Skip to main content
Erschienen in:

03.11.2023

Trustworthy Artificial Intelligence Based on an Explicable Temporal Feature Network for Industrial Fault Diagnosis

verfasst von: Junwei Hu, Yong Zhang, Weigang Li, Xiujuan Zheng, Zhiqiang Tian

Erschienen in: Cognitive Computation | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial intelligence is extensively utilized across various high-risk domains, and ensuring the safety, reliability, and trustworthiness of these systems is of paramount importance. This necessitates adherence to several imperative requirements such as fairness, explainability, accountability, reliability, and acceptability in order to establish the trustworthiness of these systems. The decision-making process of the systems relies heavily on data quality. However, existing studies in the field of industrial fault diagnosis have not fully considered the influence of noise interference on the system accuracy and the interpretability of the algorithm. Therefore, this study aims to investigate reliable and robust diagnostic techniques along with black-box model interpretation when confronted with noise interference in practical applications for industrial fault diagnosis. To solve the above problems, an explicable temporal feature network (ETFN) based on deep Shapley additive explanation (Deep SHAP) values is proposed, which increases the robustness and interpretability of the model. First, adaptive features extracted from the improved deep residual shrinkage network are combined with empirical features to increase the robustness of the model. Then, the combined features are used as input to the ETFN model for rotating device diagnosis. Deep SHAP is used to rank all the combined feature contributions and further interpret the model diagnosis by adjusting the number of features. The proposed ETFN achieves a good balance between stability, accuracy, and interpretation on three real-world datasets. Leading accuracy is achieved on all three datasets. In particular, a diagnostic accuracy of more than 97% can still be maintained when perturbed by noise, which is not achieved by alternative methods. The interoperability of the proposed method in industrial diagnostic applications is also enhanced by Deep SHAP. We implemented ETFN for extremely robust diagnosis and human-computer interaction in real noise for industrial data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kaur D, Uslu S, Rittichier KJ, Durresi A. Trustworthy artificial intelligence: a review. ACM Comput Surv (CSUR). 2022;55(2):1–38.CrossRef Kaur D, Uslu S, Rittichier KJ, Durresi A. Trustworthy artificial intelligence: a review. ACM Comput Surv (CSUR). 2022;55(2):1–38.CrossRef
2.
Zurück zum Zitat Crawford K. The atlas of AI: Power, politics, and the planetary costs of artificial intelligence, Yale University Press, 2021. Crawford K. The atlas of AI: Power, politics, and the planetary costs of artificial intelligence, Yale University Press, 2021.
3.
Zurück zum Zitat Feng Y, Chen J, Xie J, Zhang T, Lv H, Pan T. Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: algorithms, applications, and prospects. Knowl Based Syst. 2022;235. Feng Y, Chen J, Xie J, Zhang T, Lv H, Pan T. Meta-learning as a promising approach for few-shot cross-domain fault diagnosis: algorithms, applications, and prospects. Knowl Based Syst. 2022;235.
4.
Zurück zum Zitat Zheng X, Li H, Zhang S, Zhang Y, Li J, Zhang Y, Zhao W. Hydrodynamic feature extraction and intelligent identification of flow regimes in vaneless space of a pump turbine using improved empirical wavelet transform and Bayesian optimized convolutional neural network. Energy. 2023;282. https://doi.org/10.1016/j.energy.2023.128705. Zheng X, Li H, Zhang S, Zhang Y, Li J, Zhang Y, Zhao W. Hydrodynamic feature extraction and intelligent identification of flow regimes in vaneless space of a pump turbine using improved empirical wavelet transform and Bayesian optimized convolutional neural network. Energy. 2023;282. https://​doi.​org/​10.​1016/​j.​energy.​2023.​128705.
7.
