyzed the role of interval type-2 fuzzy regression model with crisp inputs and type-2 fuzzy outputs for TAIEX forecasting. Sudharsan and Ezhilmaran [53] proposed a new aggregation operator for interval-valued intuitionistic fuzzy numbers and applied in a decision-making problem. Shenbagavalli et al. [54] determined attribute weights for fuzzy soft set and applied in a decision-making problem. Selvachandran and Sallah [55] introduced interval-valued complex fuzzy soft sets. Senthilkumar [56] solved a decision-making problem using a weighted fuzzy soft matrix. Nagarajan et al. [57] proposed the methodology for image extraction for the DICOM image using the type-2 fuzzy set. Anusuya and Nisha [58] introduced a type-2 fuzzy soft set with distance measure. Lathamaheswari et al. [59] made a review of applications of type-2 fuzzy logic in the field of biomedicine. Dinagar and Rajesh [60] introduced a new approach on the aggregation of interval-valued fuzzy soft matrix and applied in a multi-criteria decision-making problem. Qin et al. [61] proposed a new method for a decision-making problem under interval-valued intuitionistic fuzzy environment. Lathamaheswari et al. [62] made a review of applications of the type-2 fuzzy controller. Nagarajan et al. [63] applied the concept of type-2 fuzzy in image edge detection. Selvachandran and Singh [64] proposed the theoretical concepts of interval-valued complex fuzzy soft set and applied in a real-time application. Mahmooda et al. [65] introduced lattice ordered intuitionistic fuzzy soft sets. Arora and Garg [66] proposed robust aggregation operators for multi-criteria decision-making problem. Alcantud and Torrecillas [67] introduced the intertemporal choice of fuzzy soft sets. Smarandache [68] introduced extended versions of the soft set. Nagarajan et al. [69] analyzed traffic control management using interval type-2 fuzzy sets and interval neutrosophic sets. Nagarajan et al. [70] examined the stability of an intelligent system using a type-2 fuzzy controller. Shi and Fan [71] introduced fuzzy soft sets as L-fuzzy sets. Hassan and Al-Qudah [72] proposed fuzzy parameterized complex multi-fuzzy soft sets. Cakalli et al. [73] defined strong pre-continuity with fuzzy soft sets. Khali et al. [74] appraised interval-valued hesitant fuzzy soft sets and generalized trapezoidal fuzzy soft sets. Khan and Zhu [75] introduced a new methodology for parameter reduction of fuzzy soft set. Deli and Karaaslan [76] proposed bipolar FPSS-theory and applied in a decision-making problem. Deli [77] introduced convex and concave sets under soft sets and fuzzy soft sets environments. Nagarajan et al. [78] proposed a new aggregation operator using Frank triangular norms for interval-valued triangular fuzzy soft numbers and applied in a decision-making problem. Rahimi [79] applied a fuzzy soft set in patients’ prioritization.
From this literature review, to the best of our knowledge, there is no contribution of research for profit analysis in decision-making process using triangular interval type-2 fuzzy soft numbers under triangular interval type-2 fuzzy soft environment. Also, this is the first study to apply the decision-making process for analyzing profit using triangular interval type-2 fuzzy soft numbers.

Basic concepts

In this section, some of the basic concepts are presented for the better understanding of the work.
Definition 3.1 [39]
Let \( (M_{\alpha } )_{\alpha \in [0,1]} \) be a group of aggregation operators (AOs) which is non-decreasing. If A is an AO, then
$$ M_{\text{A}} :\bigcup\limits_{n \in N} {[0,\;1]^{n} } \to [0,\;1]. $$
Definition 3.2 [53]
Let \( \overline{M} \) be the triangular interval type-2 fuzzy set and is defined in Fig. 1.
The membership functions (MFs) are developed using the triangular fuzzy number in interval type-2 fuzzy set which is called TIT2FS. In IT2FS, upper and lower membership functions are represented by a triangular fuzzy number \( \overline{M} = \left\langle {\left[ {\underline{{l_{\text{M}} }} ,\;\overline{{l_{\text{M}} }} } \right],\;c_{M} ,\;\left[ {\underline{{r_{\text{M}} }} ,\overline{{r_{\text{M}} }} } \right]} \right\rangle \), and are defined by
$$ \begin{aligned} {\text{LMF}}_{{\overline{M} }} (x) = \left\{ {\begin{array}{*{20}l} {\frac{{x - \overline{{l_{M} }} }}{{c_{M} - \overline{{l_{M} }} }},} & {} & {\overline{{\quad l_{M} }} \le x < c_{M} } \\ {1,} & {} & {\quad x = c_{M} } \\ {\frac{{x - \underline{{r_{M} }} }}{{c_{M} - \underline{{r_{M} }} }},} & {} & {\quad c_{M} \le x < \underline{{r_{M} }} } \\ {0,} & {} & {\quad {\text{otherwise,}}} \\ \end{array} } \right. \hfill \\ \hfill \\ \end{aligned} $$
(1)
$$ {\text{UMF}}_{{\overline{M} }} (x) = \left\{ {\begin{array}{*{20}l} {\frac{{x - \underline{{l_{M} }} }}{{c_{M} - \underline{{l_{M} }} }},} & {} & {\underline{{l_{M} }} \le x < c_{M} } \\ {1,} & {} & {x = c_{M} } \\ {\frac{{x - \overline{{r_{M} }} }}{{c_{M} - \overline{{r_{M} }} }},} & {} & {c_{M} \le x < \overline{{r_{M} }} } \\ {0,} & {} & {\text{otherwise,}} \\ \end{array} } \right. $$
(2)
where \( \underline{{l_{M} }} ,\;\overline{{l_{M} }} ,\;c_{M} ,\;\underline{{r_{M} }} ,\;\overline{{r_{M} }} \) are the reference points on TIT2FS satisfying the condition \( 0 \le \underline{{l_{M} }} \le \overline{{l_{M} }} \le c_{M} \le \underline{{r_{M} }} \le \overline{{r_{M} }} \le 1 \). If we consider X as a set of real numbers, a TIT2FS in X is called TIT2FN. The FOU is the area between lower and upper membership functions in Fig. 1. If \( \,\underline{{l_{M} }} = \overline{{l_{M} }} ,\;\underline{{r_{M} }} = \overline{{r_{M} }} \), then \( {\text{UMF}}_{{\overline{M} }} (x) \) = \( {\text{LMF}}_{{\overline{M} }} (x) \) for all the values of \( x \) in \( X \), then the TIT2FS will become Type-1 case. Here, FOU is the footprint of Uncertainty.
Definition 3.3 [4]
Let \( \overline{M} = \left\langle {[\underline{{l_{M} }} ,\overline{{l_{M} }} ],c_{M} ,[\underline{{r_{M} }} ,\overline{{r_{M} }} ]\,} \right\rangle \) be a triangular interval type-2 fuzzy number (TIT2FN) in Fig. 1. The score function for TIT2FN is defined as follows:
$$ {\text{SF}}\left( {\overline{M} } \right) = \left( {\frac{{\underline{{l_{M} }} + \overline{{r_{M} }} }}{2} + 1 \times } \right)\frac{{\underline{{l_{M} }} + \overline{{l_{M} }} + \underline{{r_{M} }} + \overline{{r_{M} }} + 4c_{M} }}{8}. $$
(3)
Definition 3.4 [39]
Let \( P_{i} = \left\langle {\left[ {l_{{P_{i} }}^{ - } ,l_{{P_{i} }}^{ + } } \right],\;\;m_{{P_{i} }} ,\;\;\left[ {r_{{P_{i} }}^{ - } ,r_{{P_{i} }}^{ + } } \right]} \right\rangle ,\;\;i = 1,2,3, \ldots ,n \) be a set of triangular interval type-2 fuzzy soft numbers (TIT2FSNs) and if \( {\text{TIT}}2{\text{FSWA:}}\;\;\varOmega^{n} \to \varOmega \), then triangular interval type-2 fuzzy soft weighted arithmetic (TIT2FSWA) operator and triangular interval type-2 fuzzy soft weighted geometric (TIT2FSWG) operator are defined by
$$ {\text{TIT}}2{\text{FSWA}}_{\xi } \left( {P_{1} ,P_{2} , \ldots ,P_{n} } \right) = \xi_{1} \cdot P_{1} \oplus \xi_{2} \cdot P_{2} \oplus \cdots \oplus \xi_{n} \cdot P_{n} \quad \left( {{\text{TIT}}2{\text{FSWA}}} \right), $$
(4)
$$ {\text{TIT}}2{\text{FSWG}}_{\xi } \;\left( {P_{1} ,P_{2} , \ldots ,P_{n} } \right) = P_{1}^{{\xi_{1} }} \otimes P_{2}^{{\xi_{2} }} \otimes \cdots \otimes P_{n}^{{\xi_{n} }} \quad \left( {{\text{TIT}}2{\text{FSWG}}} \right), $$
(5)
where \( \xi = \left( {\xi_{1} ,\;\xi_{2} , \ldots ,\;\zeta_{n} } \right)^{\text{T}} \) is the weight vector and \( \xi_{i} \ge 0 \). If \( \xi = \left( {1/n,\;1/n, \ldots ,1/n} \right)^{\text{T}} \), then TIT2FSWA and TIT2FSWG operators become triangular interval type-2 fuzzy soft averaging operators.
Definition 3.5 [41]
Let \( U \) be the universe of discourse, \( \wp (U) \) be the power set of \( U \) and \( P \) a set of attributes. Then the pair \( (F,\;U) \), where \( F:P \to \wp (U) \) is called a soft set over \( U \). In other words, a soft set over \( U \) is a parameterized family of subsets of the universe. For \( \varepsilon \in P \), \( F(\varepsilon ) \) is regarded as the set of \( \varepsilon \)-approximate elements of the soft set \( (F,\;U) \).
Definition 3.6 [41]
Let \( U \) be the universe of discourse, \( \wp (U) \) be the power set of \( U \) and \( P \) a set of attributes. Then the pair \( (F,\;U) \), where \( F:P \to \wp (U) \) is called a soft set over \( U \). A triangular-valued fuzzy soft set is a parameterized family of triangular-valued fuzzy soft of \( U \) and therefore its inverse is the set of all triangular-valued fuzzy sets of \( U \) i.e., \( \wp (U) \). Hence triangular-valued fuzzy soft set is a special case of a fuzzy soft set.
Let \( A \subseteq E \), then \( (F,\;A) \) is a triangular interval type-2 fuzzy soft set of \( U \), where \( F \) is a mapping given by \( F:A \to {\text{TIT}}2{\text{FS(}}U ) \). Here, \( {\text{TIT}}2{\text{FS}}(U) \) is the set of all triangular interval type-2 fuzzy sets of \( U \) and the membership degree that object \( x \) holds parameter \( e \), where \( x \in U \) and \( e \in A \), then \( F(e) = \left\{ {\left\langle {x,\left[ {\mu_{F(e)}^{ - } (x),\;\mu_{F(e)}^{ + } (x)} \right]} \right\rangle /x \in U} \right\} \). And for the triangular interval type-2 fuzzy soft set, \( F(e) = \left\{ {\left\langle {x,s_{F(e)} (x)} \right\rangle /x \in U} \right\} \), where \( s_{F(e)} (x) \) is the triangular interval type-2 fuzzy number of \( x \) in \( F(e) \).
Definition 3.7 [41]
If
$$ s = \left\{ {\begin{array}{*{20}c} {\left( {a^{ - } ,b,c^{ - } } \right)} \\ {\left( {a^{ + } ,b,c^{ + } } \right)} \\ \end{array} } \right.,\quad 0 \le a^{ - } \le a^{ + } \le b \le c^{ - } \le c^{ + } , $$
then \( s \) is called triangular interval type-2 fuzzy number.
Suppose \( s = \left[ {(a^{ - } ,\;a^{ + } );\;b;\;(c^{ - } ,\;c^{ + } )} \right] \) and \( t = [(k^{ - } ,\;k^{ + } );\;l;\;(m^{ - } ,\;m^{ + } )] \) are the triangular interval type-2 fuzzy numbers, then
$$ \begin{aligned} s \cap t & = \left[ \hbox{min} (a^{ - } ,\;k^{ - } ),\;\;\hbox{min} (a^{ + } ,\;k^{ + } );\;\;\hbox{min} (b,\;l); \right.\\ &\quad \left.\hbox{min} (c^{ - } ,\;m^{ - } ),\;\;\hbox{min} (c^{ + } ,\;m^{ + } ) \right], \end{aligned} $$
(6)
$$ \begin{aligned} s \cup t & = \left[ \hbox{max} (a^{ - } ,\;k^{ - } ),\;\;\hbox{max} (a^{ + } ,\;k^{ + } );\;\;\hbox{max} (b,\;l); \right. \\ &\quad \left. \hbox{max} (c^{ - } ,\;m^{ - } ),\;\;\hbox{max} (c^{ + } ,\;m^{ + } ) \right], \end{aligned} $$
(7)
$$ \begin{aligned} r\,s & = \left[ \left( {1 - (1 - a^{ - } )^{r} , \;\; 1 - (1 - a^{ + } )^{r} } \right); \;\; 1 - (1 - b)^{r} ; \right. \\ &\quad \left. \left( {1 - (1 - c^{ - } )^{r} ,\;\;1 - (1 - c^{ + } )^{r} } \right) \right],\quad r > 0, \end{aligned} $$
(8)
And the complementary set of \( t \) is defined as
$$ t^{c} = \left[ {\left( {1 - m^{ + } ,\;1 - m^{ - } } \right);\;1 - l;\;\left( {1 - k^{ + } ,\;1 - k^{ - } } \right)} \right]. $$
(9)

