Skip to main content
Erschienen in: Quantum Information Processing 1/2021

01.01.2021

True experimental reconstruction of quantum states and processes via convex optimization

verfasst von: Akshay Gaikwad, Arvind, Kavita Dorai

Erschienen in: Quantum Information Processing | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We use a constrained convex optimization (CCO) method to experimentally characterize arbitrary quantum states and unknown quantum processes on a two-qubit NMR quantum information processor. Standard protocols for quantum state and quantum process tomography are based on linear inversion, which often result in an unphysical density matrix and hence an invalid process matrix. The CCO method, on the other hand, produces physically valid density matrices and process matrices, with significantly improved fidelity as compared to the standard methods. We use the CCO method to estimate the Kraus operators and characterize gates in the presence of errors due to decoherence. We then assume Markovian system dynamics and use a Lindblad master equation in conjunction with the CCO method, to completely characterize the noise processes present in the NMR system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010)ADS Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45 (2010)ADS
2.
Zurück zum Zitat James, D.F.V., Kwiat, P.G., William J, M., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)ADS James, D.F.V., Kwiat, P.G., William J, M., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)ADS
3.
Zurück zum Zitat Long, G.L., Yan, H.Y., Sun, Y.: Analysis of density matrix reconstruction in NMR quantum computing. J. Opt. B. Quantum Semiclass. Opt. 3, 376 (2001)ADS Long, G.L., Yan, H.Y., Sun, Y.: Analysis of density matrix reconstruction in NMR quantum computing. J. Opt. B. Quantum Semiclass. Opt. 3, 376 (2001)ADS
4.
Zurück zum Zitat O’Brien, J.L., Pryde, G.J., Gilchrist, A., James, D.F.V., Langford, N.K., Ralph, T.C., White, A.G.: Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 93, 080502 (2004)ADS O’Brien, J.L., Pryde, G.J., Gilchrist, A., James, D.F.V., Langford, N.K., Ralph, T.C., White, A.G.: Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett. 93, 080502 (2004)ADS
5.
Zurück zum Zitat Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997)ADS Chuang, I.L., Nielsen, M.A.: Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455–2467 (1997)ADS
6.
Zurück zum Zitat Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A.: Priority choice experimental two-qubit tomography: measuring one by one all elements of density matrices. Sci. Rep. 6, 19610 (2016)ADS Bartkiewicz, K., Černoch, A., Lemr, K., Miranowicz, A.: Priority choice experimental two-qubit tomography: measuring one by one all elements of density matrices. Sci. Rep. 6, 19610 (2016)ADS
7.
Zurück zum Zitat Miranowicz, A., Bartkiewicz, K., Peřina, J., Koashi, M., Imoto, N., Nori, F.: Optimal two-qubit tomography based on local and global measurements: maximal robustness against errors as described by condition numbers. Phys. Rev. A 90, 062123 (2014)ADS Miranowicz, A., Bartkiewicz, K., Peřina, J., Koashi, M., Imoto, N., Nori, F.: Optimal two-qubit tomography based on local and global measurements: maximal robustness against errors as described by condition numbers. Phys. Rev. A 90, 062123 (2014)ADS
8.
Zurück zum Zitat Wölk, S., Sriarunothai, T., Giri, G.S., Wunderlich, C.: Distinguishing between statistical and systematic errors in quantum process tomography. New J. Phys. 21, 013015 (2019)ADS Wölk, S., Sriarunothai, T., Giri, G.S., Wunderlich, C.: Distinguishing between statistical and systematic errors in quantum process tomography. New J. Phys. 21, 013015 (2019)ADS
9.
Zurück zum Zitat Xin, T., Dawei, L., Klassen, J., Nengkun, Y., Ji, Z., Chen, J., Ma, X., Long, G., Zeng, B., Laflamme, R.: Quantum state tomography via reduced density matrices. Phys. Rev. Lett. 118, 020401 (2017)ADSMathSciNet Xin, T., Dawei, L., Klassen, J., Nengkun, Y., Ji, Z., Chen, J., Ma, X., Long, G., Zeng, B., Laflamme, R.: Quantum state tomography via reduced density matrices. Phys. Rev. Lett. 118, 020401 (2017)ADSMathSciNet
10.
