Skip to main content

2016 | OriginalPaper | Buchkapitel

13. Tunnel Junction, Coulomb Blockade, and Quantum Dot Circuit

verfasst von : Vinod Kumar Khanna

Erschienen in: Integrated Nanoelectronics

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conceptual development regarding single electron transfer phenomena is presented. It is shown that energy necessary to place a single electronic charge on one plate of a capacitor with equal opposite charge on its opposite plate is not a clearly distinguishable event at micro- and milliscales. But it becomes a meaningful event at the nanoscale due to the significant amount of energy involved. Further, it is shown that the existence of a voltage requirement for tunneling to occur across the plates of a capacitor, the so-called Coulomb blockade effect, is a noticeable phenomenon exclusive to nanoscale. Moving further, it is found that the Coulomb blockade is observable at or near room temperatures only in the scale of nano dimensions. From this understanding, the notion of a tunnel junction is put forward as a barrier in the form of an electrical potential or thin dielectric film across which tunneling occurs. The tunnel junction is modeled as an ideal capacitor with a parallel-connected tunnel resistance whose value must be ≫4.2 kΩ for Coulomb blockade to become recognizable. The capacitor of the tunnel junction behaves in a different way from a normal capacitor. Upon excitation by a constant current source, the voltage across this capacitor oscillates between two values, which are referred to as single electron tunneling oscillations. Applying the tunnel junction model, the operation of a quantum dot circuit consisting of a quantum dot and two tunnel junctions is analyzed. In both cases, for electron tunneling into the quantum dot across one tunnel junction and for electron tunneling off the quantum dot across the other tunnel junction, Coulomb blockade occurs in a quantum dot circuit like a nanocapacitor. The energy band diagram for a small quantum dot circuit exhibits a discretized nature. The electron tunneling does not take place in a continuous fashion but in discrete voltage steps. The resulting current–voltage characteristic of the quantum dot circuit has the shape of a staircase which is called the Coulomb staircase.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat EEE5425 Introduction to nanotechnology, 2/17/2010, © Nezih Pala npala@fiu.edu, Coulomb Blockade and Single Electron Transistors. http://web.eng.fiu.edu/npala/EEE5425/EEE5425_Ch6_Coulomb%20Blockade%20and%20SETs_Handouts.pdf, Also, https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi18eeLyuLKAhXBWI4KHbS2DpMQFgghMAE&url=http%3A%2F%2Fweb.eng.fiu.edu%2Fnpala%2FEEE5425%2520PPTs%2FEEE5425_6_Coulomb_Blockade_SETs_v1.pptx&usg=AFQjCNEioCePJIEUn5daa0Wt2SLXIbiOBA&bvm=bv.113370389,d.c2E. Accessed 6 Feb 2016 EEE5425 Introduction to nanotechnology, 2/17/2010, © Nezih Pala npala@fiu.edu, Coulomb Blockade and Single Electron Transistors. http://​web.​eng.​fiu.​edu/​npala/​EEE5425/​EEE5425_​Ch6_​Coulomb%20​Blockade%20​and%20​SETs_​Handouts.​pdf, Also, https://​www.​google.​co.​in/​url?​sa=​t&​rct=​j&​q=​&​esrc=​s&​source=​web&​cd=​2&​cad=​rja&​uact=​8&​ved=​0ahUKEwi18eeLyuL​KAhXBWI4KHbS2DpM​QFgghMAE&​url=​http%3A%2F%2Fweb.eng.fiu.edu%2Fnpala%2FEEE5425%2520PPTs%2FEEE5425_6_Coulomb_Blockade_SETs_v1.pptx&usg=AFQjCNEioCePJIEUn5daa0Wt2SLXIbiOBA&bvm=bv.113370389,d.c2E. Accessed 6 Feb 2016
4.
Zurück zum Zitat Leobandung E, Guo L, Wang Y et al (1995) Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperatures over 100 K. Appl Phys Lett 67(7):938–940CrossRef Leobandung E, Guo L, Wang Y et al (1995) Observation of quantum effects and Coulomb blockade in silicon quantum-dot transistors at temperatures over 100 K. Appl Phys Lett 67(7):938–940CrossRef
Metadaten
Titel
Tunnel Junction, Coulomb Blockade, and Quantum Dot Circuit
verfasst von
Vinod Kumar Khanna
Copyright-Jahr
2016
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-3625-2_13

Neuer Inhalt