Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3-4/2017

13.10.2017

Turbulence Budgets in Buoyancy-affected Vertical Backward-facing Step Flow at Low Prandtl Number

verfasst von: Martin Niemann, Jochen Fröhlich

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3-4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper investigates buoyancy impact on the vertical flow over a backward-facing step at low Prandtl number by Direct Numerical Simulation. In particular, the very low Prandtl number of liquid sodium, 0.0088, is considered in the regime of mixed convection, i.e. for Richardson numbers below unity. The effects of buoyancy on mean flow, heat transfer and turbulence are assessed. Buoyancy is found to attenuate recirculation and, consequently, increase heat transfer. Turbulence is decreased in the attached boundary layer for moderate buoyancy impact but surpasses the levels found in forced convection at the largest Richardson number investigated. Beyond the mean flow and second moments, the budgets of turbulent kinetic energy, Reynolds shear stress, temperature variance, and turbulent heat flux components are studied and related to the alterations in the mean field quantities. Due to scale separation, production and dissipation nearly balance for temperature variance while this is not the case for turbulent kinetic energy. Similar findings for the turbulent heat fluxes show that the correlation between temperature and pressure gradient is the most important contribution to the budget aside from production and dissipation. In addition to the physical insight into this flow, the data presented may be used for the validation and improvement of turbulence models for liquid metal flows.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cheng, X., Tak, N.: Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications. Nuclear Eng. Des. 236(4), 385–393 (2006)CrossRef Cheng, X., Tak, N.: Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications. Nuclear Eng. Des. 236(4), 385–393 (2006)CrossRef
2.
Zurück zum Zitat Pacio, J., Litfin, K., Batta, A., Viellieber, M., Class, A., Doolaard, H., Roelofs, F., Manservisi, S., Menghini, F., Böttcher, M.: Heat transfer to liquid metals in a hexagonal rod bundle with grid spacers: Experimental and simulation results. Nuclear Eng. Des. 290, 27–39 (2015)CrossRef Pacio, J., Litfin, K., Batta, A., Viellieber, M., Class, A., Doolaard, H., Roelofs, F., Manservisi, S., Menghini, F., Böttcher, M.: Heat transfer to liquid metals in a hexagonal rod bundle with grid spacers: Experimental and simulation results. Nuclear Eng. Des. 290, 27–39 (2015)CrossRef
3.
Zurück zum Zitat Pacio, J., Wetzel, T.: Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Solar Energy 93, 11–22 (2013)CrossRef Pacio, J., Wetzel, T.: Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems. Solar Energy 93, 11–22 (2013)CrossRef
4.
Zurück zum Zitat Marocco, L., Cammi, G., Flesch, J., Wetzel, T.: Numerical analysis of a solar tower receiver tube operated with liquid metals. Int. J. Thermal Sci. 105, 22–35 (2016)CrossRef Marocco, L., Cammi, G., Flesch, J., Wetzel, T.: Numerical analysis of a solar tower receiver tube operated with liquid metals. Int. J. Thermal Sci. 105, 22–35 (2016)CrossRef
5.
Zurück zum Zitat Niedermeier, K., Flesch, J., Marocco, L., Wetzel, T.: Assessment of thermal energy storage options in a sodium-based CSP plant. Appl. Therm. Eng. 107, 386–397 (2016)CrossRef Niedermeier, K., Flesch, J., Marocco, L., Wetzel, T.: Assessment of thermal energy storage options in a sodium-based CSP plant. Appl. Therm. Eng. 107, 386–397 (2016)CrossRef
6.
Zurück zum Zitat Lesieur, M.: Turbulence in fluids, 3rd edn. Kluwer Academic Publishers, Dordrecht (1997)CrossRefMATH Lesieur, M.: Turbulence in fluids, 3rd edn. Kluwer Academic Publishers, Dordrecht (1997)CrossRefMATH
7.
Zurück zum Zitat Kawamura, H., Ohsaka, K., Abe, H., Yamamoto, K.: DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Int. J. Heat Fluid Flow 19(5), 482–491 (1998)CrossRef Kawamura, H., Ohsaka, K., Abe, H., Yamamoto, K.: DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Int. J. Heat Fluid Flow 19(5), 482–491 (1998)CrossRef
8.
