Skip to main content
Erschienen in:

18.07.2022

Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection

verfasst von: Gaith Rjoub, Omar Abdel Wahab, Jamal Bentahar, Robin Cohen, Ahmed Saleh Bataineh

Erschienen in: Information Systems Frontiers | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the context of distributed machine learning, the concept of federated learning (FL) has emerged as a solution to the privacy concerns that users have about sharing their own data with a third-party server. FL allows a group of users (often referred to as clients) to locally train a single machine learning model on their devices without sharing their raw data. One of the main challenges in FL is how to select the most appropriate clients to participate in the training of a certain task. In this paper, we address this challenge and propose a trust-based deep reinforcement learning approach to select the most adequate clients in terms of resource consumption and training time. On top of the client selection mechanism, we embed a transfer learning approach to handle the scarcity of data in some regions and compensate potential lack of learning at some servers. We apply our solution in the healthcare domain in a COVID-19 detection scenario over IoT devices. In the considered scenario, edge servers collaborate with IoT devices to train a COVID-19 detection model using FL without having to share any raw confidential data. Experiments conducted on a real-world COVID-19 dataset reveal that our solution achieves a good trade-off between detection accuracy and model execution time compared to existing approaches.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Dhaen, F., Hou, J., Rana, N.P., & et al. (2021). Advancing the understanding of the role of responsible ai in the continued use of iomt in healthcare. Information Systems Frontiers, pp. 1–20. Al-Dhaen, F., Hou, J., Rana, N.P., & et al. (2021). Advancing the understanding of the role of responsible ai in the continued use of iomt in healthcare. Information Systems Frontiers, pp. 1–20.
Zurück zum Zitat Anh, T.T., Luong, N.C., Niyato, D., & et al. (2019). Efficient training management for mobile crowd-machine learning: a deep reinforcement learning approach. IEEE Wireless Communications Letters, 8(5), 1345–1348.CrossRef Anh, T.T., Luong, N.C., Niyato, D., & et al. (2019). Efficient training management for mobile crowd-machine learning: a deep reinforcement learning approach. IEEE Wireless Communications Letters, 8(5), 1345–1348.CrossRef
Zurück zum Zitat Arisdakessian, S., Wahab, O.A., Mourad, A., & et al. (2020). Fogmatch: an intelligent multi-criteria IoT-fog scheduling approach using game theory. IEEE/ACM Transactions on Networking, 28(4), 1779–1789.CrossRef Arisdakessian, S., Wahab, O.A., Mourad, A., & et al. (2020). Fogmatch: an intelligent multi-criteria IoT-fog scheduling approach using game theory. IEEE/ACM Transactions on Networking, 28(4), 1779–1789.CrossRef
Zurück zum Zitat Bataineh, A.S., Bentahar, J., Wahab, O.A., & et al. (2020). A game-based secure trading of big data and IoT services: Blockchain as a two-sided market. In International Conference on Service-Oriented Computing (pp. 85–100). Springer. Bataineh, A.S., Bentahar, J., Wahab, O.A., & et al. (2020). A game-based secure trading of big data and IoT services: Blockchain as a two-sided market. In International Conference on Service-Oriented Computing (pp. 85–100). Springer.
Zurück zum Zitat Bataineh, A.S., Bentahar, J., Mizouni, R., & et al. (2021). Cloud computing as a platform for monetizing data services: A two-sided game business model. IEEE Transactions on Network and Service Management. Bataineh, A.S., Bentahar, J., Mizouni, R., & et al. (2021). Cloud computing as a platform for monetizing data services: A two-sided game business model. IEEE Transactions on Network and Service Management.
Zurück zum Zitat Bentahar, J., Drawel, N., & Sadiki, A. (2022). Quantitative group trust: A two-stage verification approach. In Proceedings of the 21th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, Auckland, New Zealand, May 9-13, 2022. International Foundation for Autonomous Agents and Multiagent Systems, p (in press). Bentahar, J., Drawel, N., & Sadiki, A. (2022). Quantitative group trust: A two-stage verification approach. In Proceedings of the 21th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, Auckland, New Zealand, May 9-13, 2022. International Foundation for Autonomous Agents and Multiagent Systems, p (in press).
