Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 2/2018

10.10.2017

Tuning dielectric properties and energy density of poly(vinylidene fluoride) nanocomposites by quasi core–shell structured BaTiO3@graphene oxide hybrids

verfasst von: Yunming Li, Wenhu Yang, Shanjun Ding, Xian-Zhu Fu, Rong Sun, Wei-Hsin Liao, Ching-Ping Wong

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High energy density polymer-based nanocomposites have shown significant potential in modern electronic devices. However, it is still a great challenge to achieve high dielectric permittivity and low dielectric loss without compromising breakdown strength. Here, we report a facile synthesis of core–shell structured BaTiO3@graphene oxide (BT@GO) hybrids as fillers for enhanced energy density of dielectric polymer nanocomposites. The as-fabricated BT@GO/PVDF nanocomposites manifest high dielectric permittivity and low dielectric loss, as well as highly enhanced breakdown strength and maximum energy density. The nanocomposites filled with 20 wt% BT@GO display a dielectric permittivity value of 14 and dielectric loss of 0.04 at 1 kHz with high breakdown strength of 210 MV/m. As a result, the maximum energy density up to 3.88 J/cm3, which is about 1.6 and 2.1 times higher than that of BT/PVDF nanocomposites with the same mass fraction and neat PVDF, respectively. These well tuned properties are resulted from the novel structure of BT@GO and synergistic effect of the two constituents, which GO shells as buffer layers could effectively mitigate local electric field concentration for enhanced breakdown strength and BT as cores raised the dielectric permittivity. This work provides a potential design strategy based on graphene oxide interface engineering for developing dielectric polymer nanocomposites with high energy density.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V.K. Prateek, R.K. Thakur, Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016)CrossRef V.K. Prateek, R.K. Thakur, Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016)CrossRef
2.
Zurück zum Zitat Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433–458 (2015)CrossRef Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433–458 (2015)CrossRef
3.
Zurück zum Zitat Z.M. Dang, J.K. Yuan, S.H. Yao, R.-J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013)CrossRef Z.M. Dang, J.K. Yuan, S.H. Yao, R.-J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013)CrossRef
4.
Zurück zum Zitat Y.F. Wang, J. Cui, Q. Yuan, Y. Niu, Y.Y. Bai, H. Wang, Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015)CrossRef Y.F. Wang, J. Cui, Q. Yuan, Y. Niu, Y.Y. Bai, H. Wang, Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015)CrossRef
5.
Zurück zum Zitat Z.M. Dang, M.S. Zheng, J.W. Zha, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12, 1688–1701 (2016)CrossRef Z.M. Dang, M.S. Zheng, J.W. Zha, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12, 1688–1701 (2016)CrossRef
6.
Zurück zum Zitat N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia, B. Zhang, B.Z. Tang, M.S. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)CrossRef N. Yousefi, X.Y. Sun, X.Y. Lin, X. Shen, J.J. Jia, B. Zhang, B.Z. Tang, M.S. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)CrossRef
7.
Zurück zum Zitat D.R. Wang, Y.R. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang, G.H. Hu, Improved dielectric properties of nanocomposites based on poly (vinylidene fluoride) and poly (vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4, 6273–6279 (2012)CrossRef D.R. Wang, Y.R. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang, G.H. Hu, Improved dielectric properties of nanocomposites based on poly (vinylidene fluoride) and poly (vinyl alcohol)-functionalized graphene. ACS Appl. Mater. Interfaces 4, 6273–6279 (2012)CrossRef
8.
Zurück zum Zitat C.-W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010)CrossRef C.-W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010)CrossRef
9.
Zurück zum Zitat K.S. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Mater. Sci. 39, 1934–1972 (2014) K.S. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Mater. Sci. 39, 1934–1972 (2014)
10.