Proposed methodology

In this section, a new aggregation operator namely triangular interval type-2 fuzzy soft weighted arithmetic (TIT2FSWA) operator is proposed with their desired mathematical properties in detail.
Definition 4.1
(Aggregation Operators for Triangular Interval Type-2 Fuzzy Soft Numbers (TIT2FSNs))
Let \( P_{{k_{ij} }} = \left\langle {\left( {r_{ij}^{ - } ,\;r_{ij}^{ + } } \right),\;s_{ij} ,\;\left( {t_{ij}^{ - } ,\;t_{ij}^{ + } } \right)} \right\rangle ,\;\;i = 1,2, \ldots ,n\,{\text{and}}\,j = 1,2, \ldots ,m \) be the TIT2FSNs and \( \chi_{j} ,\,\,\xi_{i} \) be the weight vectors of the parameters \( k_{j} \)’s and experts \( x_{i} \), respectively, then \( {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right) = \mathop \oplus \nolimits_{j = 1}^{m} \chi_{j} \left( {\mathop \oplus \nolimits_{i = 1}^{n} \xi_{i} F_{{k_{ij} }} } \right) \) and satisfying the following conditions: \( \sum\nolimits_{j = 1}^{m} {\chi_{j} = 1} \) and \( \sum\nolimits_{i = 1}^{n} {\xi_{i} = 1} \), \( \chi_{j} > 0,\;\xi_{i} > 0 \).
We used the notations for \( \prod\nolimits_{j} { = \wp_{j} } \) and \( \prod\nolimits_{i} { = {\mathbb{P}}_{i} } \) throughout the paper.
Theorem 4.2
Let \( P_{{k_{ij} }} = \left\langle {\left( {r_{ij}^{ - } ,r_{ij}^{ + } } \right),\;s_{ij} ,\left( {t_{ij}^{ - } ,t_{ij}^{ + } } \right)} \right\rangle , \) \( i = 1,2, \ldots ,n\,\,{\text{and}}\,\,j = 1,2, \ldots ,m \) be the set of TIT2FSNs, the aggregated value using TIT2FSWA operator is also TIT2FSN and is given by
$$ \begin{aligned} & {\text{TIT}}2{\text{FSWA}}\left( {P_{{e_{11} }} ,\;P_{{e_{12} }} , \ldots ,P_{{e_{nm} }} } \right) \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \left( {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - k_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right),\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - k_{ij}^{ + } } \right)^{{^{{\xi_{i} }} }} } \right)^{{\chi_{j} }} } \right)} \right)} \right]} \right., \\ &\qquad\quad 1 - \wp_{j} \left( {\left( {{{\mathbb{P}}}_{i} \left( {1 - b_{ij} } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right), \hfill \\ &\qquad \left. {\left. {\left( {1 - \left( {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - c_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right),1 - \left( {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - c_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right)} \right]} \right\rangle . \hfill \\ \end{aligned} $$
(10)
Proof
For \( n = 1,\xi_{1} = 1 \):
Using the operational law,
$$ \begin{aligned} c \cdot P & = \left\langle \left[ {1 - (1 - r^{ - } )^{c} ,1 - (1 - r^{ + } )^{c} } \right],1 - (1 - s)^{c} , \right. \\ &\quad \left. \left[ {1 - (1 - t^{ - } )^{c} ,1 - (1 - t^{ + } )^{c} } \right] \right\rangle , \end{aligned} $$
$$ \begin{aligned} & {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{1m} }} } \right) \hfill \\ &\quad = \mathop \oplus \limits_{j = 1}^{m} \chi_{j} P_{{k_{1j} }} \hfill \\ & \quad = \left\langle \left[ \left( {1 - \left( {\wp_{j} \left( {1 - r_{1j}^{ - } } \right)^{{\chi_{j} }} } \right), 1 - \left( {\wp_{j} \left( {1 - r_{1j}^{ + } } \right)^{{\chi_{j} }} } \right)} \right) \right], \right.\\ &\qquad \left. 1 - \left( {\wp_{j} \left( {1 - s_{1j} } \right)^{{\chi_{j} }} } \right), \right.\\ &\qquad \left. \left. \left( 1 - \left( {\wp_{j} \left( {1 - t_{1j}^{ - } } \right)^{{\chi_{j} }} } \right),1 - \left( {\wp_{j} \left( {1 - t_{1j}^{ + } } \right)^{{\chi_{j} }} } \right) \right)\right] \right\rangle . \hfill \\ \end{aligned} $$
For \( m = 1,\;\xi_{1} = 1 \)
$$ \begin{aligned} & {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{21} }} , \ldots ,P_{{k_{n1} }} } \right) = \mathop \oplus \limits_{i = 1}^{n} \xi_{i} P_{{k_{i1} }} \hfill \\ &\quad = \left\langle \left[ {\left( {1 - \left( {\wp_{i} \left( {1 - r_{i1}^{ - } } \right)^{{_{{\xi_{i} }} }} } \right),1 - \left( {\wp_{i} \left( {1 - r_{i1}^{ + } } \right)^{{_{{\xi_{i} }} }} } \right)} \right)} \right] , \right. \hfill \\ &\qquad \left. 1 - \left( {\wp_{i} \left( {1 - s_{i1} } \right)^{{\xi_{i} }} } \right), \left( 1 - \left( {\wp_{i} \left( {1 - t_{i1}^{ - } } \right)^{{\xi_{i} }} } \right), \right. \right. \\ &\qquad \left.\left. \left.1 - \left( {\wp_{j} \left( {1 - t_{i1}^{ + } } \right)^{{\xi_{i} }} } \right) \right)\right] \right\rangle . \hfill \\ \end{aligned} $$
Hence, the result is true for \( n = 1,\;m = 1 \).
Consider the result is true for \( m = q_{1} + 1,\;n = q_{2} \) and \( m = q_{1} ,\;n = q_{2} + 1 \)
Now,
$$ \begin{aligned} & \mathop \oplus \limits_{j = 1}^{{q_{1} + 1}} \chi_{j} \left( {\mathop \oplus \limits_{i = 1}^{{q_{2} }} \xi_{i} P_{{k_{ij} }} } \right) \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right),\;\left( {1 - \wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} \right.,\\ &\quad \left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - b_{ij} } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right), \hfill \\ &\quad \left. {\left. {\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right),\;\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} \right\rangle . \hfill \\ \end{aligned} $$
And
$$ \begin{aligned} & \mathop \oplus \limits_{j = 1}^{{q_{1} }} \chi_{j} \left( {\mathop \oplus \limits_{i = 1}^{{q_{2} + 1}} \xi_{i} P_{{k_{ij} }} } \right) \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right),\;\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} \right., \\ &\quad \left. { {\left[ {\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right),\,\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} } \right\rangle . \hfill \\ \end{aligned} $$
Therefore, it holds for \( m = q_{1} + 1,\;n = q_{2} + 1 \).
Hence by method of induction, the result is true for all the values of \( m,\;n \ge 1 \). Since, \( 0 \le r_{ij}^{ - } \le 1 \),
$$ \begin{aligned} \Leftrightarrow 0 \le {{\mathbb{P}}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} \le 1 \Leftrightarrow 0 \le \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\psi_{j} }} \le 1, \hfill \\ \Leftrightarrow 0 \le \left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right) \le 1. \hfill \\ \end{aligned} $$
Similarly,
$$ \begin{aligned} 0 \le \left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right) \le 1, \hfill \\ 0 \le \left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - s_{ij} } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right) \le 1, \hfill \\ 0 \le \left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right) \le 1, \hfill \\ 0 \le \left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right) \le 1. \hfill \\ \end{aligned} $$
For \( m = 1 \),
$$ \begin{aligned} & {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,\;P_{{k_{21} }} , \ldots ,P_{{k_{n1} }} } \right) \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - {\mathbb{P}}_{i} \left( {1 - r_{i1}^{ - } } \right)^{{\xi_{i} }} } \right),\;\left( {1 - {\mathbb{P}}_{i} \left( {1 - r_{i1}^{ + } } \right)^{{\xi_{i} }} } \right)} \right]} \right.,\\ &\quad \left( {1 - {\mathbb{P}}_{i} \left( {1 - b_{i1} } \right)^{{\xi_{i} }} } \right), \hfill \\ &\quad \left. {\left. {\left( {1 - {\mathbb{P}}_{i} \left( {1 - t_{i1}^{ - } } \right)^{{\xi_{i} }} } \right),\;\left( {1 - {\mathbb{P}}_{i} \left( {1 - t_{i1}^{ + } } \right)^{{\xi_{i} }} } \right)} \right]} \right\rangle . \hfill \\ \end{aligned} $$
\( \Rightarrow \) the aggregation operator defined under TIT2FS environment is considered as a special case of the proposed operator.
Theorem 4.3
If \( P_{{k_{ij} }} = P_{k} = \left\langle {\left( {r_{{}}^{ - } ,r_{{}}^{ + } } \right),s,\left( {t_{{}}^{ - } ,t_{{}}^{ + } } \right)} \right\rangle ,\;i = 1,2, \ldots ,n\,\,{\text{and}}\,\,j = 1,2, \ldots ,m \), then
$$ {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right) = P_{k} . $$
(11)
Proof
Since all \( P_{{k_{ij} }} = P_{k} = \left\langle {\left( {r_{{}}^{ - } ,r_{{}}^{ + } } \right),s,\left( {t_{{}}^{ - } ,t_{{}}^{ + } } \right)} \right\rangle , \)
$$ \begin{aligned} & {\text{TIT2FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right) \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \left( {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - k_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right),\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - k_{ij}^{ + } } \right)^{{^{{\xi_{i} }} }} } \right)^{{\chi_{j} }} } \right)} \right)} \right]} \right.,\\ &\quad 1 - \wp_{j} \left( {\left( {{\mathbb{P}}_{i} \left( {1 - b_{ij} } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right), \hfill \\ &\quad \left. {\left[ {1 - \left( {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - c_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right),1 - \left( {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - c_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} \right\rangle \hfill \\ &\quad = \left\langle {\left[ {1 - \left( { \left( {\left( {1 - r_{ij}^{ - } } \right)^{{\sum\limits_{i = 1}^{n} {\xi_{i} } }} } \right)^{{\sum\limits_{i = 1}^{n} {\chi_{j} } }} } \right),1 - \left( { \left( {\left( {1 - r_{ij}^{ + } } \right)^{{\sum\limits_{i = 1}^{n} {\xi_{i} } }} } \right)^{{\sum\limits_{i = 1}^{n} {\chi_{j} } }} } \right)} \right]} \right.,\\ &\qquad 1 - \left( {\left( { \left( {1 - s_{ij} } \right)^{{\sum\limits_{i = 1}^{n} {\xi_{i} } }} } \right)^{{\sum\limits_{j = 1}^{m} {\chi_{j} } }} } \right),\left. \left[ 1 - \left( { \left( {\left( {1 - t_{ij}^{ - } } \right)^{{\sum\limits_{i = 1}^{n} {\xi_{i} } }} } \right)^{{\sum\limits_{i = 1}^{n} {\chi_{j} } }} } \right), \right.\right. \\ &\quad \left.\left. 1 - \left( { \left( {\left( {1 - t_{ij}^{ + } } \right)^{{\sum\limits_{i = 1}^{n} {\xi_{i} } }} } \right)^{{\sum\limits_{i = 1}^{n} {\chi_{j} } }} } \right) \right] \right\rangle \hfill \\ &\quad = \left\langle \left[ {1 - \left( {1 - r_{{}}^{ - } } \right),1 - \left( {1 - r_{{}}^{ + } } \right)} \right], \right. \\ &\quad \left. 1 - \left( {1 - s} \right),\left[ {1 - \left( {1 - t_{{}}^{ - } } \right),1 - \left( {1 - t_{{}}^{ + } } \right)} \right] \right\rangle \\ &\quad = \left\langle {\left( {r_{{}}^{ - } ,r_{{}}^{ + } } \right),s,\left( {t_{{}}^{ - } ,t_{{}}^{ + } } \right)} \right\rangle = P_{k} . \hfill \\ \end{aligned} $$
Hence the proof.
Theorem 4.4
If \( P_{{k_{ij} }}^{ - } = \left\langle \left[ \min_{j} \min_{i} \left\{ {r_{ij}^{ - } } \right\},\min_{j} \min_{i}\right.\right.\break \left.\left. \left\{ {r_{ij}^{ + } } \right\}\, \right], \min_{j} \min_{i} \left\{ {s_{ij}^{{}} } \right\} \right.,\left. \left[ {\min_{j} \min_{i} \left\{ {t_{ij}^{ - } } \right\},\min_{j} \min_{i} \left\{ {t_{ij}^{ + } } \right\}\,} \right] \right\rangle \)and \( P_{{k_{ij} }}^{ + } = \left\langle {\left[ {\max_{j} \max_{i} \left\{ {r_{ij}^{ - } } \right\},\max_{j} \max_{i} \left\{ {r_{ij}^{ + } } \right\}\,} \right]} \right.,\max_{j} \max_{i} \left\{ {s_{ij}^{{}} } \right\}, \)\( \left. {\left[ {\max_{j} \max_{i} \left\{ {t_{ij}^{ - } } \right\},\;\max_{j} \max_{i} \left\{ {t_{ij}^{ + } } \right\}} \right]} \right\rangle \), then
$$ P_{{k_{ij} }}^{ - } \le {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right) \le P_{{k_{ij} }}^{ + } . $$
(12)
Proof
Since
$$ P_{{k_{ij} }} = \left\langle {\left( {r_{ij}^{ - } ,r_{ij}^{ + } } \right),\;s_{ij} ,\;\left( {t_{ij}^{ - } ,t_{ij}^{ + } } \right)} \right\rangle ,\;\mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} \le r_{ij}^{ - } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}, $$
$$ \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ + } } \right\} \le r_{ij}^{ + } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ + } } \right\},\mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {s_{ij}^{{}} } \right\} \le s_{ij}^{{}} \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {s_{ij}^{{}} } \right\}, $$