Zurück zum Zitat Li, J., Huang, S., Luo, Z., Li, K., Dawei, L., Zeng, B.: Optimal design of measurement settings for quantum-state-tomography experiments. Phys. Rev. A 96, 032307 (2017)ADS Li, J., Huang, S., Luo, Z., Li, K., Dawei, L., Zeng, B.: Optimal design of measurement settings for quantum-state-tomography experiments. Phys. Rev. A 96, 032307 (2017)ADS
11.
Zurück zum Zitat Miranowicz, A., Özdemir, K., Bajer, J., Yusa, G., Imoto, N., Hirayama, Y., Nori, F.: Quantum state tomography of large nuclear spins in a semiconductor quantum well: optimal robustness against errors as quantified by condition numbers. Phys. Rev. B 92, 075312 (2015)ADS Miranowicz, A.,   Özdemir, K., Bajer, J., Yusa, G., Imoto, N., Hirayama, Y., Nori, F.: Quantum state tomography of large nuclear spins in a semiconductor quantum well: optimal robustness against errors as quantified by condition numbers. Phys. Rev. B 92, 075312 (2015)ADS
12.
Zurück zum Zitat Vind, F.A., Souza, A.M., Sarthour, R.S., Oliveira, I.S.: Quantum state tomography for strongly coupled nuclear spin systems. Phys. Rev. A 90, 062339 (2014)ADS Vind, F.A., Souza, A.M., Sarthour, R.S., Oliveira, I.S.: Quantum state tomography for strongly coupled nuclear spin systems. Phys. Rev. A 90, 062339 (2014)ADS
13.
Zurück zum Zitat Qi, B., Hou, Z., Wang, Y., Dong, D., Zhong, H.-S., Li, L., Xiang, G.-Y., Wiseman, H.M., Li, C.-F., Guo, G.-C.: Adaptive quantum state tomography via linear regression estimation: theory and two-qubit experiment. Quantum Inf. Process. 3, 19 (2017)ADS Qi, B., Hou, Z., Wang, Y., Dong, D., Zhong, H.-S., Li, L., Xiang, G.-Y., Wiseman, H.M., Li, C.-F., Guo, G.-C.: Adaptive quantum state tomography via linear regression estimation: theory and two-qubit experiment. Quantum Inf. Process. 3, 19 (2017)ADS
14.
Zurück zum Zitat Schwemmer, C., Knips, L., Richart, D., Weinfurter, H., Moroder, T., Kleinmann, M., Gühne, O.: Systematic errors in current quantum state tomography tools. Phys. Rev. Lett. 114, 080403 (2015)ADS Schwemmer, C., Knips, L., Richart, D., Weinfurter, H., Moroder, T., Kleinmann, M., Gühne, O.: Systematic errors in current quantum state tomography tools. Phys. Rev. Lett. 114, 080403 (2015)ADS
15.
Zurück zum Zitat Shang, J., Zhang, Z., Ng, H.K.: Superfast maximum-likelihood reconstruction for quantum tomography. Phys. Rev. A 95, 062336 (2017)ADSMathSciNet Shang, J., Zhang, Z., Ng, H.K.: Superfast maximum-likelihood reconstruction for quantum tomography. Phys. Rev. A 95, 062336 (2017)ADSMathSciNet
17.
Zurück zum Zitat Ferrie, C.: Self-guided quantum tomography. Phys. Rev. Lett. 113, 190404 (2014b)ADS Ferrie, C.: Self-guided quantum tomography. Phys. Rev. Lett. 113, 190404 (2014b)ADS
18.
Zurück zum Zitat Yang, J., Cong, S., Liu, X., Li, Z., Li, K.: Effective quantum state reconstruction using compressed sensing in NMR quantum computing. Phys. Rev. A 96, 052101 (2017)ADS Yang, J., Cong, S., Liu, X., Li, Z., Li, K.: Effective quantum state reconstruction using compressed sensing in NMR quantum computing. Phys. Rev. A 96, 052101 (2017)ADS
19.
Zurück zum Zitat Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)ADS Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)ADS
20.
