Skip to main content
Erschienen in: Journal of Materials Science 18/2019

10.06.2019 | Materials for life sciences

Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions

verfasst von: Mani Pujitha Illa, Chandra S. Sharma, Mudrika Khandelwal

Erschienen in: Journal of Materials Science | Ausgabe 18/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacteria have an ability to produce cellulose in pure form without any impurities such as hemicellulose and lignin, unlike plant cellulose. Bacterial cellulose as-produced with 3-D interwoven nanofibrous network is superior to plant cellulose in terms of mechanical properties, porosity, crystallinity, water holding capacity, and sustainability. In its natural form, bacterial cellulose is in the form of a hydrogel, which implies high porosity and holding capacity, however, to use it for different applications, water needs to be removed. The physical properties of bacterial cellulose such as morphology, porosity, and mechanical strength are vastly affected by the drying method employed. This paper presents a case study in which we produced bacterial cellulose using two different strains, followed by systematically studying the effect of drying (oven and freeze drying) on physiochemical, morphological, and structural properties of as-produced bacterial cellulose using Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, BET surface area, and tensile testing. Oven-dried bacterial cellulose showed higher crystallinity, reduced fiber diameter, and narrow size distribution and higher mechanical properties as compared to freeze-dried bacterial cellulose. Understanding so developed in this work may allow us to simply tune the bacterial cellulose properties for a given application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 04:1–10CrossRef Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 04:1–10CrossRef
2.
Zurück zum Zitat Gao W-H, Chen K-F, Yang R-D et al (2010) Properties of bacterial cellulose and its influence on the physical properties of paper. BioResources 6:144–153 Gao W-H, Chen K-F, Yang R-D et al (2010) Properties of bacterial cellulose and its influence on the physical properties of paper. BioResources 6:144–153
3.
Zurück zum Zitat Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications (review). Food Technol Biotechnol 47:107–124 Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications (review). Food Technol Biotechnol 47:107–124
4.
Zurück zum Zitat Yodsuwan N, Owatworakit A, Ngaokla A et al (2012) Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials. In: In 1st Fah Luang University international conference, pp 2005–2010 Yodsuwan N, Owatworakit A, Ngaokla A et al (2012) Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials. In: In 1st Fah Luang University international conference, pp 2005–2010
5.
Zurück zum Zitat Faridah F, Diana S, Helmi H et al (2013) Effect of sugar concentrations on bacterial cellulose production as cellulose membrane in mixture liquid medium and material properties analysis. In: ASEAN/Asian Academic Society international conference proceeding series Faridah F, Diana S, Helmi H et al (2013) Effect of sugar concentrations on bacterial cellulose production as cellulose membrane in mixture liquid medium and material properties analysis. In: ASEAN/Asian Academic Society international conference proceeding series
6.
Zurück zum Zitat Krystynowicz A, Czaja W, Jezierska AW- et al (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195CrossRef Krystynowicz A, Czaja W, Jezierska AW- et al (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195CrossRef
7.
Zurück zum Zitat Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRef Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3:1813–1816CrossRef
8.
Zurück zum Zitat Zhang CJ, Wang L, Zhao JC, Zhu P (2011) Effect of drying methods on structure and mechanical properties of bacterial cellulose films. Adv Mater Res 239–242:2667–2670 Zhang CJ, Wang L, Zhao JC, Zhu P (2011) Effect of drying methods on structure and mechanical properties of bacterial cellulose films. Adv Mater Res 239–242:2667–2670
9.
Zurück zum Zitat Pa’e N, Hamid NIA, Khairuddin N et al (2014) Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of nata de coco. Sains Malays 43:767–773 Pa’e N, Hamid NIA, Khairuddin N et al (2014) Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of nata de coco. Sains Malays 43:767–773
10.
Zurück zum Zitat Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469CrossRef Zeng M, Laromaine A, Roig A (2014) Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulose 21:4455–4469CrossRef
11.
Zurück zum Zitat Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRef Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRef
12.
Zurück zum Zitat Feng X, Ullah N, Wang X et al (2015) Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. J Food Sci 80:2217–2227CrossRef Feng X, Ullah N, Wang X et al (2015) Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. J Food Sci 80:2217–2227CrossRef
13.
Zurück zum Zitat Chen G, Wang W (2007) Role of freeze drying in nanotechnology. Dry Technol 25:29–35CrossRef Chen G, Wang W (2007) Role of freeze drying in nanotechnology. Dry Technol 25:29–35CrossRef
14.
Zurück zum Zitat Kuga S, Kim D-Y, Nishiyama Y, Brown RM (2002) Nanofibrillar carbon from native cellulose. Mol Cryst Liq Cryst 387:13–19CrossRef Kuga S, Kim D-Y, Nishiyama Y, Brown RM (2002) Nanofibrillar carbon from native cellulose. Mol Cryst Liq Cryst 387:13–19CrossRef
15.
Zurück zum Zitat Al-Shamary EE, Al-Darwash AK (2013) Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. Online J Sci Technol 3:194–203 Al-Shamary EE, Al-Darwash AK (2013) Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. Online J Sci Technol 3:194–203
16.
Zurück zum Zitat Liebner F, Haimer E, Wendland M et al (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352CrossRef Liebner F, Haimer E, Wendland M et al (2010) Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol Biosci 10:349–352CrossRef
17.
Zurück zum Zitat Clasen C, Sultanova B, Wilhelms T et al (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58CrossRef Clasen C, Sultanova B, Wilhelms T et al (2006) Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol Symp 244:48–58CrossRef