$$ \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ - } } \right\} \le t_{ij}^{ - } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ - } } \right\},\mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\} \le t_{ij}^{ + } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\}. $$
Consider,
$$ \begin{aligned} & \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} \le r_{ij}^{ - } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} \hfill \\ &\quad \Leftrightarrow 1 - \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} \le 1 - r_{ij}^{ - } \le 1 - \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} \hfill \\ &\quad \Leftrightarrow 1 - \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}^{{\xi_{i} }} \le \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} \\ &\quad \le 1 - \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}^{{\xi_{i} }} \hfill \\ &\quad \Leftrightarrow \left( {1 - \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}} \right)^{{\sum\limits_{j = 1}^{m} {\chi_{j} } }} \le {{\mathbb{P}}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} \\ &\qquad \le \left( {1 - \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}} \right)^{{\sum\limits_{j = 1}^{m} {\chi_{j} } }} \hfill \\ &\quad \Leftrightarrow \left( {1 - \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}} \right) \le \wp_{j} \left( {{{\mathbb{P}}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }}\\ &\qquad \le \left( {1 - \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}} \right) \hfill \\ &\quad \Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} \le 1 - \wp_{j} \left( {{{\mathbb{P}}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} \\ &\qquad \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}. \hfill \\ \end{aligned} $$
Similarly,
$$ \begin{aligned} & \Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ + } } \right\} \le 1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ + } } \right\} \hfill \\ &\Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {s_{ij}^{{}} } \right\} \le 1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - s_{ij}^{{}} } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {s_{ij}^{{}} } \right\} \hfill \\ & \Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ - } } \right\} \le 1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ - } } \right\} \hfill \\ & \Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\} \le 1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\}. \hfill \\ \end{aligned} $$
Let \( \beta = {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right) = \left\langle {\left( {r_{\beta }^{ - } ,r_{\beta }^{ + } } \right),s,\left( {t_{\beta }^{ - } ,t_{\beta }^{ + } } \right)} \right\rangle . \)
Then, from the above results,
$$ \begin{aligned} & \Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} \le r_{\beta }^{ - } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\}\\ & \Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ + } } \right\} \le r_{\beta }^{ + } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ + } } \right\} \hfill \\ & \Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {s_{ij}^{{}} } \right\} \le s_{\beta }^{{}} \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {s_{ij}^{{}} } \right\} \\ &\Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ - } } \right\} \le t_{\beta }^{ - } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ - } } \right\} \hfill \\ & \Leftrightarrow \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\} \le t_{\beta }^{ + } \le \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\}. \hfill \\ \end{aligned} $$
Thus, by the definition of a score function
$$ \begin{aligned} & S\left( \beta \right) = \left( {\frac{{r_{ij}^{ - } + t_{ij}^{ + } }}{2} + 1} \right) \times \frac{{r_{ij}^{ - } + r_{ij}^{ + } + t_{ij}^{ - } + t_{ij}^{ + } + 4s_{ij} }}{8} \hfill \\ &\quad \le \left( {\frac{{\mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} + \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\}}}{2} + 1} \right) \hfill \\ &\qquad \times \frac{{\mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} + \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {r_{ij}^{ + } } \right\} + \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ - } } \right\} + \mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\} + 4\mathop {\hbox{max} }\limits_{j} \mathop {\hbox{max} }\limits_{i} \left\{ {s_{ij} } \right\}}}{8} = S\left( {P_{{k_{ij} }}^{ + } } \right) \hfill \\ &\quad S\left( \beta \right) = \left( {\frac{{r_{ij}^{ - } + t_{ij}^{ + } }}{2} + 1} \right) \times \frac{{r_{ij}^{ - } + r_{ij}^{ + } + t_{ij}^{ - } + t_{ij}^{ + } + 4s_{ij} }}{8} \ge \left( {\frac{{\mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} + \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\}}}{2} + 1} \right) \hfill \\ \hfill \\ &\qquad \times \frac{{\mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ - } } \right\} + \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {r_{ij}^{ + } } \right\} + \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ - } } \right\} + \mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {t_{ij}^{ + } } \right\} + 4\mathop {\hbox{min} }\limits_{j} \mathop {\hbox{min} }\limits_{i} \left\{ {s_{ij} } \right\}}}{8} \hfill \\ &\quad = S\left( {P_{{k_{ij} }}^{ - } } \right). \hfill \\ \end{aligned} $$
(13)
If \( S\left( {P_{{k_{ij} }}^{{}} } \right) \le S\left( {P_{{k_{ij} }}^{ + } } \right)\,\& S\left( {P_{{k_{ij} }}^{{}} } \right) \ge S\left( {P_{{k_{ij} }}^{ - } } \right) \), then by the comparison law between TIT2FSNs, we get
$$ P_{{k_{ij} }}^{ - } \le {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right) \le P_{{k_{ij} }}^{ + } . $$
Hence the theorem.
Theorem 4.5
If \( P_{k} = \left\langle {\left( {r_{{}}^{ - } ,r_{{}}^{ + } } \right),s,\left( {t_{{}}^{ - } ,t_{{}}^{ + } } \right)} \right\rangle \) is TIT2FSN, then
$$ \begin{aligned} {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} \oplus P_{k} ,P_{{k_{12} }} \oplus P_{k} , \ldots ,P_{{k_{nm} }} \oplus P_{k} } \right) \hfill \\ = {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right) \oplus P_{k} . \hfill \\ \end{aligned} $$
(14)
Proof
Since \( P_{k} \) and \( P_{{k_{ij} }}^{{}} \) are TIT2FSNs,
$$ \begin{aligned} & P_{k} \oplus P_{{k_{ij} }}^{{}} = \left\langle {\left[ {1 - \left( {1 - r^{ - } } \right)\left( {1 - r_{ij}^{ - } } \right),1 - \left( {1 - r^{ + } } \right)\left( {1 - r_{ij}^{ + } } \right)} \right]} \right., \\ & \quad 1 - \left( {1 - s} \right)\left( {1 - r_{ij}^{{}} } \right),\left. \left[ 1 - \left( {1 - t^{ - } } \right)\left( {1 - t_{ij}^{ - } } \right),\right. \right.\\ &\quad \left. \left. 1 - \left( {1 - t^{ + } } \right)\left( {1 - t_{ij}^{ + } } \right) \right] \right\rangle , \hfill \\ \end{aligned} $$
$$ \begin{aligned} & {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} \oplus P_{k} ,P_{{k_{12} }} \oplus P_{k} , \ldots ,P_{{k_{nm} }} \oplus P_{k} } \right) \hfill \\ &\quad \mathop \oplus \limits_{j = 1}^{m} \chi_{j} \left( {\mathop \oplus \limits_{i = 1}^{n} \xi_{i} \left( {P_{{k_{ij} }} \oplus P_{k} } \right)} \right) \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} \left( {1 - r_{{}}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right.,} \right.\left. {\left( {1 - \wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{\xi_{i} }} \left( {1 - r_{{}}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right],\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - s_{ij} } \right)^{{\xi_{i} }} \left( {1 - s} \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right), \hfill \\ &\quad\qquad \left[ {\left( {1 - \wp_{j} \left( {{{\mathbb{P}}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{\xi_{i} }} \left( {1 - t_{{}}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right.,\left. {\left. {\,\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{\xi_{i} }} \left( {1 - t_{{}}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} \right\rangle \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \left( {1 - r_{{}}^{ - } } \right)\wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right.,} \right.\left. {\left( {1 - \left( {1 - r_{{}}^{ + } } \right)\wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right],\left( {1 - \left( {1 - s} \right)\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - s_{ij} } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right), \hfill \\ &\quad\qquad \left[ {\left( {1 - \left( {1 - t_{{}}^{ - } } \right)\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right.,\left. {\left. {\,\left( {1 - \left( {1 - t_{{}}^{ + } } \right)\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} \right\rangle \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right.,} \right.\left. {\left( {1 - \wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right],\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - s_{ij} } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right), \hfill \\ &\qquad\quad \left[ {\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right.,\left. {\left. {\,\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} \right\rangle \hfill \\ &\quad \oplus \left\langle {\left( {r_{{}}^{ - } ,r_{{}}^{ + } } \right),s,\left( {t_{{}}^{ - } ,t_{{}}^{ + } } \right)} \right\rangle \hfill \\ &\quad = {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right) \oplus P_{k} . \hfill \\ \end{aligned} $$
Hence the theorem.
Theorem 4.6
For any real number \( c > 0 \), we have
$$ {\text{TIT}}2{\text{FSWA}}\left( {c \cdot P_{{k_{11} }} ,c \cdot P_{{k_{12} }} , \ldots ,c \cdot P_{{k_{nm} }} } \right) = c \cdot {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right). $$
(15)
Proof
By the operational law of TIT2FSN,
$$ \begin{aligned} c \cdot P_{{k_{ij} }} & = \left\langle \left[ {1 - \left( {1 - r_{ij}^{ - } } \right)^{c} ,1 - \left( {1 - r_{ij}^{ + } } \right)^{c} } \right], \right. \\ &\quad \left. 1 - \left( {1 - s_{ij}^{{}} } \right)^{c} ,\left[ {1 - \left( {1 - t_{ij}^{ - } } \right)^{c} ,1 - \left( {1 - t_{ij}^{ + } } \right)^{c} } \right] \right\rangle , \end{aligned} $$
$$ \begin{aligned} & {\text{TIT}}2{\text{FSWA}}\left( {c \cdot_{{k_{11} }} ,c \cdot P_{{k_{12} }} , \ldots ,c \cdot P_{{k_{nm} }} } \right) \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{c \cdot \xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right.,} \right.\left. {\left( {1 - \wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{c \cdot \xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right],\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - s_{ij} } \right)^{{c \cdot \xi_{i} }} } \right)^{{\chi_{j} }} } \right), \hfill \\ &\quad\qquad \left[ {\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{c \cdot \xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right.,\left. {\left. {\,\left( {1 - \wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{c \cdot \xi_{i} }} } \right)^{{\chi_{j} }} } \right)} \right]} \right\rangle \hfill \\ &\quad = \left\langle {\left[ {\left( {1 - \left\{ {\wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right\}^{c} } \right)} \right.,} \right.\left. {\left( {1 - \left\{ {\wp_{j\,} \left( {{\mathbb{P}}_{i} \left( {1 - r_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right\}^{c} } \right)} \right],\left( {1 - \left\{ {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - s_{ij} } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right\}^{c} } \right), \hfill \\ &\qquad\quad \left[ {\left( {1 - \left\{ {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ - } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right\}^{c} } \right)} \right.,\left. {\left. {\,\left( {1 - \left\{ {\wp_{j} \left( {{\mathbb{P}}_{i} \left( {1 - t_{ij}^{ + } } \right)^{{\xi_{i} }} } \right)^{{\chi_{j} }} } \right\}^{c} } \right)} \right]} \right\rangle \hfill \\ &\quad = c\, \cdot {\text{TIT}}2{\text{FSWA}}\left( {P_{{k_{11} }} ,P_{{k_{12} }} , \ldots ,P_{{k_{nm} }} } \right). \hfill \\ &\quad \end{aligned} $$
Hence the theorem.