Zurück zum Zitat Branderhorst, M.P.A., Nunn, J., Walmsley, I.A., Kosut, R.L.: Simplified quantum process tomography. New J. Phys. 11, 115010 (2009)ADS Branderhorst, M.P.A., Nunn, J., Walmsley, I.A., Kosut, R.L.: Simplified quantum process tomography. New J. Phys. 11, 115010 (2009)ADS
21.
Zurück zum Zitat Perito, I., Roncaglia, A.J., Bendersky, A.: Selective and efficient quantum process tomography in arbitrary finite dimension. Phys. Rev. A 98, 062303 (2018)ADS Perito, I., Roncaglia, A.J., Bendersky, A.: Selective and efficient quantum process tomography in arbitrary finite dimension. Phys. Rev. A 98, 062303 (2018)ADS
22.
Zurück zum Zitat Merkel, S.T., Gambetta, J.M., Smolin, J.A., Poletto, S., Córcoles, A.D., Johnson, B.R., Ryan, C.A., Steffen, M.: Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013)ADS Merkel, S.T., Gambetta, J.M., Smolin, J.A., Poletto, S., Córcoles, A.D., Johnson, B.R., Ryan, C.A., Steffen, M.: Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013)ADS
23.
Zurück zum Zitat Rodionov, A.V., Veitia, A., Barends, R., Kelly, J., Sank, D., Wenner, J., Martinis, J.M., Kosut, R.L., Korotkov, A.N.: Compressed sensing quantum process tomography for superconducting quantum gates. Phys. Rev. B 90, 144504 (2014)ADS Rodionov, A.V., Veitia, A., Barends, R., Kelly, J., Sank, D., Wenner, J., Martinis, J.M., Kosut, R.L., Korotkov, A.N.: Compressed sensing quantum process tomography for superconducting quantum gates. Phys. Rev. B 90, 144504 (2014)ADS
24.
Zurück zum Zitat Struchalin, G.I., Pogorelov, I.A., Straupe, S.S., Kravtsov, K.S., Radchenko, I.V., Kulik, S.P.: Experimental adaptive quantum tomography of two-qubit states. Phys. Rev. A 93, 012103 (2016)ADS Struchalin, G.I., Pogorelov, I.A., Straupe, S.S., Kravtsov, K.S., Radchenko, I.V., Kulik, S.P.: Experimental adaptive quantum tomography of two-qubit states. Phys. Rev. A 93, 012103 (2016)ADS
25.
Zurück zum Zitat Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik, S.P.: Experimental adaptive process tomography. Phys. Rev. A 95, 012302 (2017)ADS Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik, S.P.: Experimental adaptive process tomography. Phys. Rev. A 95, 012302 (2017)ADS
26.
Zurück zum Zitat Maciel, T.O., Vianna, R.O., Sarthour, R.S., Oliveira, I.S.: Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1. New J. Phys. 17, 113012 (2015)ADS Maciel, T.O., Vianna, R.O., Sarthour, R.S., Oliveira, I.S.: Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1. New J. Phys. 17, 113012 (2015)ADS
27.
Zurück zum Zitat Singh, H., Arvind: Constructing valid density matrices on an NMR quantum information processor via maximum likelihood estimation. Phys. Lett. A 380, 3051–3056 (2016a) Singh, H., Arvind: Constructing valid density matrices on an NMR quantum information processor via maximum likelihood estimation. Phys. Lett. A 380, 3051–3056 (2016a)
28.
Zurück zum Zitat Gaikwad, A., Rehal, D., Singh, A., Arvind: Experimental demonstration of selective quantum process tomography on an NMR quantum information processor. Phys. Rev. A 97, 022311 (2018) Gaikwad, A., Rehal, D., Singh, A., Arvind: Experimental demonstration of selective quantum process tomography on an NMR quantum information processor. Phys. Rev. A 97, 022311 (2018)
29.
Zurück zum Zitat Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature 4, 523–526 (2008) Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Katz, N., Lucero, E., O’Connell, A., Wang, H., Cleland, A.N., Martinis, J.M.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature 4, 523–526 (2008)
30.