18.
Zurück zum Zitat Basak AK (2015) Drying characteristics of bacterial cellulose produced from fermentation of black tea by symbiotic colony of yeast and bacteria. Int J Sci Res 4:2013–2016 Basak AK (2015) Drying characteristics of bacterial cellulose produced from fermentation of black tea by symbiotic colony of yeast and bacteria. Int J Sci Res 4:2013–2016
19.
Zurück zum Zitat Markiewicz EWA, Hilczer B, Pawlaczyk C (2004) Dielectric and acoustic response of biocellulose. Ferroelectrics 304:39–42CrossRef Markiewicz EWA, Hilczer B, Pawlaczyk C (2004) Dielectric and acoustic response of biocellulose. Ferroelectrics 304:39–42CrossRef
20.
Zurück zum Zitat Indrartil L, Yudiantil R, Amurwabumil K, Yuli N (1998) Application of biocellulose as an acoustic membrane. Indones J Biotechnol 6:180–184 Indrartil L, Yudiantil R, Amurwabumil K, Yuli N (1998) Application of biocellulose as an acoustic membrane. Indones J Biotechnol 6:180–184
23.
Zurück zum Zitat Seifert M, Hesse S, Kabrelian V, Klemm D (2004) Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Polym Sci Part A Polym Chem 42:463–470CrossRef Seifert M, Hesse S, Kabrelian V, Klemm D (2004) Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J Polym Sci Part A Polym Chem 42:463–470CrossRef
24.
Zurück zum Zitat Shi Q-S, Feng J, Li W-R et al (2013) Effect of different conditions on the average degree of polymerization of bacterial cellulose produced by Gluconacetobacter intermedius BC-41. Cell Chem Technol 47:503–508 Shi Q-S, Feng J, Li W-R et al (2013) Effect of different conditions on the average degree of polymerization of bacterial cellulose produced by Gluconacetobacter intermedius BC-41. Cell Chem Technol 47:503–508
25.
Zurück zum Zitat Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11:5543–5560CrossRef Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy. Sensors 11:5543–5560CrossRef
26.
Zurück zum Zitat Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188CrossRef Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188CrossRef
27.
Zurück zum Zitat Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47:124–128CrossRef Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47:124–128CrossRef
28.
Zurück zum Zitat Hermans PH (1947) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19:491–506CrossRef Hermans PH (1947) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19:491–506CrossRef
29.
Zurück zum Zitat Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10CrossRef
30.
Zurück zum Zitat Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRef Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRef
31.
Zurück zum Zitat Laha A, Yadav S, Majumdar S, Sharma CS (2016) In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochem Eng J 105:481–488CrossRef Laha A, Yadav S, Majumdar S, Sharma CS (2016) In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers. Biochem Eng J 105:481–488CrossRef
32.
Zurück zum Zitat Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton Gama M, Gatenholm P, Klemm D (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton
33.
Zurück zum Zitat Tahara N, Tabuchi M, Watanabe K et al (1997) Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain. Biosci Biotechnol Biochem 61:1862–1865CrossRef Tahara N, Tabuchi M, Watanabe K et al (1997) Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain. Biosci Biotechnol Biochem 61:1862–1865CrossRef
34.
Zurück zum Zitat O’connor RT, Dupré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons: part I: physical and crystalline modifications and oxidation. Text Res J 28:382–392CrossRef O’connor RT, Dupré EF, Mitcham D (1958) Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons: part I: physical and crystalline modifications and oxidation. Text Res J 28:382–392CrossRef
35.
Zurück zum Zitat Kouris M, Ruck H, Mason SG (1958) The effect of water removal on the crystallinity of cellulose. Can J Chem 36:931–948CrossRef Kouris M, Ruck H, Mason SG (1958) The effect of water removal on the crystallinity of cellulose. Can J Chem 36:931–948CrossRef
36.
Zurück zum Zitat Matheus P, Zattera AJ, Santana RM (2012) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126:E337–E344CrossRef Matheus P, Zattera AJ, Santana RM (2012) Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci 126:E337–E344CrossRef
37.
Zurück zum Zitat Liu Y (2013) Recent progress in Fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials (Basel) 6:299–313CrossRef Liu Y (2013) Recent progress in Fourier transform infrared (FTIR) spectroscopy study of compositional, structural and physical attributes of developmental cotton fibers. Materials (Basel) 6:299–313CrossRef
38.
Zurück zum Zitat Mondal MIH (2013) Mechanism of structure formation of microbial cellulose during nascent stage. Cellulose 20:1073–1088CrossRef Mondal MIH (2013) Mechanism of structure formation of microbial cellulose during nascent stage. Cellulose 20:1073–1088CrossRef
39.
Zurück zum Zitat Wang S, Li T, Chen C et al (2018) Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv Funct Mater 28:1707491–1707501CrossRef Wang S, Li T, Chen C et al (2018) Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv Funct Mater 28:1707491–1707501CrossRef
40.
Zurück zum Zitat Li G, Nandgaonkar AG, Habibi Y et al (2017) An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds. RSC Adv 7:13678–13688CrossRef Li G, Nandgaonkar AG, Habibi Y et al (2017) An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds. RSC Adv 7:13678–13688CrossRef
41.
Zurück zum Zitat Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644CrossRef Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644CrossRef
42.
Zurück zum Zitat Hindeleh AM (1980) Crystallinity, crystallite size, and physical properties of native Egyptian cotton. Text Res J 50:667–674CrossRef Hindeleh AM (1980) Crystallinity, crystallite size, and physical properties of native Egyptian cotton. Text Res J 50:667–674CrossRef
Metadaten
Titel
Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions
verfasst von
Mani Pujitha Illa
Chandra S. Sharma
Mudrika Khandelwal
Publikationsdatum
10.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03737-9

Weitere Artikel der Ausgabe 18/2019

Journal of Materials Science 18/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.