Proposed algorithm

In this section, an efficiency of the proposed operators has been proved by the practical example for a decision-making problem. Consider a set of \( d \) different alternatives, \( V = \left\{ {V_{1} ,\;V_{2} , \ldots ,\;V_{d} } \right\} \) which will be evaluated by the set of \( n \) experts \( w_{1} ,\;w_{2} , \ldots ,\;w_{n} \) under the parameters \( K = \left\{ {k_{1} ,\;k_{2} , \ldots ,\;k_{m} } \right\} \) and the weight vectors are \( \chi = \left( {\chi_{1} ,\;\chi_{2} , \ldots ,\;\chi_{n} } \right)^{\text{T}} \) and \( \xi = \left( {\xi_{1} ,\;\xi_{2} , \ldots ,\;\xi_{m} } \right)^{\text{T}} \), respectively. Also,\( \xi_{i} \in (0,1] \), \( \chi_{j} \in (0,1] \), \( \sum\nolimits_{j = 1}^{m} {\chi_{j} } = 1 \) and \( \sum\nolimits_{i = 1}^{n} {\xi_{i} } = 1 \). Here, the experts/decision makers give their preferences values in terms of TIT2FSNs \( P_{{k_{ij} }} = \left\langle {\left( {r_{ij}^{ - } ,r_{ij}^{ + } } \right),s_{ij} ,\left( {t_{ij}^{ - } ,t_{ij}^{ + } } \right)} \right\rangle ,i = 1,2, \ldots ,n\,{\text{and}}\,j = 1,2, \ldots ,m \). The overall collective decision matrix is represented by \( S = \left( {P_{{k_{ij} }} } \right)_{n \times m} \). According to the expert’s preference values, the aggregated value of TIT2FSN \( \gamma_{h} ,\,\,\left( {h = 1,2, \ldots ,d} \right) \) is calculated for the alternatives using the proposed aggregation operator. The score function of the aggregated TIT2FSN \( P_{{h_{d} }} \left( {h = 1,\;2, \ldots ,\;d} \right) \) is used to rank the alternatives.
The above acknowledged methodology has been summarized as follows.
Step 1: Gather the information associated with all the alternatives under various criteria/parameters in the form of Triangular Interval Type-2 Fuzzy Soft matrix (TIT2FSM) \( S \) is defined by,
$$ S = \left\langle {\left( {r_{ij}^{ - } ,r_{ij}^{ + } } \right),s_{ij} ,\left( {t_{ij}^{ - } ,t_{ij}^{ + } } \right)} \right\rangle_{n \times m} . $$
Step 2: Normalize the matrix \( S \) by converting the rating values of the cost parameters into benefit type by applying the following formula.
$$ R_{ij} = \left\{ {\begin{array}{l} {P_{{k_{ij} }} ,\quad {\text{for}}\,{\text{benefit}}\,{\text{type}}\,{\text{parameters}}} \\ {P_{{k_{ij} }}^{c} ,\quad {\text{for}}\,{\text{cost}}\,{\text{type}}\,{\text{parameters,}}} \\ \end{array} } \right. $$
where \( P_{{k_{ij} }}^{c} = \left\langle {\left( {1 - t_{ij}^{ - } ,1 - t_{ij}^{ + } } \right),1 - s_{ij} ,\left( {1 - r_{ij}^{ - } ,1 - r_{ij}^{ + } } \right)} \right\rangle \) is the complement of \( P_{{k_{ij} }} \).
If all the parameters are of the same type, then normalization is not necessary.
Step 3: Aggregate the TIT2FSNs \( P_{{k_{ij} }} \) for all the alternatives \( V = \left\{ {V_{1} ,\;V_{2} , \ldots ,\;V_{d} } \right\} \) into the collective decision matrix \( \gamma_{h} \) using proposed TIT2FSWA operator.
Step 4: Calculate the score value of all the alternatives
Step 5: Using score value of the alternatives, select the best one.
Step 6: End.

Application for financial gain analysis using the proposed algorithm

Consider a decision-making problem for profit analysis with different alternatives. The board of four experts \( d_{1} ,\;d_{2} ,\;d_{3} ,\;d_{4} \) whose weight vector is \( \xi = \left( {0.3,\;0.2,\;0.1,\;0.4} \right)^{\text{T}} \) will award their preference values \( V_{1} ,\;V_{2} ,\;V_{3} ,\;V_{4} \) under some criteria/parameters \( K \) = {“High production (\( k_{1} \)), Number of clients (\( k_{2} \)), Number of products (\( k_{3} \)), Duration (\( k_{4} \))} with the weight vector \( \chi = \left( {0.35,\;0.25,\;0.25,\;0.15} \right)^{\text{T}} . \) Using the proposed algorithm, profit analysis is determined as follows.
Step 1: The four experts \( d_{i} \) will measure profit for four alternatives in terms of TIT2FSNs. Parameters and their values of rating are summarized as below (Tables 1, 2, 3, 4).
Table 1
Triangular interval type-2 fuzzy soft matrix for \( V_{1} \)
\( {{\mathbb{U}}} \)
\( k_{1} \)
\( k_{2} \)
\( k_{3} \)
\( k_{4} \)
\( d_{1} \)
\( \left\langle \begin{aligned} &\left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.8, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{2} \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.8, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{3} \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.5,0.6} \right) \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.2,0.3} \right),0.4, \hfill \\ &\left( {0.5,0.6} \right) \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.6,0.7} \right) \\ \end{aligned} \right\rangle \)
\( d_{4} \)
\( \left\langle \begin{aligned} & \left( {0.2,0.3} \right),0.4, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
Table 2
Triangular interval type-2 fuzzy soft matrix for \( V_{2} \)
\( {{\mathbb{U}}} \)
\( k_{1} \)
\( k_{2} \)
\( k_{3} \)
\( k_{4} \)
\( d_{1} \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{2} \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.8, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{3} \)
\( \left\langle \begin{aligned} & \left( {0.2,0.3} \right),0.4, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.1,0.2} \right),0.3, \hfill \\ &\left( {0.4,0.5} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.2,0.3} \right),0.4, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{4} \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.2,0.3} \right),0.4, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.1,0.2} \right),0.3, \hfill \\ &\left( {0.4,0.5} \right) \hfill \\ \end{aligned} \right\rangle \)
Table 3
Triangular interval type-2 fuzzy soft matrix for \( V_{3} \)
\( {{\mathbb{U}}} \)
\( k_{1} \)
\( k_{2} \)
\( k_{3} \)
\( k_{4} \)
\( d_{1} \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{2} \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{3} \)
\( \left\langle \begin{aligned} & \left( {0.1,0.2} \right),0.3, \hfill \\ &\left( {0.4,0.5} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.8, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{4} \)
\( \left\langle \begin{aligned} & \left( {0.2,0.3} \right),0.4, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.2,0.3} \right),0.4, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.1,0.2} \right),0.3, \hfill \\ &\left( {0.4,0.5} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
Table 4
Triangular interval type-2 fuzzy soft matrix for \( V_{4} \)
\( {{\mathbb{U}}} \)
\( k_{1} \)
\( k_{2} \)
\( k_{3} \)
\( k_{4} \)
\( d_{1} \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.2,0.3} \right),0.4, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{2} \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.5, \hfill \\ &\left( {0.5,0.6} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.6,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{3} \)
\( \left\langle \begin{aligned} & \left( {0.4,0.5} \right),0.6, \hfill \\ &\left( {0.6,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.7,0.8} \right),0.8, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.7, \hfill \\ &\left( {0.8,0.9} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.1,0.2} \right),0.3, \hfill \\ &\left( {0.4,0.5} \right) \hfill \\ \end{aligned} \right\rangle \)
\( d_{4} \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.6,0.7} \right),0.7, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.5,0.6} \right),0.6, \hfill \\ &\left( {0.7,0.8} \right) \hfill \\ \end{aligned} \right\rangle \)
\( \left\langle \begin{aligned} & \left( {0.3,0.4} \right),0.5, \hfill \\ &\left( {0.5,0.7} \right) \hfill \\ \end{aligned} \right\rangle \)
Step 2: Here all the parameters are in the same type, there is no necessary for normalization.
Step 3: The different opinions of the experts for each alternative are aggregated using Eq. (10).
The aggregated value of the four alternatives is,
$$ \gamma_{1} = \left\langle {\left( {0.4354,0.5422} \right),0.6271,\left( {0.6971,0.8066} \right)} \right\rangle , $$
$$ \gamma_{2} = \left\langle {\left( {0.4009,0.5044} \right),0.6019,\left( {0.6965,0.8082} \right)} \right\rangle , $$
$$ \gamma_{3} = \left\langle {\left( {0.3480,0.4018} \right),0.5130,\left( {0.6445,0.7565} \right)} \right\rangle , $$
$$ \gamma_{4} = \left\langle {\left( {0.4448,0.5481} \right),0.6090,\left( {0.6518,0.7660} \right)} \right\rangle . $$
Step 4: Using Eq. (13), the obtained score values of the four alternatives are
$$ {\text{SV}}\left( {\gamma_{1} } \right) = 1.0126, $$
$$ {\text{SV}}\left( {\gamma_{2} } \right) = 0.9663, $$
$$ {\text{SV}}\left( {\gamma_{3} } \right) = 0.8156, $$
$$ SV\left( {\gamma_{4} } \right) = 0.9726, $$
and the ranking is \( {\text{SV}}\left( {\gamma_{1} } \right) > {\text{SV}}\left( {\gamma_{2} } \right) > {\text{SV}}\left( {\gamma_{4} } \right) > {\text{SV}}\left( {\gamma_{3} } \right) \), the symbol ‘\( > \)’ represents, superior to.
Step 5: Hence, high production is the best alternative for getting more profit.