Zurück zum Zitat Howard, M., Twamley, J., Wittmann, C., Gaebel, T., Jelezko, F., Wrachtrup, J.: Quantum process tomography and Linblad estimation of a solid-state qubit. New J. Phys. 8, 33–33 (2006)ADS Howard, M., Twamley, J., Wittmann, C., Gaebel, T., Jelezko, F., Wrachtrup, J.: Quantum process tomography and Linblad estimation of a solid-state qubit. New J. Phys. 8, 33–33 (2006)ADS
31.
Zurück zum Zitat Zhang, J., Souza, A.M., Brandao, F.D., Suter, D.: Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112, 050502 (2014)ADS Zhang, J., Souza, A.M., Brandao, F.D., Suter, D.: Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett. 112, 050502 (2014)ADS
32.
Zurück zum Zitat Schmiegelow, C.T., Larotonda, M.A., Paz, J.P.: Selective and efficient quantum process tomography with single photons. Phys. Rev. Lett. 104, 123601 (2010)ADS Schmiegelow, C.T., Larotonda, M.A., Paz, J.P.: Selective and efficient quantum process tomography with single photons. Phys. Rev. Lett. 104, 123601 (2010)ADS
33.
Zurück zum Zitat Robert, J., Chapman, C.F., Peruzzo, A.: Experimental demonstration of self-guided quantum tomography. Phys. Rev. Lett. 117, 040402 (2016) Robert, J., Chapman, C.F., Peruzzo, A.: Experimental demonstration of self-guided quantum tomography. Phys. Rev. Lett. 117, 040402 (2016)
34.
Zurück zum Zitat Wu, Z., Li, S., Zheng, W., Peng, X., Feng, M.: Experimental demonstration of simplified quantum process tomography. J. Chem. Phys. 138, 024318 (2013)ADS Wu, Z., Li, S., Zheng, W., Peng, X., Feng, M.: Experimental demonstration of simplified quantum process tomography. J. Chem. Phys. 138, 024318 (2013)ADS
35.
Zurück zum Zitat Schmiegelow, C.T., Bendersky, A., Larotonda, M.A., Paz, J.P.: Selective and efficient quantum process tomography without ancilla. Phys. Rev. Lett. 107, 100502 (2011)ADS Schmiegelow, C.T., Bendersky, A., Larotonda, M.A., Paz, J.P.: Selective and efficient quantum process tomography without ancilla. Phys. Rev. Lett. 107, 100502 (2011)ADS
36.
Zurück zum Zitat Kim, Y., Kim, Y.-S., Lee, S.-Y., Han, S.-W., Moon, S., Kim, Y.-H., Cho, Y.-W.: Direct quantum process tomography via measuring sequential weak values of incompatible observables. Nat. Commun. 9, 192 (2018)ADS Kim, Y., Kim, Y.-S., Lee, S.-Y., Han, S.-W., Moon, S., Kim, Y.-H., Cho, Y.-W.: Direct quantum process tomography via measuring sequential weak values of incompatible observables. Nat. Commun. 9, 192 (2018)ADS
37.
Zurück zum Zitat Myrskog, S.H., Fox, J.K., Mitchell, M.W., Steinberg, A.M.: Quantum process tomography on vibrational states of atoms in an optical lattice. Phys. Rev. A 72, 013615 (2005)ADS Myrskog, S.H., Fox, J.K., Mitchell, M.W., Steinberg, A.M.: Quantum process tomography on vibrational states of atoms in an optical lattice. Phys. Rev. A 72, 013615 (2005)ADS
38.
Zurück zum Zitat Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P.O., Körber, T.K., Hänsel, W., Häffner, H., Roos, C.F., Blatt, R.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)ADS Riebe, M., Kim, K., Schindler, P., Monz, T., Schmidt, P.O., Körber, T.K., Hänsel, W., Häffner, H., Roos, C.F., Blatt, R.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)ADS
39.
Zurück zum Zitat Bialczak, R.C., Ansmann, M., Hofheinz, M., Lucero, E., Neeley, M., O’ Connell, A.D., Sank, D., Wang, H., Wenner, J., Steffen, M., Cleland, A.N., Martinis, J.M.: Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409 (2010) Bialczak, R.C., Ansmann, M., Hofheinz, M., Lucero, E., Neeley, M., O’ Connell, A.D., Sank, D., Wang, H., Wenner, J., Steffen, M., Cleland, A.N., Martinis, J.M.: Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409 (2010)
40.