Zurück zum Zitat Xie J, Li Z, Zhou Z, Liu S. A novel bearing fault classification method based on XGBoost: the fusion of deep learning-based features and empirical features. IEEE Trans Instrum Meas. 2020;70:1–9. Xie J, Li Z, Zhou Z, Liu S. A novel bearing fault classification method based on XGBoost: the fusion of deep learning-based features and empirical features. IEEE Trans Instrum Meas. 2020;70:1–9.
9.
Zurück zum Zitat Ma L, Ding Y, Wang Z, Wang C, Ma J, Lu C. An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network. Expert Syst Appl. 2021;182:115234.CrossRef Ma L, Ding Y, Wang Z, Wang C, Ma J, Lu C. An interpretable data augmentation scheme for machine fault diagnosis based on a sparsity-constrained generative adversarial network. Expert Syst Appl. 2021;182:115234.CrossRef
10.
Zurück zum Zitat Zhang J, Wang Y, Zhu K, Zhang Y, Li Y. Diagnosis of interturn short-circuit faults in permanent magnet synchronous motors based on few-shot learning under a federated learning framework. IEEE Trans Industr Inf. 2021;17(12):8495–504.CrossRef Zhang J, Wang Y, Zhu K, Zhang Y, Li Y. Diagnosis of interturn short-circuit faults in permanent magnet synchronous motors based on few-shot learning under a federated learning framework. IEEE Trans Industr Inf. 2021;17(12):8495–504.CrossRef
11.
Zurück zum Zitat Liu Y, Garg S, Nie J, Zhang Y, Xiong Z, Kang J, Hossain MS. Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach. IEEE Internet Things J. 2020;8(8):6348–58.CrossRef Liu Y, Garg S, Nie J, Zhang Y, Xiong Z, Kang J, Hossain MS. Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach. IEEE Internet Things J. 2020;8(8):6348–58.CrossRef
12.
Zurück zum Zitat Yang Z-X, Rong H-J, Wong PK, Angelov P, Vong CM, Chiu CW, Yang Z-X. A novel multiple feature-based engine knock detection system using sparse Bayesian extreme learning machine. Cogn Comput. 2022;14(2):828–51.CrossRef Yang Z-X, Rong H-J, Wong PK, Angelov P, Vong CM, Chiu CW, Yang Z-X. A novel multiple feature-based engine knock detection system using sparse Bayesian extreme learning machine. Cogn Comput. 2022;14(2):828–51.CrossRef
13.
Zurück zum Zitat Zhong S-S, Fu S, Lin L. A novel gas turbine fault diagnosis method based on transfer learning with CNN. Measurement. 2019;137:435–53.CrossRef Zhong S-S, Fu S, Lin L. A novel gas turbine fault diagnosis method based on transfer learning with CNN. Measurement. 2019;137:435–53.CrossRef
14.
Zurück zum Zitat Ke L, Zhang Y, Yang B, Luo Z, Liu Z. Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: an application in modular multilevel converters. Neurocomputing. 2021;430:24–33.CrossRef Ke L, Zhang Y, Yang B, Luo Z, Liu Z. Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: an application in modular multilevel converters. Neurocomputing. 2021;430:24–33.CrossRef
16.
Zurück zum Zitat Yuan Y, Ma G, Cheng C, Zhou B, Zhao H, Zhang H-T, Ding H. A general end-to-end diagnosis framework for manufacturing systems. Natl Sci Rev. 2020;7(2):418–29.CrossRef Yuan Y, Ma G, Cheng C, Zhou B, Zhao H, Zhang H-T, Ding H. A general end-to-end diagnosis framework for manufacturing systems. Natl Sci Rev. 2020;7(2):418–29.CrossRef
18.
Zurück zum Zitat Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jing L, Zhang M, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):283–8.CrossRef Yan L, Zhang H-T, Goncalves J, Xiao Y, Wang M, Guo Y, Sun C, Tang X, Jing L, Zhang M, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2(5):283–8.CrossRef
19.