Comparative analysis

This section provides a comparative study of the proposed method with the existing method. A comparison of the results between existing and new techniques is shown in Table 5.
Table 5
Comparative analysis
Existing methods
Score values of the parameters
Ranking
\( \gamma_{1} \)
\( \gamma_{2} \)
\( \gamma_{3} \)
\( \gamma_{4} \)
[27]
0.3219
0.3042
0.2507
0.3460
\( {\text{SV}}\left( {\gamma_{4} } \right) > {\text{SV}}\left( {\gamma_{3} } \right) > {\text{SV}}\left( {\gamma_{2} } \right) > {\text{SV}}\left( {\gamma_{1} } \right) \)
[41]
1.2027
1.2719
0.9022
0.8821
\( {\text{SV}}\left( {\gamma_{2} } \right) > {\text{SV}}\left( {\gamma_{1} } \right) > {\text{SV}}\left( {\gamma_{3} } \right) > {\text{SV}}\left( {\gamma_{4} } \right) \)
[56]
0.1274
0.04
0.07
0.15
\( {\text{SV}}\left( {\gamma_{4} } \right) > {\text{SV}}\left( {\gamma_{1} } \right) > {\text{SV}}\left( {\gamma_{3} } \right) > {\text{SV}}\left( {\gamma_{2} } \right) \)
[66]
0.2338
0.2621
0.1895
0.2428
\( {\text{SV}}\left( {\gamma_{2} } \right) > {\text{SV}}\left( {\gamma_{4} } \right) > {\text{SV}}\left( {\gamma_{1} } \right) > {\text{SV}}\left( {\gamma_{3} } \right) \)
[78]
1.0073
0.9597
0.8414
0.9527
\( {\text{SV}}\left( {\gamma_{1} } \right) > {\text{SV}}\left( {\gamma_{2} } \right) > {\text{SV}}\left( {\gamma_{4} } \right) > {\text{SV}}\left( {\gamma_{3} } \right) \)
It is observed that high production and duration have more possibilities for profit analysis. These results overlap the proposed result. Hence, the proposed methodology can be utilized using the concepts of the triangular interval type-2 fuzzy soft set to solve the decision-making problem suitably in comparison with the existing methods.

Conclusion

Aggregation operator plays a vital role in decision-making as there is a need for aggregating multi attributes to decide the best one. Though many aggregation operators are available, a new aggregation operator namely a triangular interval type-2 fuzzy soft weighted arithmetic (TIT2FSWA) operator has been proposed with its desired mathematical properties in detail. Since it is the combination of fuzzy soft set and triangular interval type-2 fuzzy set, more uncertainties due to the usage of linguistic terms can be addressed well. Also, profit analysis has been done by choosing the best alternative among the alternatives among the different alternatives using the proposed aggregation operator and it is found that the first alternative high production is the best alternative for getting more profit. The present work may be extended under hyper soft set, whole hyper soft set and plithogenic hyper soft set environments.

Acknowledgements

This research was supported by the Ministry of Higher Education Malaysia, Malaysia, under FRGS Grant No: K179.

