Skip to main content
Erschienen in: Journal of Materials Science 23/2016

17.08.2016 | Original Paper

Tunable shape memory properties of rigid–flexible epoxy networks

verfasst von: Qi Zou, Longhan Ba, Xiaocun Tan, Mengjie Tu, Jue Cheng, Junying Zhang

Erschienen in: Journal of Materials Science | Ausgabe 23/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of regular and tunable rigid–flexible crosslinking networks have been prepared to investigate shape memory effects. The tunable rigid–flexible epoxy resins (TRFEPs) were synthesized by ultraviolet light thiol–ene click chemistry. The FTIR and 1H NMR measurements indicated that TRFEPs were successfully synthesized. The thermal, thermomechanical, mechanical, and shape memory properties of all regular crosslinking networks were systematically investigated by DSC, DMA, tensile test, and quantitative shape memory evaluation method, respectively. It was found that with the flexibility of the crosslinking networks increasing, T gDSC, T gDMA, E′ (25 °C), shape recovery rate, and tensile stress decreased and elongation at break increased. Besides, DMA measurements showed that the regular network had relatively narrow glass transition zone. The tunable rigid–flexible crosslinking networks exhibited a ductile plastic fracture feature with the occurrence of yielding phenomenon and had relatively high tensile strength (20–44 MPa). Quantitative shape memory evaluation disclosed that the regular crosslinking networks exhibited excellent shape memory performance with high shape memory fixity (>97 %) and shape memory recovery (>99 %). Especially, it was discovered that the regularity of network was the primary effect factor and the flexibility was the subordinate effect factor on the shape recovery rate. Excellent shape memory properties and great mechanical properties make the materials good candidates for space deployable structure materials and wide applications in other important fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhao Q, Qi HJ, Xie T (2014) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120 Zhao Q, Qi HJ, Xie T (2014) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120
2.
Zurück zum Zitat Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49:3–33CrossRef Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49:3–33CrossRef
3.
Zurück zum Zitat Shi Y, Yoonessi M, Weiss RA (2013) High temperature shape memory polymers. Macromolecules 46:4160–4167CrossRef Shi Y, Yoonessi M, Weiss RA (2013) High temperature shape memory polymers. Macromolecules 46:4160–4167CrossRef
4.
Zurück zum Zitat Wang R, Xie T (2010) Shape memory—and hydrogen bonding-based strong reversible adhesive system. Langmuir 26:2999–3002CrossRef Wang R, Xie T (2010) Shape memory—and hydrogen bonding-based strong reversible adhesive system. Langmuir 26:2999–3002CrossRef
5.
Zurück zum Zitat Xiao X, Kong D, Qiu X et al (2015) Shape-memory polymers with adjustable high glass transition temperatures. Macromolecules 48:3582–3589CrossRef Xiao X, Kong D, Qiu X et al (2015) Shape-memory polymers with adjustable high glass transition temperatures. Macromolecules 48:3582–3589CrossRef
6.
Zurück zum Zitat Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874CrossRef Kumpfer JR, Rowan SJ (2011) Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J Am Chem Soc 133:12866–12874CrossRef
7.
Zurück zum Zitat Wang K, Jia Y-G, Zhu XX (2015) Biocompound-based multiple shape memory polymers reinforced by photo-cross-linking. ACS Biomater Sci Eng 1:855–863CrossRef Wang K, Jia Y-G, Zhu XX (2015) Biocompound-based multiple shape memory polymers reinforced by photo-cross-linking. ACS Biomater Sci Eng 1:855–863CrossRef
8.
Zurück zum Zitat Song Q, Chen H, Zhou S et al (2016) Thermo-and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym Chem 7:1739–1746CrossRef Song Q, Chen H, Zhou S et al (2016) Thermo-and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym Chem 7:1739–1746CrossRef
9.
Zurück zum Zitat Lu H, Lei M, Leng J (2014) Significantly improving electro-activated shape recovery performance of shape memory nanocomposite by self-assembled carbon nanofiber and hexagonal boron nitride. J Appl Polym Sci 131:1–7 Lu H, Lei M, Leng J (2014) Significantly improving electro-activated shape recovery performance of shape memory nanocomposite by self-assembled carbon nanofiber and hexagonal boron nitride. J Appl Polym Sci 131:1–7
10.
Zurück zum Zitat Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active shape memory properties of poly (ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl Mater Interfaces 2:3506–3514CrossRef Xiao Y, Zhou S, Wang L, Gong T (2010) Electro-active shape memory properties of poly (ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl Mater Interfaces 2:3506–3514CrossRef
11.
Zurück zum Zitat Calvo-Correas T, Gabilondo N, Alonso-Varona A et al (2016) Shape-memory properties of crosslinked biobased polyurethanes. Eur Polym J 78:253–263CrossRef Calvo-Correas T, Gabilondo N, Alonso-Varona A et al (2016) Shape-memory properties of crosslinked biobased polyurethanes. Eur Polym J 78:253–263CrossRef
12.
Zurück zum Zitat Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456 Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456
13.