Zurück zum Zitat Cheng L, Li L, Li S, Ran S, Zhang Z, Zhang Y. Prediction of gas concentration evolution with evolutionary attention-based temporal graph convolutional network. Expert Syst Appl. 2022;200:116944.CrossRef Cheng L, Li L, Li S, Ran S, Zhang Z, Zhang Y. Prediction of gas concentration evolution with evolutionary attention-based temporal graph convolutional network. Expert Syst Appl. 2022;200:116944.CrossRef
20.
Zurück zum Zitat Vilone G, Longo L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf Fusion. 2021;76:89–106.CrossRef Vilone G, Longo L. Notions of explainability and evaluation approaches for explainable artificial intelligence. Inf Fusion. 2021;76:89–106.CrossRef
21.
Zurück zum Zitat Liu Y, Li L, Zhao S, Song S. A global surrogate model technique based on principal component analysis and kriging for uncertainty propagation of dynamic systems. Reliab Eng Syst Saf. 2021;207:107365.CrossRef Liu Y, Li L, Zhao S, Song S. A global surrogate model technique based on principal component analysis and kriging for uncertainty propagation of dynamic systems. Reliab Eng Syst Saf. 2021;207:107365.CrossRef
22.
Zurück zum Zitat Pandey P, Rai A, Mitra M. Explainable 1-D convolutional neural network for damage detection using lamb wave. Mech Syst Signal Process. 2022;164. Pandey P, Rai A, Mitra M. Explainable 1-D convolutional neural network for damage detection using lamb wave. Mech Syst Signal Process. 2022;164.
23.
Zurück zum Zitat Santos OL, Dotta D, Wang M, Chow JH, Decker IC. Performance analysis of a DNN classifier for power system events using an interpretability method. Int J Electr Power Energy Syst. 2022;136. Santos OL, Dotta D, Wang M, Chow JH, Decker IC. Performance analysis of a DNN classifier for power system events using an interpretability method. Int J Electr Power Energy Syst. 2022;136.
24.
Zurück zum Zitat Ibrahim M, Louie M, Modarres C, Paisley J. Global explanations of neural networks: mapping the landscape of predictions, in: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society; 2019, pp. 279–287. Ibrahim M, Louie M, Modarres C, Paisley J. Global explanations of neural networks: mapping the landscape of predictions, in: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society; 2019, pp. 279–287.
25.
Zurück zum Zitat Yang Z-B, Zhang J-P, Zhao Z-B, Zhai Z, Chen X-F. Interpreting network knowledge with attention mechanism for bearing fault diagnosis. Appl Soft Comput. 2020;97:106829.CrossRef Yang Z-B, Zhang J-P, Zhao Z-B, Zhai Z, Chen X-F. Interpreting network knowledge with attention mechanism for bearing fault diagnosis. Appl Soft Comput. 2020;97:106829.CrossRef
26.
Zurück zum Zitat Zhu C, Chen Z, Zhao R, Wang J, Yan R. Decoupled feature-temporal CNN: explaining deep learning-based machine health monitoring. IEEE Trans Instrum Meas. 2021;70:1–13. Zhu C, Chen Z, Zhao R, Wang J, Yan R. Decoupled feature-temporal CNN: explaining deep learning-based machine health monitoring. IEEE Trans Instrum Meas. 2021;70:1–13.
27.
Zurück zum Zitat Zhang X, He C, Lu Y, Chen B, Zhu L, Zhang L. Fault diagnosis for small samples based on attention mechanism. Measurement. 2022;187:110242.CrossRef Zhang X, He C, Lu Y, Chen B, Zhu L, Zhang L. Fault diagnosis for small samples based on attention mechanism. Measurement. 2022;187:110242.CrossRef
28.