Compliance with Ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent was obtained from all individual participants included in the study.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Gupta MM, Qi J (1991) Theory of T-norms and fuzzy inference methods. Fuzzy Sets Syst 40:431–450MathSciNetMATH Gupta MM, Qi J (1991) Theory of T-norms and fuzzy inference methods. Fuzzy Sets Syst 40:431–450MathSciNetMATH
2.
Zurück zum Zitat John R (1998) Type-2 fuzzy sets: an appraisal of theory and applications. Int J Uncertain Fuzziness Knowl Based Syst 6(6):563–576MathSciNetMATH John R (1998) Type-2 fuzzy sets: an appraisal of theory and applications. Int J Uncertain Fuzziness Knowl Based Syst 6(6):563–576MathSciNetMATH
3.
4.
5.
Zurück zum Zitat Garibaldi JM, John RI (2003) Choosing membership functions of linguistic terms. In: The 12th IEEE international conference on fuzzy systems (FUZZ’2003), vol 1, pp 578–583 Garibaldi JM, John RI (2003) Choosing membership functions of linguistic terms. In: The 12th IEEE international conference on fuzzy systems (FUZZ’2003), vol 1, pp 578–583
6.
Zurück zum Zitat Hagras HA (2004) A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst 12(4):524–539 Hagras HA (2004) A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans Fuzzy Syst 12(4):524–539
7.
Zurück zum Zitat Mendel JM, John RI, Liu F (2006) Interval Type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821 Mendel JM, John RI, Liu F (2006) Interval Type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821
9.
Zurück zum Zitat Castillo O, Melin P (2008) Intelligent systems with interval type-2 fuzzy logic. Int J Innov Comput Inf Control 4(4):771–783 Castillo O, Melin P (2008) Intelligent systems with interval type-2 fuzzy logic. Int J Innov Comput Inf Control 4(4):771–783
10.
Zurück zum Zitat Coupland S, John R (2008) A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE Trans Fuzzy Syst 16(4):929–941 Coupland S, John R (2008) A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE Trans Fuzzy Syst 16(4):929–941
11.
Zurück zum Zitat Zarandi MHF, Rezaee B, Turksen IB, Neshat E (2009) A type-2 rule-based expert system model for stock price analysis. Expert Syst Appl 36:139–154 Zarandi MHF, Rezaee B, Turksen IB, Neshat E (2009) A type-2 rule-based expert system model for stock price analysis. Expert Syst Appl 36:139–154
12.
Zurück zum Zitat Mendel JM (2009) Type-2 fuzzy sets and systems: how to learn about them. IEEE SMC eNewslett 27:1–8 Mendel JM (2009) Type-2 fuzzy sets and systems: how to learn about them. IEEE SMC eNewslett 27:1–8
13.
Zurück zum Zitat Yang X, Lin TN, Yang J, Li Y, Yu D (2009) Combination of interval-valued fuzzy set and soft set. Comput Math Appl 58(3):521–527MathSciNetMATH Yang X, Lin TN, Yang J, Li Y, Yu D (2009) Combination of interval-valued fuzzy set and soft set. Comput Math Appl 58(3):521–527MathSciNetMATH
15.
Zurück zum Zitat Rickard JT, Hamilton H, Hamilton W (2009) Type-2 fuzzy trust aggregation. In: IFSA-EUSFLAT 2009 conference, pp 70–75. ISBN: 978-989-95079-6-8 Rickard JT, Hamilton H, Hamilton W (2009) Type-2 fuzzy trust aggregation. In: IFSA-EUSFLAT 2009 conference, pp 70–75. ISBN: 978-989-95079-6-8
16.
Zurück zum Zitat Feng F, Li Y, Fotea VL (2010) Application of level soft sets in decision making based on interval-valued fuzzy soft sets. Comput Math Appl 60:1756–1767MathSciNetMATH Feng F, Li Y, Fotea VL (2010) Application of level soft sets in decision making based on interval-valued fuzzy soft sets. Comput Math Appl 60:1756–1767MathSciNetMATH
17.
Zurück zum Zitat Chetia B, Das PK (2010) An application of interval-valued fuzzy soft sets in medical diagnosis. Int J Contemp Math Sci 5(38):1887–1894MATH Chetia B, Das PK (2010) An application of interval-valued fuzzy soft sets in medical diagnosis. Int J Contemp Math Sci 5(38):1887–1894MATH
18.
Zurück zum Zitat Cagman N, Enginoglu S (2010) Soft matrix theory and its decision making. Comput Math Appl 59:3308–3314MathSciNetMATH Cagman N, Enginoglu S (2010) Soft matrix theory and its decision making. Comput Math Appl 59:3308–3314MathSciNetMATH
20.
Zurück zum Zitat Ali MI, Muhammad S, Naz M (2011) Algebraic structures of soft sets associated with new operations. Comput Math Appl 61:2647–2654MathSciNetMATH Ali MI, Muhammad S, Naz M (2011) Algebraic structures of soft sets associated with new operations. Comput Math Appl 61:2647–2654MathSciNetMATH
21.
Zurück zum Zitat Qin H, Ma X, Herawan T, Zain JM (2011) An adjustable approach to interval-valued intuitionistic fuzzy soft sets based decision making. ACIIDS 2011. LNAI 6592:80–89 Qin H, Ma X, Herawan T, Zain JM (2011) An adjustable approach to interval-valued intuitionistic fuzzy soft sets based decision making. ACIIDS 2011. LNAI 6592:80–89
22.
Zurück zum Zitat Alkhazaleh S, Salleh AR, Hassan N (2011) Fuzzy paramerterized interval-valued fuzzy soft set. Appl Math Sci 5(67):3335–3346MATH Alkhazaleh S, Salleh AR, Hassan N (2011) Fuzzy paramerterized interval-valued fuzzy soft set. Appl Math Sci 5(67):3335–3346MATH
24.
Zurück zum Zitat Zarandi MHF, Faraji MR, Karbasian M (2012) Interval type-2 fuzzy expert system for prediction of carbon monoxide concentration in mega-cities. Appl Soft Comput 12:291–301 Zarandi MHF, Faraji MR, Karbasian M (2012) Interval type-2 fuzzy expert system for prediction of carbon monoxide concentration in mega-cities. Appl Soft Comput 12:291–301
26.
Zurück zum Zitat Hagras H, Wagner C (2012) Towards the wide spread use of type-2 fuzzy logic systems in real world applications. IEEE Comput Intell Mag 7(3):14–24 Hagras H, Wagner C (2012) Towards the wide spread use of type-2 fuzzy logic systems in real world applications. IEEE Comput Intell Mag 7(3):14–24
27.
Zurück zum Zitat Zhang Z, Zhang S (2012) Type-2 fuzzy soft sets and their applications in decision making. J Appl Math 2012:1–35MathSciNet Zhang Z, Zhang S (2012) Type-2 fuzzy soft sets and their applications in decision making. J Appl Math 2012:1–35MathSciNet
28.
Zurück zum Zitat Borah M, Neog TJ, Sut DK (2012) A study on some operations of fuzzy soft sets. Int J Mod Eng Res 2(2):219–225 Borah M, Neog TJ, Sut DK (2012) A study on some operations of fuzzy soft sets. Int J Mod Eng Res 2(2):219–225
29.
Zurück zum Zitat Rajarajeswari P, Dhanalakshmi P (2012) An application of similarity measure of fuzzy soft set based on distance. IOSR J Math 4(4):27–30 Rajarajeswari P, Dhanalakshmi P (2012) An application of similarity measure of fuzzy soft set based on distance. IOSR J Math 4(4):27–30
30.
Zurück zum Zitat Basu TM, Mahapatra NK, Mondal SK (2012) Different types of matrices in fuzzy soft set theory and their application in decision making problems. Int Res Assoc Comput Sci Technol 2(3):389–398 Basu TM, Mahapatra NK, Mondal SK (2012) Different types of matrices in fuzzy soft set theory and their application in decision making problems. Int Res Assoc Comput Sci Technol 2(3):389–398
31.
Zurück zum Zitat Wang W, Liu X, Qin Y (2012) Interval-valued intuitionistic fuzzy aggregation operators. J Syst Eng Electron 23(4):574–580 Wang W, Liu X, Qin Y (2012) Interval-valued intuitionistic fuzzy aggregation operators. J Syst Eng Electron 23(4):574–580
32.
Zurück zum Zitat Wang W, Liu X (2012) Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans Fuzzy Syst 20(5):923–938 Wang W, Liu X (2012) Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans Fuzzy Syst 20(5):923–938
33.
