Skip to main content
Erschienen in: Journal of Materials Science 20/2016

15.07.2016 | Original Paper

Tuning of electronic states and magnetic polarization in monolayered MoS2 by codoping with transition metals and nonmetals

verfasst von: Yaping Miao, Yuhong Huang, Qinglong Fang, Zhi Yang, Kewei Xu, Fei Ma, Paul K. Chu

Erschienen in: Journal of Materials Science | Ausgabe 20/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Doping is an effective way to modulate the properties of two-dimensional (2D) materials to cater to new applications. In this work, the codoping effects of transition metals (TM) and nonmetals (NM) on the electronic states and magnetic polarization in monolayered MoS2 are investigated by first-principles calculation. The NM-doped MoS2 possesses semiconducting characteristics, but the B-, N-, and F-doped ones are magnetic showing a magnetic moment of 1.0 μ B per dopant. The metal dopants can induce magnetization in the monolayered MoS2, and the magnetic moment is related to the total number of outer electrons in the TM. In the case of codoping, the S and Mo atoms are substituted by the NM and TM atoms, respectively, and hence, the semiconducting characteristics are maintained despite the reduced band gap. Spin polarization resulting from codoping depends on the number of outer electrons in the TM and NM dopants. Spin polarization occurs if the total number of the outer electrons is odd, but does not if it is even. The magnetic moment of the codoped monolayered MoS2 is always 1 μ B and magnetism is enhanced considerably by (V + B) and (Mn + F) codoping.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Pacile D, Meyer JC, Girit CO, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett. doi:10.1063/1.2903702 Pacile D, Meyer JC, Girit CO, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett. doi:10.​1063/​1.​2903702
3.
Zurück zum Zitat Zhi CY, Bando Y, Tang CC, Kuwahara H, Golberg D (2009) Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21(28):2889–2893. doi:10.1002/adma.200900323 CrossRef Zhi CY, Bando Y, Tang CC, Kuwahara H, Golberg D (2009) Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv Mater 21(28):2889–2893. doi:10.​1002/​adma.​200900323 CrossRef
6.
Zurück zum Zitat Wang HT, Wang QX, Cheng YC, Li K, Yao YB, Zhang Q, Dong CZ, Wang P, Schwingenschlogl U, Yang W, Zhang XX (2012) Doping monolayer graphene with single atom substitutions. Nano Lett 12(1):141–144. doi:10.1021/nl2031629 CrossRef Wang HT, Wang QX, Cheng YC, Li K, Yao YB, Zhang Q, Dong CZ, Wang P, Schwingenschlogl U, Yang W, Zhang XX (2012) Doping monolayer graphene with single atom substitutions. Nano Lett 12(1):141–144. doi:10.​1021/​nl2031629 CrossRef
7.
Zurück zum Zitat Wang Y, Shao YY, Matson DW, Li JH, Lin YH (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798. doi:10.1021/nn100315s CrossRef Wang Y, Shao YY, Matson DW, Li JH, Lin YH (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798. doi:10.​1021/​nn100315s CrossRef
8.
Zurück zum Zitat Feng BJ, Ding ZJ, Meng S, Yao YG, He XY, Cheng P, Chen L, Wu KH (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12(7):3507–3511. doi:10.1021/nl301047g CrossRef Feng BJ, Ding ZJ, Meng S, Yao YG, He XY, Cheng P, Chen L, Wu KH (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12(7):3507–3511. doi:10.​1021/​nl301047g CrossRef
10.
Zurück zum Zitat Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett. doi:10.1103/Physrevlett.108.155501 Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett. doi:10.​1103/​Physrevlett.​108.​155501
11.
Zurück zum Zitat Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275. doi:10.1038/Nchem.1589 CrossRef Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275. doi:10.​1038/​Nchem.​1589 CrossRef
12.
Zurück zum Zitat Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6):5449–5456. doi:10.1021/nn301320r CrossRef Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6):5449–5456. doi:10.​1021/​nn301320r CrossRef
13.