Zurück zum Zitat Brisimi, T.S., Chen, R., Mela, T., & et al. (2018). Federated learning of predictive models from federated electronic health records. International Journal of Medical Informatics, 112, 59–67.CrossRef Brisimi, T.S., Chen, R., Mela, T., & et al. (2018). Federated learning of predictive models from federated electronic health records. International Journal of Medical Informatics, 112, 59–67.CrossRef
Zurück zum Zitat Brunese, L., Mercaldo, F., Reginelli, A., & et al. (2020). Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Computer Methods and Programs in Biomedicine, 196, 105,608.CrossRef Brunese, L., Mercaldo, F., Reginelli, A., & et al. (2020). Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays. Computer Methods and Programs in Biomedicine, 196, 105,608.CrossRef
Zurück zum Zitat Chen, M., Yang, Z., Saad, W., & et al. (2019). A joint learning and communications framework for federated learning over wireless networks. arXiv:190907972. Chen, M., Yang, Z., Saad, W., & et al. (2019). A joint learning and communications framework for federated learning over wireless networks. arXiv:190907972.
Zurück zum Zitat Drawel, N., Bentahar, J., & Qu, H. (2020). Computationally grounded quantitative trust with time. In Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, Auckland, New Zealand, May 9-13, 2020. International Foundation for Autonomous Agents and Multiagent Systems (pp. 1837–1839). Drawel, N., Bentahar, J., & Qu, H. (2020). Computationally grounded quantitative trust with time. In Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, Auckland, New Zealand, May 9-13, 2020. International Foundation for Autonomous Agents and Multiagent Systems (pp. 1837–1839).
Zurück zum Zitat Drawel, N., Bentahar, J., Laarej, A., & et al. (2021). Formalizing group and propagated trust in multi-agent systems. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence (pp. 60–66). Drawel, N., Bentahar, J., Laarej, A., & et al. (2021). Formalizing group and propagated trust in multi-agent systems. In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence (pp. 60–66).
Zurück zum Zitat Drawel, N., Bentahar, J., Laarej, A., & et al. (2022). Formal verification of group and propagated trust in multi-agent systems. Autonomous Agents and Multi-Agent Systems, 36(1), 1–31.CrossRef Drawel, N., Bentahar, J., Laarej, A., & et al. (2022). Formal verification of group and propagated trust in multi-agent systems. Autonomous Agents and Multi-Agent Systems, 36(1), 1–31.CrossRef
Zurück zum Zitat Gomathi, B., Krishnasamy, K., & Balaji, B.S. (2018). Epsilon-fuzzy dominance sort-based composite discrete artificial bee colony optimisation for multi-objective cloud task scheduling problem. International Journal of Business Intelligence and Data Mining, 13(1-3), 247–266.CrossRef Gomathi, B., Krishnasamy, K., & Balaji, B.S. (2018). Epsilon-fuzzy dominance sort-based composite discrete artificial bee colony optimisation for multi-objective cloud task scheduling problem. International Journal of Business Intelligence and Data Mining, 13(1-3), 247–266.CrossRef
Zurück zum Zitat Hu, C., Jiang, J., & Wang, Z. (2019). Decentralized federated learning: A segmented gossip approach. arXiv:190807782. Hu, C., Jiang, J., & Wang, Z. (2019). Decentralized federated learning: A segmented gossip approach. arXiv:190807782.
Zurück zum Zitat Hu, S., & Li, G. (2019). Dynamic request scheduling optimization in mobile edge computing for IoT applications. IEEE Internet of Things Journal, 7(2), 1426–1437.CrossRef Hu, S., & Li, G. (2019). Dynamic request scheduling optimization in mobile edge computing for IoT applications. IEEE Internet of Things Journal, 7(2), 1426–1437.CrossRef
Zurück zum Zitat Hu, S., Gao, Y., Niu, Z., & et al. (2020). Weakly supervised deep learning for COVID-19 infection detection and classification from CT images. IEEE Access, 8, 118,869–118,883.CrossRef Hu, S., Gao, Y., Niu, Z., & et al. (2020). Weakly supervised deep learning for COVID-19 infection detection and classification from CT images. IEEE Access, 8, 118,869–118,883.CrossRef
Zurück zum Zitat Iglewicz, B., & Hoaglin, D.C. (1993). How to detect and handle outliers, vol 16. Asq Press. Iglewicz, B., & Hoaglin, D.C. (1993). How to detect and handle outliers, vol 16. Asq Press.
Zurück zum Zitat Kumar, P., Dwivedi, Y.K., & Anand, A. (2021). Responsible artificial intelligence (ai) for value formation and market performance in healthcare: the mediating role of patient’s cognitive engagement. Information Systems Frontiers, pp. 1–24. Kumar, P., Dwivedi, Y.K., & Anand, A. (2021). Responsible artificial intelligence (ai) for value formation and market performance in healthcare: the mediating role of patient’s cognitive engagement. Information Systems Frontiers, pp. 1–24.