Zurück zum Zitat M. Tian, J. Zhang, L.Q. Zhang, S.T. Liu, X.Q. Zan, T. Nishi, N.Y. Ning, Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold. J. Colloid Interface Sci. 430, 249–256 (2014)CrossRef M. Tian, J. Zhang, L.Q. Zhang, S.T. Liu, X.Q. Zan, T. Nishi, N.Y. Ning, Graphene encapsulated rubber latex composites with high dielectric constant, low dielectric loss and low percolation threshold. J. Colloid Interface Sci. 430, 249–256 (2014)CrossRef
11.
Zurück zum Zitat L.L. Lv, L. Huang, P.L. Zhu, G. Li, T. Zhao, J.P. Long, R. Sun, C.P. Wong, SiO2 particle-supported ultrathin graphene hybrids/polyvinylidene fluoride composites with excellent dielectric performance and energy storage density. J. Mater. Sci. 28, 13521–13531 (2017) L.L. Lv, L. Huang, P.L. Zhu, G. Li, T. Zhao, J.P. Long, R. Sun, C.P. Wong, SiO2 particle-supported ultrathin graphene hybrids/polyvinylidene fluoride composites with excellent dielectric performance and energy storage density. J. Mater. Sci. 28, 13521–13531 (2017)
12.
Zurück zum Zitat L. Huang, P.L. Zhu, G. Li, D.Q. Lu, R. Sun, C.P. Wong, Core-shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J. Mater. Chem. A 2, 18246–18255 (2014)CrossRef L. Huang, P.L. Zhu, G. Li, D.Q. Lu, R. Sun, C.P. Wong, Core-shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties. J. Mater. Chem. A 2, 18246–18255 (2014)CrossRef
13.
Zurück zum Zitat C. Wu, X.Y. Huang, X.F. Wu, L.Y. Xie, K. Yang, P.K. Jiang, Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847–3855 (2013)CrossRef C. Wu, X.Y. Huang, X.F. Wu, L.Y. Xie, K. Yang, P.K. Jiang, Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847–3855 (2013)CrossRef
14.
Zurück zum Zitat D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene Oxide. ACS Nano 4, 4806–4814 (2010)CrossRef D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene Oxide. ACS Nano 4, 4806–4814 (2010)CrossRef
15.
Zurück zum Zitat D. Li, M.B. Muller, S. Gilge, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol 3, 101–105 (2008)CrossRef D. Li, M.B. Muller, S. Gilge, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol 3, 101–105 (2008)CrossRef
16.
Zurück zum Zitat R. Qian, J.H. Yu, C. Wu, X. Zhai, P.K. Jiang, Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv. 3, 17373–17379 (2013)CrossRef R. Qian, J.H. Yu, C. Wu, X. Zhai, P.K. Jiang, Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv. 3, 17373–17379 (2013)CrossRef
17.
Zurück zum Zitat A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
18.
Zurück zum Zitat Y.T. Xu, Y. Guo, C. Li, X.Y. Zhou, M.C. Tucker, X.Z. Fu, R. Sun, C.P. Wong, Graphene oxide nano-sheets wrapped Cu2O microspheres as improved performance anode materials for lithium ion batteries. Nano Energy 11, 38–47 (2015)CrossRef Y.T. Xu, Y. Guo, C. Li, X.Y. Zhou, M.C. Tucker, X.Z. Fu, R. Sun, C.P. Wong, Graphene oxide nano-sheets wrapped Cu2O microspheres as improved performance anode materials for lithium ion batteries. Nano Energy 11, 38–47 (2015)CrossRef
19.
Zurück zum Zitat Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRef Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRef
20.
Zurück zum Zitat C. Xu, X. Wang, J.W. Zhu, Graphene-metal particle nanocomposites. J. Phys. Chem. C 112, 19841–19845 (2008)CrossRef C. Xu, X. Wang, J.W. Zhu, Graphene-metal particle nanocomposites. J. Phys. Chem. C 112, 19841–19845 (2008)CrossRef
21.
Zurück zum Zitat D.Y. Cai, M. Song, Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem. 17, 3678–3680 (2007)CrossRef D.Y. Cai, M. Song, Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem. 17, 3678–3680 (2007)CrossRef
22.
Zurück zum Zitat H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010)CrossRef H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010)CrossRef
23.
Zurück zum Zitat Q.Q. Zhuo, J. Gao, M.F. Peng, L.L. Bai, J.J. Deng, Y.J. Xia, Y.Y. Ma, J. Zhong, X.H. Sun, Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon 52, 559–564 (2013)CrossRef Q.Q. Zhuo, J. Gao, M.F. Peng, L.L. Bai, J.J. Deng, Y.J. Xia, Y.Y. Ma, J. Zhong, X.H. Sun, Large-scale synthesis of graphene by the reduction of graphene oxide at room temperature using metal nanoparticles as catalyst. Carbon 52, 559–564 (2013)CrossRef
24.
Zurück zum Zitat S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRef S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRef
25.