Zurück zum Zitat Yun WS, Han SW, Hong SC, Kim IG, Lee JD (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X-2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B. doi:10.1103/Physrevb.85.033305 Yun WS, Han SW, Hong SC, Kim IG, Lee JD (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X-2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B. doi:10.​1103/​Physrevb.​85.​033305
14.
Zurück zum Zitat Komsa HP, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov AV (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys Rev Lett. doi:10.1103/Physrevlett.109.035503 Komsa HP, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov AV (2012) Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys Rev Lett. doi:10.​1103/​Physrevlett.​109.​035503
16.
18.
Zurück zum Zitat Wi S, Kim H, Chen MK, Nam H, Guo LJ, Meyhofer E, Liang XG (2014) Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8(5):5270–5281. doi:10.1021/nn5013429 CrossRef Wi S, Kim H, Chen MK, Nam H, Guo LJ, Meyhofer E, Liang XG (2014) Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS Nano 8(5):5270–5281. doi:10.​1021/​nn5013429 CrossRef
19.
Zurück zum Zitat Li Q, Zhang N, Yang Y, Wang GZ, Ng DHL (2014) High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures. Langmuir 30(29):8965–8972. doi:10.1021/la502033t CrossRef Li Q, Zhang N, Yang Y, Wang GZ, Ng DHL (2014) High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures. Langmuir 30(29):8965–8972. doi:10.​1021/​la502033t CrossRef
21.
Zurück zum Zitat Stephenson T, Li Z, Olsen B, Mitlin D (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7(1):209–231. doi:10.1039/c3ee42591f CrossRef Stephenson T, Li Z, Olsen B, Mitlin D (2014) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7(1):209–231. doi:10.​1039/​c3ee42591f CrossRef
22.
Zurück zum Zitat Feng PXL, Wang ZH, Lee JS, Yang R, Zheng XQ, He KL, Shan J (2014) Two-dimensional nanoelectromechanical systems (2D NEMS) via atomically-thin semiconducting crystals vibrating at radio frequencies. In: 2014 IEEE International Electron Devices Meeting Feng PXL, Wang ZH, Lee JS, Yang R, Zheng XQ, He KL, Shan J (2014) Two-dimensional nanoelectromechanical systems (2D NEMS) via atomically-thin semiconducting crystals vibrating at radio frequencies. In: 2014 IEEE International Electron Devices Meeting
24.
Zurück zum Zitat Duan XD, Wang C, Pan AL, Yu RQ, Duan XF (2015) Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev 44(24):8859–8876. doi:10.1039/c5cs00507h CrossRef Duan XD, Wang C, Pan AL, Yu RQ, Duan XF (2015) Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev 44(24):8859–8876. doi:10.​1039/​c5cs00507h CrossRef
25.
Zurück zum Zitat Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47(4):1067–1075. doi:10.1021/ar4002312 CrossRef Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47(4):1067–1075. doi:10.​1021/​ar4002312 CrossRef
26.
Zurück zum Zitat Lee YH, Zhang XQ, Zhang WJ, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ, Lin TW (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325. doi:10.1002/adma.201104798 CrossRef Lee YH, Zhang XQ, Zhang WJ, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ, Lin TW (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325. doi:10.​1002/​adma.​201104798 CrossRef
27.
Zurück zum Zitat Kang JH, Liu W, Sarkar D, Jena D, Banerjee K (2014) Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X. doi:10.1103/Physrevx.4.031005 Kang JH, Liu W, Sarkar D, Jena D, Banerjee K (2014) Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X. doi:10.​1103/​Physrevx.​4.​031005
31.
Zurück zum Zitat Cheng YC, Zhu ZY, Mi WB, Guo ZB, Schwingenschlogl U (2013) Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys Rev B. doi:10.1103/Physrevb.87.100401 Cheng YC, Zhu ZY, Mi WB, Guo ZB, Schwingenschlogl U (2013) Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems. Phys Rev B. doi:10.​1103/​Physrevb.​87.​100401
32.
Zurück zum Zitat Deepak FL, Esparza R, Borges B, Lopez-Lozano X, Jose-Yacaman M (2011) Direct imaging and identification of individual dopant atoms in MoS2 and WS2 catalysts by aberration corrected scanning transmission electron microscopy. ACS Catal 1(5):537–543. doi:10.1021/cs100141p CrossRef Deepak FL, Esparza R, Borges B, Lopez-Lozano X, Jose-Yacaman M (2011) Direct imaging and identification of individual dopant atoms in MoS2 and WS2 catalysts by aberration corrected scanning transmission electron microscopy. ACS Catal 1(5):537–543. doi:10.​1021/​cs100141p CrossRef