Zurück zum Zitat Lei, L., Xu, H., Xiong, X., & et al. (2019). Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-iot edge computing system. IEEE Internet of Things Journal, 6(3), 5345–5362.CrossRef Lei, L., Xu, H., Xiong, X., & et al. (2019). Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-iot edge computing system. IEEE Internet of Things Journal, 6(3), 5345–5362.CrossRef
Zurück zum Zitat Li, S., Xu, L.D., & Zhao, S. (2015). The internet of things: a survey. Information Systems Frontiers, 17(2), 243–259.CrossRef Li, S., Xu, L.D., & Zhao, S. (2015). The internet of things: a survey. Information Systems Frontiers, 17(2), 243–259.CrossRef
Zurück zum Zitat Liu, N., Li, Z., Xu, J., & et al. (2017). A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning. In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS) (pp. 372–382). IEEE. Liu, N., Li, Z., Xu, J., & et al. (2017). A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning. In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS) (pp. 372–382). IEEE.
Zurück zum Zitat Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2020). Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications, 141, 112,963.CrossRef Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2020). Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications, 141, 112,963.CrossRef
Zurück zum Zitat Luo, J., Yin, L., Hu, J., & et al. (2019). Container-based fog computing architecture and energy-balancing scheduling algorithm for energy IoT. Future Generation Computer Systems, 97, 50–60.CrossRef Luo, J., Yin, L., Hu, J., & et al. (2019). Container-based fog computing architecture and energy-balancing scheduling algorithm for energy IoT. Future Generation Computer Systems, 97, 50–60.CrossRef
Zurück zum Zitat Mansouri, N., Zade, B.M.H., & Javidi, M.M. (2019). Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory. Computers & Industrial Engineering, 130, 597–633.CrossRef Mansouri, N., Zade, B.M.H., & Javidi, M.M. (2019). Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory. Computers & Industrial Engineering, 130, 597–633.CrossRef
Zurück zum Zitat Meng, L., Dong, D., Li, L., & et al. (2020). A deep learning prognosis model help alert for covid-19 patients at high-risk of death: a multi-center study. IEEE Journal of Biomedical and Health Informatics, 24(12), 3576–3584.CrossRef Meng, L., Dong, D., Li, L., & et al. (2020). A deep learning prognosis model help alert for covid-19 patients at high-risk of death: a multi-center study. IEEE Journal of Biomedical and Health Informatics, 24(12), 3576–3584.CrossRef
Zurück zum Zitat Nguyen, H.T., Luong, N.C., Zhao, J., & et al. (2019). Resource allocation in mobility-aware federated learning networks: A deep reinforcement learning approach. arXiv:191009172. Nguyen, H.T., Luong, N.C., Zhao, J., & et al. (2019). Resource allocation in mobility-aware federated learning networks: A deep reinforcement learning approach. arXiv:191009172.
Zurück zum Zitat Nishio, T., & Yonetani, R. (2019). Client selection for federated learning with heterogeneous resources in mobile edge. In IEEE International Conference on Communications (ICC) (pp. 1–7). Nishio, T., & Yonetani, R. (2019). Client selection for federated learning with heterogeneous resources in mobile edge. In IEEE International Conference on Communications (ICC) (pp. 1–7).
Zurück zum Zitat Nour, M., Cömert, Z., & Polat, K. (2020). A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization. Applied Soft Computing, pp. 106580. Nour, M., Cömert, Z., & Polat, K. (2020). A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization. Applied Soft Computing, pp. 106580.
Zurück zum Zitat Otoom, M., Otoum, N., Alzubaidi, M.A., & et al. (2020). An IoT-based framework for early identification and monitoring of COVID-19 cases. Biomedical Signal Processing and Control, pp. 102149. Otoom, M., Otoum, N., Alzubaidi, M.A., & et al. (2020). An IoT-based framework for early identification and monitoring of COVID-19 cases. Biomedical Signal Processing and Control, pp. 102149.
Zurück zum Zitat Ozturk, T., Talo, M., Yildirim, E.A., & et al. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine pp. 103792. Ozturk, T., Talo, M., Yildirim, E.A., & et al. (2020). Automated detection of COVID-19 cases using deep neural networks with X-ray images. Computers in Biology and Medicine pp. 103792.
Zurück zum Zitat Qiu, F., Zhang, B., & Guo, J. (2016). A deep learning approach for vm workload prediction in the cloud. In 2016 17Th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD) (pp. 319–324). IEEE. Qiu, F., Zhang, B., & Guo, J. (2016). A deep learning approach for vm workload prediction in the cloud. In 2016 17Th IEEE/ACIS international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (SNPD) (pp. 319–324). IEEE.