Zurück zum Zitat Raasch J, Ivey M, Aldrich D et al (2015) Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit Manuf 8:132–141CrossRef Raasch J, Ivey M, Aldrich D et al (2015) Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit Manuf 8:132–141CrossRef
14.
Zurück zum Zitat Zhang Z, He Z, Yang J et al (2016) Crystallization controlled shape memory behaviors of dynamically vulcanized poly (l-lactide)/poly (ethylene vinyl acetate) blends. Polym Test 51:82–92CrossRef Zhang Z, He Z, Yang J et al (2016) Crystallization controlled shape memory behaviors of dynamically vulcanized poly (l-lactide)/poly (ethylene vinyl acetate) blends. Polym Test 51:82–92CrossRef
15.
Zurück zum Zitat Garle A, Kong S, Ojha U, Budhlall BM (2012) Thermoresponsive semicrystalline poly (ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl Mater Interfaces 4:645–657CrossRef Garle A, Kong S, Ojha U, Budhlall BM (2012) Thermoresponsive semicrystalline poly (ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl Mater Interfaces 4:645–657CrossRef
16.
Zurück zum Zitat Lewis CL, Meng Y, Anthamatten M (2015) Well-defined shape-memory networks with high elastic energy capacity. Macromolecules 48:4918–4926CrossRef Lewis CL, Meng Y, Anthamatten M (2015) Well-defined shape-memory networks with high elastic energy capacity. Macromolecules 48:4918–4926CrossRef
17.
Zurück zum Zitat Kunzelman J, Chung T, Mather PT, Weder C (2008) Shape memory polymers with built-in threshold temperature sensors. J Mater Chem 18:1082–1086CrossRef Kunzelman J, Chung T, Mather PT, Weder C (2008) Shape memory polymers with built-in threshold temperature sensors. J Mater Chem 18:1082–1086CrossRef
18.
Zurück zum Zitat Hearon K, Wierzbicki MA, Nash LD et al (2015) A Processable shape memory polymer system for biomedical applications. Adv Healthc Mater 4:1386–1398CrossRef Hearon K, Wierzbicki MA, Nash LD et al (2015) A Processable shape memory polymer system for biomedical applications. Adv Healthc Mater 4:1386–1398CrossRef
19.
Zurück zum Zitat Small W, Singhal P, Wilson TS, Maitland DJ (2010) Biomedical applications of thermally activated shape memory polymers. J Mater Chem 20:3356–3366CrossRef Small W, Singhal P, Wilson TS, Maitland DJ (2010) Biomedical applications of thermally activated shape memory polymers. J Mater Chem 20:3356–3366CrossRef
20.
Zurück zum Zitat Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23:23001–23022CrossRef Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23:23001–23022CrossRef
21.
Zurück zum Zitat Santhosh Kumar KS, Biju R, Reghunadhan Nair CP (2013) Progress in shape memory epoxy resins. React Funct Polym 73:421–430CrossRef Santhosh Kumar KS, Biju R, Reghunadhan Nair CP (2013) Progress in shape memory epoxy resins. React Funct Polym 73:421–430CrossRef
22.
Zurück zum Zitat Feldkamp DM, Rousseau IA (2010) Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol Mater Eng 295:726–734CrossRef Feldkamp DM, Rousseau IA (2010) Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol Mater Eng 295:726–734CrossRef
23.
Zurück zum Zitat Zheng N, Fang G, Cao Z et al (2015) High strain epoxy shape memory polymer. Polym Chem 6:3046–3053CrossRef Zheng N, Fang G, Cao Z et al (2015) High strain epoxy shape memory polymer. Polym Chem 6:3046–3053CrossRef
24.
Zurück zum Zitat Santiago D, Fabregat-Sanjuan A, Ferrando F, De la Flor S (2016) Recovery stress and work output in hyperbranched poly (ethyleneimine)-modified shape-memory epoxy polymers. J Polym Sci Part B: Polym Phys 54:1002–1013CrossRef Santiago D, Fabregat-Sanjuan A, Ferrando F, De la Flor S (2016) Recovery stress and work output in hyperbranched poly (ethyleneimine)-modified shape-memory epoxy polymers. J Polym Sci Part B: Polym Phys 54:1002–1013CrossRef
25.
Zurück zum Zitat Liu Y, Zhao J, Zhao L et al (2016) High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl Mater Interfaces 8:311–320CrossRef Liu Y, Zhao J, Zhao L et al (2016) High performance shape memory epoxy/carbon nanotube nanocomposites. ACS Appl Mater Interfaces 8:311–320CrossRef
26.
Zurück zum Zitat Dondoni A, Marra A (2012) Recent applications of thiol–ene coupling as a click process for glycoconjugation. Chem Soc Rev 41:573–586CrossRef Dondoni A, Marra A (2012) Recent applications of thiol–ene coupling as a click process for glycoconjugation. Chem Soc Rev 41:573–586CrossRef
27.
Zurück zum Zitat Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chemie-Int Ed 49:1540–1573CrossRef Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chemie-Int Ed 49:1540–1573CrossRef
28.
Zurück zum Zitat Hoyle CE, Lowe AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39:1355–1387CrossRef Hoyle CE, Lowe AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39:1355–1387CrossRef
29.
Zurück zum Zitat Sen MY, Puskas JE (2008) Green polymer chemistry: telechelic poly (ethylene glycol)s via enzymatic catalysis. Am Chem Soc Polym Prepr Div Polym Chem 49:487–488 Sen MY, Puskas JE (2008) Green polymer chemistry: telechelic poly (ethylene glycol)s via enzymatic catalysis. Am Chem Soc Polym Prepr Div Polym Chem 49:487–488
Metadaten
Titel
Tunable shape memory properties of rigid–flexible epoxy networks
verfasst von
Qi Zou
Longhan Ba
Xiaocun Tan
Mengjie Tu
Jue Cheng
Junying Zhang
Publikationsdatum
17.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0281-1

Weitere Artikel der Ausgabe 23/2016

Journal of Materials Science 23/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.