Zurück zum Zitat Li T, Zhao Z, Sun C, Cheng L, Chen X, Yan R, Gao RX. WaveletKernelNet: an interpretable deep neural network for industrial intelligent diagnosis. IEEE Trans Syst Man Cybern Syst. 2022;52(4):2302–12.CrossRef Li T, Zhao Z, Sun C, Cheng L, Chen X, Yan R, Gao RX. WaveletKernelNet: an interpretable deep neural network for industrial intelligent diagnosis. IEEE Trans Syst Man Cybern Syst. 2022;52(4):2302–12.CrossRef
29.
Zurück zum Zitat Li T, Sun C, Li S, Wang Z, Chen X, Yan R. Explainable graph wavelet denoising network for intelligent fault diagnosis. IEEE Trans Neural Netw Learn Syst. 2022, pp. 1–14. Li T, Sun C, Li S, Wang Z, Chen X, Yan R. Explainable graph wavelet denoising network for intelligent fault diagnosis. IEEE Trans Neural Netw Learn Syst. 2022, pp. 1–14.
30.
Zurück zum Zitat Li Y, Zhou Z, Sun C, Chen X, Yan R. Variational attention-based interpretable transformer network for rotary machine fault diagnosis. IEEE Trans Neural Netw Learn Syst. 2022, pp. 1–14. Li Y, Zhou Z, Sun C, Chen X, Yan R. Variational attention-based interpretable transformer network for rotary machine fault diagnosis. IEEE Trans Neural Netw Learn Syst. 2022, pp. 1–14.
31.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
32.
Zurück zum Zitat Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6(9):2812–31.CrossRef Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014;6(9):2812–31.CrossRef
33.
Zurück zum Zitat Zhang Y, Xin Y, Liu Z-W, Chi M, Ma G. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE. Reliab Eng Syst Saf. 2022;220. Zhang Y, Xin Y, Liu Z-W, Chi M, Ma G. Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE. Reliab Eng Syst Saf. 2022;220.
34.
Zurück zum Zitat Li Y, Chen Y, Dai X, Chen D, Liu M, Yuan L, Liu Z, Zhang L, Vasconcelos N. Micronet: Improving image recognition with extremely low flops, in: Proceedings of the IEEE/CVF International conference on computer vision, 2021, pp. 468–477. Li Y, Chen Y, Dai X, Chen D, Liu M, Yuan L, Liu Z, Zhang L, Vasconcelos N. Micronet: Improving image recognition with extremely low flops, in: Proceedings of the IEEE/CVF International conference on computer vision, 2021, pp. 468–477.
35.
Zurück zum Zitat Woo S, Park J, Lee J-Y, Kweon IS. Cbam: Convolutional block attention module, in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19. Woo S, Park J, Lee J-Y, Kweon IS. Cbam: Convolutional block attention module, in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19.
37.
Zurück zum Zitat Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International conference on machine learning, 2017, pp. 3145–3153. Shrikumar A, Greenside P, Kundaje A. Learning important features through propagating activation differences. In: International conference on machine learning, 2017, pp. 3145–3153.
38.
Zurück zum Zitat Shao H, Jiang H, Zhang H, Duan W, Liang T, Wu S. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech Syst Signal Process. 2018;100:743–65.CrossRef Shao H, Jiang H, Zhang H, Duan W, Liang T, Wu S. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing. Mech Syst Signal Process. 2018;100:743–65.CrossRef
39.
Zurück zum Zitat Zhao R, Wang D, Yan R, Mao K, Shen F, Wang J. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Trans Ind Electron. 2017;65(2):1539–48.CrossRef Zhao R, Wang D, Yan R, Mao K, Shen F, Wang J. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Trans Ind Electron. 2017;65(2):1539–48.CrossRef
Metadaten
Titel
Trustworthy Artificial Intelligence Based on an Explicable Temporal Feature Network for Industrial Fault Diagnosis
verfasst von
Junwei Hu
Yong Zhang
Weigang Li
Xiujuan Zheng
Zhiqiang Tian
Publikationsdatum
03.11.2023
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2024
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10218-4