Zurück zum Zitat Rahman, M.A., Hossain, M.S., Alrajeh, N.A., & et al. (2020). B5G And explainable deep learning assisted healthcare vertical at the edge: COVID-i9 perspective. IEEE Network, 34(4), 98–105.CrossRef Rahman, M.A., Hossain, M.S., Alrajeh, N.A., & et al. (2020). B5G And explainable deep learning assisted healthcare vertical at the edge: COVID-i9 perspective. IEEE Network, 34(4), 98–105.CrossRef
Zurück zum Zitat Rjoub, G., & Bentahar, J. (2017). Cloud task scheduling based on swarm intelligence and machine learning. In 2017 IEEE 5Th international conference on future internet of things and cloud (FiCloud) (pp. 272–279). IEEE. Rjoub, G., & Bentahar, J. (2017). Cloud task scheduling based on swarm intelligence and machine learning. In 2017 IEEE 5Th international conference on future internet of things and cloud (FiCloud) (pp. 272–279). IEEE.
Zurück zum Zitat Rjoub, G., Bentahar, J., & Wahab, O.A. (2020a). Bigtrustscheduling: Trust-aware big data task scheduling approach in cloud computing environments. Future Generation Computer Systems, 110, 1079–1097.CrossRef Rjoub, G., Bentahar, J., & Wahab, O.A. (2020a). Bigtrustscheduling: Trust-aware big data task scheduling approach in cloud computing environments. Future Generation Computer Systems, 110, 1079–1097.CrossRef
Zurück zum Zitat Rjoub, G., Wahab, O.A., Bentahar, J., & et al (2020b). A trust and energy-aware double deep reinforcement learning scheduling strategy for federated learning on IoT devices. In International Conference on Service-Oriented Computing (pp. 319–333). Springer. Rjoub, G., Wahab, O.A., Bentahar, J., & et al (2020b). A trust and energy-aware double deep reinforcement learning scheduling strategy for federated learning on IoT devices. In International Conference on Service-Oriented Computing (pp. 319–333). Springer.
Zurück zum Zitat Rjoub, G., Bentahar, J., Abdel Wahab, O., & et al. (2021a). Deep and reinforcement learning for automated task scheduling in large-scale cloud computing systems. Concurrency and Computation: Practice and Experience, 33(23), e5919.CrossRef Rjoub, G., Bentahar, J., Abdel Wahab, O., & et al. (2021a). Deep and reinforcement learning for automated task scheduling in large-scale cloud computing systems. Concurrency and Computation: Practice and Experience, 33(23), e5919.CrossRef
Zurück zum Zitat Rjoub, G., Wahab, O.A., Bentahar, J., & et al (2021b). Improving autonomous vehicles safety in snow weather using federated yolo cnn learning. In International Conference on Mobile Web and Intelligent Information Systems (pp. 121–134). Springer. Rjoub, G., Wahab, O.A., Bentahar, J., & et al (2021b). Improving autonomous vehicles safety in snow weather using federated yolo cnn learning. In International Conference on Mobile Web and Intelligent Information Systems (pp. 121–134). Springer.
Zurück zum Zitat Rjoub, G., Wahab, O.A., Bentahar, J., & et al. (2022). Trust-driven reinforcement selection strategy for federated learning on iot devices. Computing, pp. 1–23. Rjoub, G., Wahab, O.A., Bentahar, J., & et al. (2022). Trust-driven reinforcement selection strategy for federated learning on iot devices. Computing, pp. 1–23.
Zurück zum Zitat Singh, R.P., Javaid, M., Haleem, A., & et al. (2020). Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. Singh, R.P., Javaid, M., Haleem, A., & et al. (2020). Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews.
Zurück zum Zitat Song, B., Yu, Y., Zhou, Y., & et al. (2018). Host load prediction with long short-term memory in cloud computing. The Journal of Supercomputing, 74(12), 6554–6568.CrossRef Song, B., Yu, Y., Zhou, Y., & et al. (2018). Host load prediction with long short-term memory in cloud computing. The Journal of Supercomputing, 74(12), 6554–6568.CrossRef
Zurück zum Zitat Toraman, S., Alakus, T.B., & Turkoglu, I. (2020). Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks. Chaos, Solitons & Fractals, 140, 110,122.CrossRef Toraman, S., Alakus, T.B., & Turkoglu, I. (2020). Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks. Chaos, Solitons & Fractals, 140, 110,122.CrossRef
Zurück zum Zitat Tuli, S., Tuli, S., Tuli, R., & et al. (2020). Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet of Things pp. 100222. Tuli, S., Tuli, S., Tuli, R., & et al. (2020). Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet of Things pp. 100222.