33.
Zurück zum Zitat Han SW, Hwang YH, Kim SH, Yun WS, Lee JD, Park MG, Ryu S, Park JS, Yoo DH, Yoon SP, Hong SC, Kim KS, Park YS (2013) Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys Rev Lett. doi:10.1103/Physrevlett.110.247201 Han SW, Hwang YH, Kim SH, Yun WS, Lee JD, Park MG, Ryu S, Park JS, Yoo DH, Yoon SP, Hong SC, Kim KS, Park YS (2013) Controlling ferromagnetic easy axis in a layered MoS2 single crystal. Phys Rev Lett. doi:10.​1103/​Physrevlett.​110.​247201
34.
35.
Zurück zum Zitat Zhang KH, Feng SM, Wang JJ, Azcatl A, Lu N, Addou R, Wang N, Zhou CJ, Lerach J, Bojan V, Kim MJ, Chen LQ, Wallace RM, Terrones M, Zhu J, Robinson JA (2015) Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett 15(10):6586–6591. doi:10.1021/acs.nanolett.5b02315 CrossRef Zhang KH, Feng SM, Wang JJ, Azcatl A, Lu N, Addou R, Wang N, Zhou CJ, Lerach J, Bojan V, Kim MJ, Chen LQ, Wallace RM, Terrones M, Zhu J, Robinson JA (2015) Manganese doping of monolayer MoS2: the substrate is critical. Nano Lett 15(10):6586–6591. doi:10.​1021/​acs.​nanolett.​5b02315 CrossRef
36.
Zurück zum Zitat Esconjauregui S, D’Arsie L, Guo YZ, Yang JW, Sugime H, Caneva S, Cepek C, Robertson J (2015) Efficient transfer doping of carbon nanotube forests by MoO3. ACS Nano 9(10):10422–10430. doi:10.1021/acsnano.5b04644 CrossRef Esconjauregui S, D’Arsie L, Guo YZ, Yang JW, Sugime H, Caneva S, Cepek C, Robertson J (2015) Efficient transfer doping of carbon nanotube forests by MoO3. ACS Nano 9(10):10422–10430. doi:10.​1021/​acsnano.​5b04644 CrossRef
39.
Zurück zum Zitat Wei XL, Wang MS, Bando Y, Golberg D (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5(4):2916–2922. doi:10.1021/nn103548r CrossRef Wei XL, Wang MS, Bando Y, Golberg D (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5(4):2916–2922. doi:10.​1021/​nn103548r CrossRef
40.
Zurück zum Zitat Chen L, Li CS, Tang H, Li HP, Liu XJ, Meng J (2014) First-principles calculations on structural, electronic properties of V-doped 2H-NbSe2. RSC Adv 4(19):9573–9578. doi:10.1039/c3ra47237j CrossRef Chen L, Li CS, Tang H, Li HP, Liu XJ, Meng J (2014) First-principles calculations on structural, electronic properties of V-doped 2H-NbSe2. RSC Adv 4(19):9573–9578. doi:10.​1039/​c3ra47237j CrossRef
42.
Zurück zum Zitat Cheney CP, Vilmercati P, Martin EW, Chiodi M, Gavioli L, Regmi M, Eres G, Callcott TA, Weitering HH, Mannella N (2014) Origins of electronic band gap reduction in Cr/N codoped TiO2. Phys Rev Lett. doi:10.1103/Physrevlett.112.036404 Cheney CP, Vilmercati P, Martin EW, Chiodi M, Gavioli L, Regmi M, Eres G, Callcott TA, Weitering HH, Mannella N (2014) Origins of electronic band gap reduction in Cr/N codoped TiO2. Phys Rev Lett. doi:10.​1103/​Physrevlett.​112.​036404
45.
46.
Zurück zum Zitat Wan H, Xu L, Huang WQ, Zhou JH, He CN, Li XF, Huang GF, Peng P, Zhou ZG (2015) Band structure engineering of monolayer MoS2: a charge compensated codoping strategy. RSC Adv 5(11):7944–7952. doi:10.1039/c4ra12498g CrossRef Wan H, Xu L, Huang WQ, Zhou JH, He CN, Li XF, Huang GF, Peng P, Zhou ZG (2015) Band structure engineering of monolayer MoS2: a charge compensated codoping strategy. RSC Adv 5(11):7944–7952. doi:10.​1039/​c4ra12498g CrossRef
47.
Zurück zum Zitat Su J, Zhang Y, Hu Y, Feng LP, Liu ZT (2015) Tuning the electronic properties of bondings in monolayer MoS2 through (Au, O) co-doping. RSC Adv 5(83):68085–68091. doi:10.1039/c5ra10519f CrossRef Su J, Zhang Y, Hu Y, Feng LP, Liu ZT (2015) Tuning the electronic properties of bondings in monolayer MoS2 through (Au, O) co-doping. RSC Adv 5(83):68085–68091. doi:10.​1039/​c5ra10519f CrossRef
51.
53.
Metadaten
Titel
Tuning of electronic states and magnetic polarization in monolayered MoS2 by codoping with transition metals and nonmetals
verfasst von
Yaping Miao
Yuhong Huang
Qinglong Fang
Zhi Yang
Kewei Xu
Fei Ma
Paul K. Chu
Publikationsdatum
15.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0195-y

Weitere Artikel der Ausgabe 20/2016

Journal of Materials Science 20/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.