Zurück zum Zitat Cagman N, Deli I (2012) Products of FP-soft sets and their applications. Hacet J Math Stat 41(3):365–374MathSciNetMATH Cagman N, Deli I (2012) Products of FP-soft sets and their applications. Hacet J Math Stat 41(3):365–374MathSciNetMATH
34.
Zurück zum Zitat Cagman N, Deli I (2012) Means of FP-soft sets and their applications. Hacet J Math Stat 41(5):615–625MathSciNetMATH Cagman N, Deli I (2012) Means of FP-soft sets and their applications. Hacet J Math Stat 41(5):615–625MathSciNetMATH
35.
Zurück zum Zitat Hernandez P, Cubillo S, Torres C (2013) About T-norms on type-2 fuzzy sets. Eur Soc Fuzzy Logic Technol 2013:171–178 Hernandez P, Cubillo S, Torres C (2013) About T-norms on type-2 fuzzy sets. Eur Soc Fuzzy Logic Technol 2013:171–178
36.
Zurück zum Zitat Bobillo F, Straccia U (2013) Aggregation operators for fuzzy ontologies. Appl Soft Comput 13:3816–3830 Bobillo F, Straccia U (2013) Aggregation operators for fuzzy ontologies. Appl Soft Comput 13:3816–3830
37.
Zurück zum Zitat Mondal JI, Roy TK (2013) Theory of fuzzy soft matrix and its multi criteria in decision making based on three basic T-norms operator. Int J Innov Res Sci Eng Technol 2(10):5715–5723 Mondal JI, Roy TK (2013) Theory of fuzzy soft matrix and its multi criteria in decision making based on three basic T-norms operator. Int J Innov Res Sci Eng Technol 2(10):5715–5723
38.
Zurück zum Zitat Xie N, Wen G, Li Z (2014) A method for fuzzy soft sets in decision making based on grey relational analysis and D-S theory of evidence: application to medical diagnosis. Comput Math Methods Med 2014:1–12MathSciNetMATH Xie N, Wen G, Li Z (2014) A method for fuzzy soft sets in decision making based on grey relational analysis and D-S theory of evidence: application to medical diagnosis. Comput Math Methods Med 2014:1–12MathSciNetMATH
39.
Zurück zum Zitat Muthumeenakshi M, Muralikrishna P (2014) A study of SFPM analysis using fuzzy soft set. Int J Pure Appl Math 94(2):207–213 Muthumeenakshi M, Muralikrishna P (2014) A study of SFPM analysis using fuzzy soft set. Int J Pure Appl Math 94(2):207–213
40.
Zurück zum Zitat Liang C, Zhao S, Zhang J (2014) Aggregation operators on triangular intuitionistic fuzzy numbers and its application to multi-criteria decision making problems. Found Comput Decis Sci 39:189–208MathSciNetMATH Liang C, Zhao S, Zhang J (2014) Aggregation operators on triangular intuitionistic fuzzy numbers and its application to multi-criteria decision making problems. Found Comput Decis Sci 39:189–208MathSciNetMATH
41.
Zurück zum Zitat Qin J, Liu X (2014) Frank aggregation operators for triangular interval type-2 fuzzy set and its application in multiple attribute group decision making. J Appl Math 2014:1–24 Qin J, Liu X (2014) Frank aggregation operators for triangular interval type-2 fuzzy set and its application in multiple attribute group decision making. J Appl Math 2014:1–24
42.
Zurück zum Zitat Rajarajeswari P, Dhanalakshmi P (2014) Interval-valued intuitionistic fuzzy soft matrix theory. Int J Math Arch 5(1):152–161MATH Rajarajeswari P, Dhanalakshmi P (2014) Interval-valued intuitionistic fuzzy soft matrix theory. Int J Math Arch 5(1):152–161MATH
43.
Zurück zum Zitat Chen X, Du H, Yang Y (2014) The interval-valued triangular fuzzy soft set and its method of dynamic decision making. J Appl Math, 1–12 Chen X, Du H, Yang Y (2014) The interval-valued triangular fuzzy soft set and its method of dynamic decision making. J Appl Math, 1–12
44.
Zurück zum Zitat Castillo O, Melin P, Tsvetkov R, Atanassov K (2014) Short remark on interval type-2 fuzzy sets and intuinistic fuzzy sets. In: 18th International conference on intuinistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, vol 20, no 2, pp 1–5 Castillo O, Melin P, Tsvetkov R, Atanassov K (2014) Short remark on interval type-2 fuzzy sets and intuinistic fuzzy sets. In: 18th International conference on intuinistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, vol 20, no 2, pp 1–5
45.
Zurück zum Zitat Sola HB, Fernandez J, Hagras H, Herrera F, Pagola M, Barrenechea E (2015) Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: toward a wider view on their relationship. IEEE Trans Fuzzy Syst 23(5):1876–1882 Sola HB, Fernandez J, Hagras H, Herrera F, Pagola M, Barrenechea E (2015) Interval type-2 fuzzy sets are generalization of interval-valued fuzzy sets: toward a wider view on their relationship. IEEE Trans Fuzzy Syst 23(5):1876–1882
47.
Zurück zum Zitat Tripathy BK, Sooraj TR (2015) On interval valued fuzzy soft sets and their application in group decision making, national conference on analysis and applications. In project: decision making and interval valued intuitionistic fuzzy soft set, pp 1–5 Tripathy BK, Sooraj TR (2015) On interval valued fuzzy soft sets and their application in group decision making, national conference on analysis and applications. In project: decision making and interval valued intuitionistic fuzzy soft set, pp 1–5
48.
Zurück zum Zitat Sellappan N, Nagarajan D, Palanikumar K (2015) Evaluation of risk priority number (RPN) in design failure modes and effects analysis (DFMEA) using factor analysis. Int J Appl Eng Res 10(14):34194–34198 Sellappan N, Nagarajan D, Palanikumar K (2015) Evaluation of risk priority number (RPN) in design failure modes and effects analysis (DFMEA) using factor analysis. Int J Appl Eng Res 10(14):34194–34198
49.
Zurück zum Zitat Hernandez P, Cubillo S, Torres-Blanc C (2015) Norms for type-2 fuzzy sets. IEEE Trans Fuzzy Syst 23(4):1155–1163 Hernandez P, Cubillo S, Torres-Blanc C (2015) Norms for type-2 fuzzy sets. IEEE Trans Fuzzy Syst 23(4):1155–1163
51.
Zurück zum Zitat Deli I, Cagman N (2016) Probabilistic equilibrium solution of soft games. J Intell Fuzzy Syst 30(3):2237–2244MATH Deli I, Cagman N (2016) Probabilistic equilibrium solution of soft games. J Intell Fuzzy Syst 30(3):2237–2244MATH
52.
Zurück zum Zitat Bajestani NS, Kamyad AV, Zare A (2016) An interval type-2 fuzzy regression model with crisp inputs and type-2 fuzzy outputs for TAIEX forecasting. In: International conference on information and automation, pp 681–685 Bajestani NS, Kamyad AV, Zare A (2016) An interval type-2 fuzzy regression model with crisp inputs and type-2 fuzzy outputs for TAIEX forecasting. In: International conference on information and automation, pp 681–685
53.
Zurück zum Zitat Sudharsan S, Ezhilmaran D (2016) Weighted arithmetic average operator based on interval-valued intuitionistic fuzzy values and their application to multi criteria decision making for investment. J Inf Optim Sci 37(2):247–260MathSciNet Sudharsan S, Ezhilmaran D (2016) Weighted arithmetic average operator based on interval-valued intuitionistic fuzzy values and their application to multi criteria decision making for investment. J Inf Optim Sci 37(2):247–260MathSciNet
54.
Zurück zum Zitat Shenbagavalli R, Balasubramanian G, Solairaju A (2017) Attributes weight determination for fuzzy soft multiple attribute group decision making problems. Int J Stat Syst 12(3):517–524 Shenbagavalli R, Balasubramanian G, Solairaju A (2017) Attributes weight determination for fuzzy soft multiple attribute group decision making problems. Int J Stat Syst 12(3):517–524
55.
Zurück zum Zitat Selvachandran G, Sallah AR (2017) Interval-valued complex fuzzy soft sets. In: Fourth international conference on mathematical sciences. AIP conference proceedings 1830:070009-1-070009-8 Selvachandran G, Sallah AR (2017) Interval-valued complex fuzzy soft sets. In: Fourth international conference on mathematical sciences. AIP conference proceedings 1830:070009-1-070009-8