Zurück zum Zitat Wahab, O.A. (2022). Intrusion detection in the IoT under data and concept drifts: Online deep learning approach. IEEE Internet of Things Journal. Wahab, O.A. (2022). Intrusion detection in the IoT under data and concept drifts: Online deep learning approach. IEEE Internet of Things Journal.
Zurück zum Zitat Wahab, O.A., Bentahar, J., Otrok, H., & et al. (2016). How to distribute the detection load among virtual machines to maximize the detection of distributed attacks in the cloud?. In In 2016 IEEE International Conference on Services Computing (SCC) (pp. 316–323). IEEE. Wahab, O.A., Bentahar, J., Otrok, H., & et al. (2016). How to distribute the detection load among virtual machines to maximize the detection of distributed attacks in the cloud?. In In 2016 IEEE International Conference on Services Computing (SCC) (pp. 316–323). IEEE.
Zurück zum Zitat Wahab, O.A., Cohen, R., Bentahar, J., & et al. (2020). An endorsement-based trust bootstrapping approach for newcomer cloud services. Information Sciences, 527, 159–175.CrossRef Wahab, O.A., Cohen, R., Bentahar, J., & et al. (2020). An endorsement-based trust bootstrapping approach for newcomer cloud services. Information Sciences, 527, 159–175.CrossRef
Zurück zum Zitat Wahab, O.A., Mourad, A., Otrok, H., & et al. (2021). Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems. IEEE Communications Surveys & Tutorials. Wahab, O.A., Mourad, A., Otrok, H., & et al. (2021). Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems. IEEE Communications Surveys & Tutorials.
Zurück zum Zitat Wahab, O.A., Rjoub, G., Bentahar, J., & et al. (2022). Federated against the cold: A trust-based federated learning approach to counter the cold start problem in recommendation systems. Information Sciences. Wahab, O.A., Rjoub, G., Bentahar, J., & et al. (2022). Federated against the cold: A trust-based federated learning approach to counter the cold start problem in recommendation systems. Information Sciences.
Zurück zum Zitat Wang, G., Liu, X., Li, C., & et al. (2020a). A noise-robust framework for automatic segmentation of covid-19 pneumonia lesions from ct images. IEEE Transactions on Medical Imaging, 39(8), 2653–2663.CrossRef Wang, G., Liu, X., Li, C., & et al. (2020a). A noise-robust framework for automatic segmentation of covid-19 pneumonia lesions from ct images. IEEE Transactions on Medical Imaging, 39(8), 2653–2663.CrossRef
Zurück zum Zitat Wang, L., Lin, Z.Q., & Wong, A. (2020b). Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Scientific Reports, 10(1), 1–12. Wang, L., Lin, Z.Q., & Wong, A. (2020b). Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. Scientific Reports, 10(1), 1–12.
Zurück zum Zitat Zhai, Y., Bao, T., Zhu, L., & et al. (2020). Toward reinforcement-learning-based service deployment of 5g mobile edge computing with request-aware scheduling. IEEE Wireless Communications, 27(1), 84–91.CrossRef Zhai, Y., Bao, T., Zhu, L., & et al. (2020). Toward reinforcement-learning-based service deployment of 5g mobile edge computing with request-aware scheduling. IEEE Wireless Communications, 27(1), 84–91.CrossRef
Zurück zum Zitat Zhang, L., Shen, B., Barnawi, A., & et al. (2021). Feddpgan: federated differentially private generative adversarial networks framework for the detection of covid-19 pneumonia. Information Systems Frontiers, 23(6), 1403–1415.CrossRef Zhang, L., Shen, B., Barnawi, A., & et al. (2021). Feddpgan: federated differentially private generative adversarial networks framework for the detection of covid-19 pneumonia. Information Systems Frontiers, 23(6), 1403–1415.CrossRef
Zurück zum Zitat Zhou, Z., Li, F., Zhu, H., & et al. (2019). An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments. Neural Computing and Applications, pp. 1–11. Zhou, Z., Li, F., Zhu, H., & et al. (2019). An improved genetic algorithm using greedy strategy toward task scheduling optimization in cloud environments. Neural Computing and Applications, pp. 1–11.
Metadaten
Titel
Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection
verfasst von
Gaith Rjoub
Omar Abdel Wahab
Jamal Bentahar
Robin Cohen
Ahmed Saleh Bataineh
Publikationsdatum
18.07.2022
Verlag
Springer US
Erschienen in
Information Systems Frontiers / Ausgabe 4/2024
Print ISSN: 1387-3326
Elektronische ISSN: 1572-9419
DOI
https://doi.org/10.1007/s10796-022-10307-z