Zurück zum Zitat R.X. Wang, Q. Zhu, W.S. Wang, C.M. Fan, A.W. Xu, BaTiO3-graphene nanocomposites: synthesis and visible light photocatalytic activity. New J. Chem. 39, 4407–4413 (2015)CrossRef R.X. Wang, Q. Zhu, W.S. Wang, C.M. Fan, A.W. Xu, BaTiO3-graphene nanocomposites: synthesis and visible light photocatalytic activity. New J. Chem. 39, 4407–4413 (2015)CrossRef
26.
Zurück zum Zitat P.K. Dutta, P.K. Gallagher, J. Twu, Raman spectroscopic study of the formation of barium titanate from an oxalate precursor. Chem. Mater. 5, 1739–1743 (1993)CrossRef P.K. Dutta, P.K. Gallagher, J. Twu, Raman spectroscopic study of the formation of barium titanate from an oxalate precursor. Chem. Mater. 5, 1739–1743 (1993)CrossRef
27.
Zurück zum Zitat S.F. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)CrossRef S.F. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)CrossRef
28.
Zurück zum Zitat M. Topsakal, H. Sahin, S. Ciraci, Graphene coatings: an efficient protection from oxidation. Phys. Rev. B 85, 155445 (2012)CrossRef M. Topsakal, H. Sahin, S. Ciraci, Graphene coatings: an efficient protection from oxidation. Phys. Rev. B 85, 155445 (2012)CrossRef
29.
Zurück zum Zitat L. Chen, S.G. Chai, K. Liu, N.Y. Ning, J. Gao, Q.F. Liu, F. Chen, Q. Fu, Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl. Mater. Interfaces 4, 4398–4404 (2012)CrossRef L. Chen, S.G. Chai, K. Liu, N.Y. Ning, J. Gao, Q.F. Liu, F. Chen, Q. Fu, Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl. Mater. Interfaces 4, 4398–4404 (2012)CrossRef
30.
Zurück zum Zitat Y. Shen, Y. Guan, Y. Hu, Y.C. Lei, Y. Song, Y.H. Lin, C.W. Nan, Dielectric behavior of graphene/BaTiO3/polyvinylidene fluoride nanocomposite under high electric field. Appl. Phys. Lett. 103, 072906 (2013)CrossRef Y. Shen, Y. Guan, Y. Hu, Y.C. Lei, Y. Song, Y.H. Lin, C.W. Nan, Dielectric behavior of graphene/BaTiO3/polyvinylidene fluoride nanocomposite under high electric field. Appl. Phys. Lett. 103, 072906 (2013)CrossRef
31.
Zurück zum Zitat Y.H. Li, Y.J. Shi, F.Y. Cai, J. Xue, F. Chen, Q. Fu, Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent. Compos. A 78, 318–326 (2015)CrossRef Y.H. Li, Y.J. Shi, F.Y. Cai, J. Xue, F. Chen, Q. Fu, Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent. Compos. A 78, 318–326 (2015)CrossRef
32.
Zurück zum Zitat D.R. Wang, T. Zhou, J.W. Zha, J. Zhao, C.Y. Shi, Z.M. Dang, Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1, 6162–6168 (2013)CrossRef D.R. Wang, T. Zhou, J.W. Zha, J. Zhao, C.Y. Shi, Z.M. Dang, Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1, 6162–6168 (2013)CrossRef
33.
Zurück zum Zitat H.W. Choi, Y.W. Heo, J.H. Lee, J.J. Kim, H.Y. Lee, E.T. Park, Y.K. Chung, Effects of BaTiO3 on Dielectric Behavior of BaTiO3-Ni-Polymethyl Methacrylate Composites. Appl. Phys. Lett. 89, 132910 (2006)CrossRef H.W. Choi, Y.W. Heo, J.H. Lee, J.J. Kim, H.Y. Lee, E.T. Park, Y.K. Chung, Effects of BaTiO3 on Dielectric Behavior of BaTiO3-Ni-Polymethyl Methacrylate Composites. Appl. Phys. Lett. 89, 132910 (2006)CrossRef
34.
Zurück zum Zitat Q. Li, G.Z. Zhang, F.H. Liu, K. Han, M.R. Gadinski, C.X. Xiong, Q. Wang, Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8, 922–931 (2015)CrossRef Q. Li, G.Z. Zhang, F.H. Liu, K. Han, M.R. Gadinski, C.X. Xiong, Q. Wang, Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8, 922–931 (2015)CrossRef
35.
Zurück zum Zitat Y. Song, Y. Shen, H. Liu, Y.H. Lin, M. Li, C.W. Nan, Improving the dielectric permittivitys and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer Matrix. J. Mater. Chem. 22, 16491–16498 (2012)CrossRef Y. Song, Y. Shen, H. Liu, Y.H. Lin, M. Li, C.W. Nan, Improving the dielectric permittivitys and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer Matrix. J. Mater. Chem. 22, 16491–16498 (2012)CrossRef
36.
Zurück zum Zitat M. Rahimabady, M.S. Mirshekarloo, K. Yao, L. Lu, Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene). Phys. Chem. Chem. Phys. 15, 16242–16248 (2013)CrossRef M. Rahimabady, M.S. Mirshekarloo, K. Yao, L. Lu, Dielectric behaviors and high energy storage density of nanocomposites with core-shell BaTiO3@TiO2 in poly(vinylidene fluoride-hexafluoropropylene). Phys. Chem. Chem. Phys. 15, 16242–16248 (2013)CrossRef
37.