Zurück zum Zitat Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ = 1020 with Pr = 0.025 and 0.71. Int. J. Heat Fluid Flow 25(3), 404–419 (2004)CrossRef Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ = 1020 with Pr = 0.025 and 0.71. Int. J. Heat Fluid Flow 25(3), 404–419 (2004)CrossRef
9.
Zurück zum Zitat Grötzbach, G.: Challenges in low-Prandtl number heat transfer simulation and modelling. Nuclear Eng. Des. 264, 41–55 (2013)CrossRef Grötzbach, G.: Challenges in low-Prandtl number heat transfer simulation and modelling. Nuclear Eng. Des. 264, 41–55 (2013)CrossRef
10.
Zurück zum Zitat Duponcheel, M., Bricteux, L., Manconi, M., Winckelmans, G., Bartosiewicz, Y.: Assessment of RANS and improved near-wall modeling for forced convection at low Prandtl numbers based on LES up to Re τ = 2000. Int. J. Heat Mass Transf. 75, 470–482 (2014)CrossRef Duponcheel, M., Bricteux, L., Manconi, M., Winckelmans, G., Bartosiewicz, Y.: Assessment of RANS and improved near-wall modeling for forced convection at low Prandtl numbers based on LES up to Re τ = 2000. Int. J. Heat Mass Transf. 75, 470–482 (2014)CrossRef
11.
Zurück zum Zitat Errico, O., Stalio, E.: Direct numerical simulation of low-Prandtl number turbulent convection above a wavy wall. Nuclear Eng. Des. 290, 87–98 (2015)CrossRef Errico, O., Stalio, E.: Direct numerical simulation of low-Prandtl number turbulent convection above a wavy wall. Nuclear Eng. Des. 290, 87–98 (2015)CrossRef
12.
Zurück zum Zitat Roelofs, F., Shams, A., Otic, I., Böttcher, M., Duponcheel, M., Bartosiewicz, Y., Lakehal, D., Baglietto, E., Lardeau, S., Cheng, X.: Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows. Nuclear Eng. Des 290, 99–106 (2015)CrossRef Roelofs, F., Shams, A., Otic, I., Böttcher, M., Duponcheel, M., Bartosiewicz, Y., Lakehal, D., Baglietto, E., Lardeau, S., Cheng, X.: Status and perspective of turbulence heat transfer modelling for the industrial application of liquid metal flows. Nuclear Eng. Des 290, 99–106 (2015)CrossRef
13.
Zurück zum Zitat Manservisi, S., Menghini, F.: A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals. Int. J. Heat Mass Transf. 69, 312–326 (2014)CrossRef Manservisi, S., Menghini, F.: A CFD four parameter heat transfer turbulence model for engineering applications in heavy liquid metals. Int. J. Heat Mass Transf. 69, 312–326 (2014)CrossRef
14.
Zurück zum Zitat Vià, R.D., Manservisi, S., Menghini, F.: A k − ω − k 𝜃 − ω 𝜃 four parameter logarithmic turbulence model for liquid metals. Int. J. Heat Mass Transf. 101, 1030–1041 (2016)CrossRef Vià, R.D., Manservisi, S., Menghini, F.: A kωk 𝜃 ω 𝜃 four parameter logarithmic turbulence model for liquid metals. Int. J. Heat Mass Transf. 101, 1030–1041 (2016)CrossRef
16.
Zurück zum Zitat Kasagi, N., Nishimura, M.: Direct numerical simulation of combined forced and natural turbulent convection in a vertical plane channel. Int. J. Heat Fluid Flow 18, 88–99 (1997)CrossRef Kasagi, N., Nishimura, M.: Direct numerical simulation of combined forced and natural turbulent convection in a vertical plane channel. Int. J. Heat Fluid Flow 18, 88–99 (1997)CrossRef
17.
Zurück zum Zitat Marocco, L., Loges, A., Wetzel, T., Stieglitz, R.: Experimental investigation of the turbulent heavy liquid metal heat transfer in the thermal entry region of a vertical annulus with constant heat flux on the inner surface. Int. J. Heat Mass Transf. 55 (23–24), 6435–6445 (2012)CrossRef Marocco, L., Loges, A., Wetzel, T., Stieglitz, R.: Experimental investigation of the turbulent heavy liquid metal heat transfer in the thermal entry region of a vertical annulus with constant heat flux on the inner surface. Int. J. Heat Mass Transf. 55 (23–24), 6435–6445 (2012)CrossRef
18.