56.
Zurück zum Zitat Senthilkumar S (2017) Solving a decision making problem using weighted fuzzy soft matrix. Int J Sci Res Eng Technol 6(1):12–16 Senthilkumar S (2017) Solving a decision making problem using weighted fuzzy soft matrix. Int J Sci Res Eng Technol 6(1):12–16
57.
Zurück zum Zitat Nagarajan D, Lathamaheswari M, Kavikumar J, Hamzha (2018) A type-2 fuzzy in image extraction for DICOM image. Int J Adv Comput Sci Appl 9(12):352–362 Nagarajan D, Lathamaheswari M, Kavikumar J, Hamzha (2018) A type-2 fuzzy in image extraction for DICOM image. Int J Adv Comput Sci Appl 9(12):352–362
58.
Zurück zum Zitat Anusuya V, Nisha B (2018) Type-2 fuzzy soft set with distance measure. Int J Math Trends Technol 54(2):186–192 Anusuya V, Nisha B (2018) Type-2 fuzzy soft set with distance measure. Int J Math Trends Technol 54(2):186–192
59.
Zurück zum Zitat Lathamaheswari M, Nagarajan D, Udayakumar A, Kavikumar K (2018) Review on type-2 fuzzy in biomedicine. Indian J Public Health Res Dev 9(12):322–326 ([55] made a review of applications of type-2 fuzzy logic in the field of biomedicine) Lathamaheswari M, Nagarajan D, Udayakumar A, Kavikumar K (2018) Review on type-2 fuzzy in biomedicine. Indian J Public Health Res Dev 9(12):322–326 ([55] made a review of applications of type-2 fuzzy logic in the field of biomedicine)
60.
Zurück zum Zitat Dinagar DS, Rajesh A (2018) A new approach on aggregation of interval-valued fuzzy soft matrix and its applications in MCDM. Int J Math Arch 9(6):16–22 Dinagar DS, Rajesh A (2018) A new approach on aggregation of interval-valued fuzzy soft matrix and its applications in MCDM. Int J Math Arch 9(6):16–22
61.
Zurück zum Zitat Qin Y, Liu Y, Liu J (2018) A novel method for interval-value intuitionistic fuzzy multicriteria decision-making problems with immediate probabilities based on OWA distance operators. Math Probl Eng, 1–11 Qin Y, Liu Y, Liu J (2018) A novel method for interval-value intuitionistic fuzzy multicriteria decision-making problems with immediate probabilities based on OWA distance operators. Math Probl Eng, 1–11
62.
Zurück zum Zitat Lathamaheswari M, Nagarajan D, Kavikumar K, Phang C (2018) A review on type-2 fuzzy controller on control system. J Adv Res Dyn Control Syst 10(11):430–435 Lathamaheswari M, Nagarajan D, Kavikumar K, Phang C (2018) A review on type-2 fuzzy controller on control system. J Adv Res Dyn Control Syst 10(11):430–435
63.
Zurück zum Zitat Nagarajan D, Lathamaheswari M, Sujatha R, Kavikumar J (2018) Edge detection on DICOM image using triangular norms in type-2 fuzzy. Int J Adv Comput Sci Appl 9(11):462–475 Nagarajan D, Lathamaheswari M, Sujatha R, Kavikumar J (2018) Edge detection on DICOM image using triangular norms in type-2 fuzzy. Int J Adv Comput Sci Appl 9(11):462–475
64.
Zurück zum Zitat Selvachandran G, Singh PK (2018) Interval-valued complex fuzzy soft set and its application. Int J Uncertain Quantif 8(2):101–117MathSciNet Selvachandran G, Singh PK (2018) Interval-valued complex fuzzy soft set and its application. Int J Uncertain Quantif 8(2):101–117MathSciNet
65.
Zurück zum Zitat Mahmooda T, Alib MI, Malika MA, Ahmeda W (2018) On lattice ordered intuitionistic fuzzy soft sets. Int J Algebra Stat 7(1–2):46–61 Mahmooda T, Alib MI, Malika MA, Ahmeda W (2018) On lattice ordered intuitionistic fuzzy soft sets. Int J Algebra Stat 7(1–2):46–61
66.
Zurück zum Zitat Arora R, Garg H (2018) Robust aggregation operators for multi-criteria decision-making with intuitionistic fuzzy soft set environment. Sci Iran 25(2):931–942 Arora R, Garg H (2018) Robust aggregation operators for multi-criteria decision-making with intuitionistic fuzzy soft set environment. Sci Iran 25(2):931–942
67.
Zurück zum Zitat Alcantud JCR, Torrecillas MJM (2018) Intertemporal choice of fuzzy soft sets. Symmetry 10(9):371MATH Alcantud JCR, Torrecillas MJM (2018) Intertemporal choice of fuzzy soft sets. Symmetry 10(9):371MATH
68.
Zurück zum Zitat Smarandache F (2018) Extension of soft set to hypersoft set, and then to plithogenic hypersoft set. Neutrosophic Sets Syst 22:168–170 Smarandache F (2018) Extension of soft set to hypersoft set, and then to plithogenic hypersoft set. Neutrosophic Sets Syst 22:168–170
70.
Zurück zum Zitat Nagarajan D, Kavikumar J, Lathamaheswari M, Broumi S (2019) Intelligent system stability using type-2 fuzzy controller. Int J Integr Eng 11(1):270–282 Nagarajan D, Kavikumar J, Lathamaheswari M, Broumi S (2019) Intelligent system stability using type-2 fuzzy controller. Int J Integr Eng 11(1):270–282
71.
Zurück zum Zitat Shi FG, Fan CZ (2019) Fuzzy soft sets as L-fuzzy sets. J Intell Fuzzy Syst 37:5061–5066 Shi FG, Fan CZ (2019) Fuzzy soft sets as L-fuzzy sets. J Intell Fuzzy Syst 37:5061–5066
72.
Zurück zum Zitat Hassan N, Al-Qudah Y (2019) Fuzzy parameterized complex multi-fuzzy soft set. Journal of Physics: conference series, 14th international symposium on geometric function theory and applications, vol 1212, p 012016 Hassan N, Al-Qudah Y (2019) Fuzzy parameterized complex multi-fuzzy soft set. Journal of Physics: conference series, 14th international symposium on geometric function theory and applications, vol 1212, p 012016
73.
Zurück zum Zitat Cakalli H, Acikgoz A, Esenbel F (2019) On strong pre-continuity with fuzzy soft sets. AIP Conf Proc 2183(1):030007 Cakalli H, Acikgoz A, Esenbel F (2019) On strong pre-continuity with fuzzy soft sets. AIP Conf Proc 2183(1):030007
74.
Zurück zum Zitat Khali AM, Li SG, Li HX, Zhang HD (2019) Comment on “Corrigendum to ‘On interval valued hesitant fuzzy soft sets” and “Generalized trapezoidal fuzzy soft set and its application in medical diagnosis”. Math Probl Eng 2019:1–6 Khali AM, Li SG, Li HX, Zhang HD (2019) Comment on “Corrigendum to ‘On interval valued hesitant fuzzy soft sets” and “Generalized trapezoidal fuzzy soft set and its application in medical diagnosis”. Math Probl Eng 2019:1–6
77.
Zurück zum Zitat Deli I (2019) Convex and concave sets based on soft sets and fuzzy soft sets. J New Theory 29:101–110 Deli I (2019) Convex and concave sets based on soft sets and fuzzy soft sets. J New Theory 29:101–110
78.
Zurück zum Zitat Nagarajan D, Lathamaheswari M, Broumi S, Smarandache F, Kavikumar J (2020) An interval valued triangular fuzzy soft sets and its application in decision making process using new aggregation operator. In: Dash S, Lakshmi C, Das S, Panigrahi M (eds) Artificial intelligence and evolutionary computations in engineering systems. Advances in intelligent systems and computing, vol 1056, pp 493–503 Nagarajan D, Lathamaheswari M, Broumi S, Smarandache F, Kavikumar J (2020) An interval valued triangular fuzzy soft sets and its application in decision making process using new aggregation operator. In: Dash S, Lakshmi C, Das S, Panigrahi M (eds) Artificial intelligence and evolutionary computations in engineering systems. Advances in intelligent systems and computing, vol 1056, pp 493–503
Metadaten
Titel
Triangular interval type-2 fuzzy soft set and its application
verfasst von
M. Lathamaheswari
D. Nagarajan
J. Kavikumar
Said Broumi
Publikationsdatum
01.06.2020
Verlag
Springer International Publishing
Erschienen in
Complex & Intelligent Systems / Ausgabe 3/2020
Print ISSN: 2199-4536
Elektronische ISSN: 2198-6053
DOI
https://doi.org/10.1007/s40747-020-00151-6

Weitere Artikel der Ausgabe 3/2020

Complex & Intelligent Systems 3/2020 Zur Ausgabe