Zurück zum Zitat K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, Y.J. Niu, Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J. Appl. Phys. 113, 034105 (2013)CrossRef K. Yu, H. Wang, Y.C. Zhou, Y.Y. Bai, Y.J. Niu, Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications. J. Appl. Phys. 113, 034105 (2013)CrossRef
38.
Zurück zum Zitat J.J. Li, J. Claude, L.E. Norena-Franco, S.II Seok, Q. Wang, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem. Mater. 20, 6304–6306 (2008)CrossRef J.J. Li, J. Claude, L.E. Norena-Franco, S.II Seok, Q. Wang, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem. Mater. 20, 6304–6306 (2008)CrossRef
39.
Zurück zum Zitat Z.P. Wang, J.K. Nelson, J.J. Miao, R.J. Linhardt, L.S. Schadler, H. Hillborg, S. Zhao, Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans. Dielectr. Electr. Insul. 19, 960–967 (2012)CrossRef Z.P. Wang, J.K. Nelson, J.J. Miao, R.J. Linhardt, L.S. Schadler, H. Hillborg, S. Zhao, Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans. Dielectr. Electr. Insul. 19, 960–967 (2012)CrossRef
40.
Zurück zum Zitat Y.Q. Chen, B.P. Lin, X.Q. Zhang, J.C. Wang, C.W. Lai, Y. Sun, Y.R. Liu, H. Yang, Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure. J. Mater. Chem. A 2, 14118–14126 (2014)CrossRef Y.Q. Chen, B.P. Lin, X.Q. Zhang, J.C. Wang, C.W. Lai, Y. Sun, Y.R. Liu, H. Yang, Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure. J. Mater. Chem. A 2, 14118–14126 (2014)CrossRef
41.
Zurück zum Zitat Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.Y. Li, A. Haque, L.Q. Chen, T. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)CrossRef Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.Y. Li, A. Haque, L.Q. Chen, T. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015)CrossRef
42.
Zurück zum Zitat Y. Li, X.Y. Huang, Z.W. Hu, P.K. Jiang, S.T. Li, T. Tanaka, Large dielectric constant and high thermal conductivity in poly (vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl. Mater. Interfaces 3, 4396–4403 (2011)CrossRef Y. Li, X.Y. Huang, Z.W. Hu, P.K. Jiang, S.T. Li, T. Tanaka, Large dielectric constant and high thermal conductivity in poly (vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl. Mater. Interfaces 3, 4396–4403 (2011)CrossRef
43.
Zurück zum Zitat X.Y. Huang, T. Iizuka, P.K. Jiang, Y. Ohki, T. Tanaka, Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J. Phys. Chem. C 116, 13629–13639 (2012)CrossRef X.Y. Huang, T. Iizuka, P.K. Jiang, Y. Ohki, T. Tanaka, Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J. Phys. Chem. C 116, 13629–13639 (2012)CrossRef
44.
Zurück zum Zitat S. Shenogin, L.P. Xue, R. Ozisik, P. Keblinski, D.G. Cahill, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J. Appl. Phys. 95, 8136–8144 (2004)CrossRef S. Shenogin, L.P. Xue, R. Ozisik, P. Keblinski, D.G. Cahill, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J. Appl. Phys. 95, 8136–8144 (2004)CrossRef
45.
Zurück zum Zitat W.S. Lee, J. Yu, Comparative study of thermally conductive fillers in underfill for the electronic components. Diam. Relat. Mater. 14, 1647–1653 (2005)CrossRef W.S. Lee, J. Yu, Comparative study of thermally conductive fillers in underfill for the electronic components. Diam. Relat. Mater. 14, 1647–1653 (2005)CrossRef
46.
Zurück zum Zitat N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016)CrossRef N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog. Polym. Sci. 61, 1–28 (2016)CrossRef
47.
Zurück zum Zitat V. Chavan, J. Anandraj, G.M. Joshi, M.T. Cuberes, Structure, morphology and electrical properties of graphene oxide: CuBiS reinforced polystyrene hybrid nanocomposites. J. Mater. Sci. (2017). doi:10.1007/s10854-017-7552-8 V. Chavan, J. Anandraj, G.M. Joshi, M.T. Cuberes, Structure, morphology and electrical properties of graphene oxide: CuBiS reinforced polystyrene hybrid nanocomposites. J. Mater. Sci. (2017). doi:10.​1007/​s10854-017-7552-8
Metadaten
Titel
Tuning dielectric properties and energy density of poly(vinylidene fluoride) nanocomposites by quasi core–shell structured BaTiO3@graphene oxide hybrids
verfasst von
Yunming Li
Wenhu Yang
Shanjun Ding
Xian-Zhu Fu
Rong Sun
Wei-Hsin Liao
Ching-Ping Wong
Publikationsdatum
10.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 2/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-8009-9

Weitere Artikel der Ausgabe 2/2018

Journal of Materials Science: Materials in Electronics 2/2018 Zur Ausgabe

Neuer Inhalt