Zurück zum Zitat Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008)ADS Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008)ADS
41.
Zurück zum Zitat Branderhorst, M.P.A., Walmsley, I.A., Kosut, R.L., Rabitz, H.: Optimal experiment design for quantum state tomography of a molecular vibrational mode. J. Phys. B At. Mol. Opt. Phys. 41, 074004 (2008)ADS Branderhorst, M.P.A., Walmsley, I.A., Kosut, R.L., Rabitz, H.: Optimal experiment design for quantum state tomography of a molecular vibrational mode. J. Phys. B At. Mol. Opt. Phys. 41, 074004 (2008)ADS
43.
Zurück zum Zitat Vandersypen, L.M.K., Chuang, I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005)ADS Vandersypen, L.M.K., Chuang, I.L.: NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005)ADS
44.
Zurück zum Zitat Singh, A., Arvind: Entanglement detection on an NMR quantum-information processor using random local measurements. Phys. Rev. A 94, 062309 (2016b) Singh, A., Arvind: Entanglement detection on an NMR quantum-information processor using random local measurements. Phys. Rev. A 94, 062309 (2016b)
45.
Zurück zum Zitat Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508) pp. 284–289 (2004) Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508) pp. 284–289 (2004)
47.
Zurück zum Zitat Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889–1891 (2001)ADS Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889–1891 (2001)ADS
48.
Zurück zum Zitat Oliveira, I. S., Bonagamba, T. J., Sarthour, R. S., Freitas, J. C. C., deAzevedo, E. R.: NMR Quantum Information Processing. (Elsevier, Linacre House, Jordan Hill, Oxford OX2 8DP, UK, 2007) Oliveira, I. S., Bonagamba, T. J., Sarthour, R. S., Freitas, J. C. C., deAzevedo, E. R.: NMR Quantum Information Processing. (Elsevier, Linacre House, Jordan Hill, Oxford OX2 8DP, UK, 2007)
49.
Zurück zum Zitat Gavini-Viana, A., Souza, A.M., Soares-Pinto, D.O., Teles, J., Sarthour, R.S., deAzevedo, E.R., Bonagamba, T.J., Oliveira, I.S.: Normalization procedure for relaxation studies in NMR quantum information processing. Quantum Inf. Process. 9, 575–589 (2010)MATH Gavini-Viana, A., Souza, A.M., Soares-Pinto, D.O., Teles, J., Sarthour, R.S., deAzevedo, E.R., Bonagamba, T.J., Oliveira, I.S.: Normalization procedure for relaxation studies in NMR quantum information processing. Quantum Inf. Process. 9, 575–589 (2010)MATH
50.
Zurück zum Zitat Kraus, K., Bohm, A., Dollard, J.D., Wootters, W.H.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983) Kraus, K., Bohm, A., Dollard, J.D., Wootters, W.H.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)
51.
Zurück zum Zitat Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001)ADS Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001)ADS
52.
Zurück zum Zitat Kofman, A.G., Korotkov, A.N.: Two-qubit decoherence mechanisms revealed via quantum process tomography. Phys. Rev. A 80, 042103 (2009)ADSMathSciNet Kofman, A.G., Korotkov, A.N.: Two-qubit decoherence mechanisms revealed via quantum process tomography. Phys. Rev. A 80, 042103 (2009)ADSMathSciNet
53.
Zurück zum Zitat Singh, H., Arvind: Experimentally freezing quantum discord in a dephasing environment using dynamical decoupling. EPL Europhys. Lett. 118, 50001 (2017) Singh, H., Arvind: Experimentally freezing quantum discord in a dephasing environment using dynamical decoupling. EPL Europhys. Lett. 118, 50001 (2017)
Metadaten
Titel
True experimental reconstruction of quantum states and processes via convex optimization
verfasst von
Akshay Gaikwad
Arvind
Kavita Dorai
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02930-z

Weitere Artikel der Ausgabe 1/2021

Quantum Information Processing 1/2021 Zur Ausgabe

Neuer Inhalt