Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2012 | Special Issue | Ausgabe 3/2012

Evolutionary Intelligence 3/2012

Tuning and evolution of support vector kernels

Zeitschrift:
Evolutionary Intelligence > Ausgabe 3/2012
Autoren:
Patrick Koch, Bernd Bischl, Oliver Flasch, Thomas Bartz-Beielstein, Claus Weihs, Wolfgang Konen
Wichtige Hinweise
First, second and third author contributed equally

Abstract

Kernel-based methods like Support Vector Machines (SVM) have been established as powerful techniques in machine learning. The idea of SVM is to perform a mapping from the input space to a higher-dimensional feature space using a kernel function, so that a linear learning algorithm can be employed. However, the burden of choosing the appropriate kernel function is usually left to the user. It can easily be shown that the accuracy of the learned model highly depends on the chosen kernel function and its parameters, especially for complex tasks. In order to obtain a good classification or regression model, an appropriate kernel function in combination with optimized pre- and post-processed data must be used. To circumvent these obstacles, we present two solutions for optimizing kernel functions: (a) automated hyperparameter tuning of kernel functions combined with an optimization of pre- and post-processing options by Sequential Parameter Optimization (SPO) and (b) evolving new kernel functions by Genetic Programming (GP). We review modern techniques for both approaches, comparing their different strengths and weaknesses. We apply tuning to SVM kernels for both regression and classification. Automatic hyperparameter tuning of standard kernels and pre- and post-processing options always yielded to systems with excellent prediction accuracy on the considered problems. Especially SPO-tuned kernels lead to much better results than all other tested tuning approaches. Regarding GP-based kernel evolution, our method rediscovered multiple standard kernels, but no significant improvements over standard kernels were obtained.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2012

Evolutionary Intelligence 3/2012 Zur Ausgabe

Premium Partner

    Bildnachweise