Zurück zum Zitat Armaly, B.F., Durst, F., Pereira, J.C.F., Schönung, B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983)CrossRef Armaly, B.F., Durst, F., Pereira, J.C.F., Schönung, B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127, 473–496 (1983)CrossRef
19.
Zurück zum Zitat Jovic, S., Driver, D.: Reynolds number effect on the skin friction in separated flows behind a backward-facing step. Exper. Fluids 18(6), 464–467 (1995)CrossRef Jovic, S., Driver, D.: Reynolds number effect on the skin friction in separated flows behind a backward-facing step. Exper. Fluids 18(6), 464–467 (1995)CrossRef
20.
Zurück zum Zitat Kasagi, N., Matsunaga, A.: Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow. Int. J. Heat Fluid Flow 16, 477–485 (1995)CrossRef Kasagi, N., Matsunaga, A.: Three-dimensional particle-tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow. Int. J. Heat Fluid Flow 16, 477–485 (1995)CrossRef
21.
Zurück zum Zitat Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)CrossRefMATH Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349–374 (1997)CrossRefMATH
22.
Zurück zum Zitat Barri, M., El Khoury, G.K., Andersson, H.I., Pettersen, B.: DNS of backward-facing step flow with fully turbulent inflow. Int. J. Numer. Methods Fluids 64(7), 777–792 (2010)MathSciNetMATH Barri, M., El Khoury, G.K., Andersson, H.I., Pettersen, B.: DNS of backward-facing step flow with fully turbulent inflow. Int. J. Numer. Methods Fluids 64(7), 777–792 (2010)MathSciNetMATH
23.
Zurück zum Zitat Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. J. Heat Transf. 107(4), 922–929 (1985)CrossRef Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. J. Heat Transf. 107(4), 922–929 (1985)CrossRef
25.
Zurück zum Zitat Avancha, R.V.R., Pletcher, R.H.: Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations. Int. J. Heat Fluid Flow 23(5), 601–614 (2002)CrossRef Avancha, R.V.R., Pletcher, R.H.: Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations. Int. J. Heat Fluid Flow 23(5), 601–614 (2002)CrossRef
26.
Zurück zum Zitat Niemann, M., Fröhlich, J.: Direct Numerical Simulation of turbulent heat transfer behind a backward-facing step at low Prandtl number. Proc. Appl. Math. Mech. 14(1), 659–660 (2014)CrossRef Niemann, M., Fröhlich, J.: Direct Numerical Simulation of turbulent heat transfer behind a backward-facing step at low Prandtl number. Proc. Appl. Math. Mech. 14(1), 659–660 (2014)CrossRef
27.
Zurück zum Zitat Niemann, M., Fröhlich, J.: Buoyancy-affected backward-facing step flow with heat transfer at low Prandtl number. Int. J. Heat Mass Transf. 101, 1237–1250 (2016)CrossRef Niemann, M., Fröhlich, J.: Buoyancy-affected backward-facing step flow with heat transfer at low Prandtl number. Int. J. Heat Mass Transf. 101, 1237–1250 (2016)CrossRef
28.
Zurück zum Zitat Abu-Mulaweh, H.I., Armaly, B.F., Chen, T.S.: Measurements in buoyancy-assisting laminar boundary layer flow over a vertical backward-facing step – Uniform wall heat flux case. Exper. Therm. Fluid Sci. 7(1), 39–48 (1993)CrossRef Abu-Mulaweh, H.I., Armaly, B.F., Chen, T.S.: Measurements in buoyancy-assisting laminar boundary layer flow over a vertical backward-facing step – Uniform wall heat flux case. Exper. Therm. Fluid Sci. 7(1), 39–48 (1993)CrossRef
29.
Zurück zum Zitat Abu-Mulaweh, H.I., Armaly, B.F., Chen, T.S.: Laminar natural convection flow over a vertical backward-facing step. J. Heat Transf. 117(4), 895–901 (1995)CrossRefMATH Abu-Mulaweh, H.I., Armaly, B.F., Chen, T.S.: Laminar natural convection flow over a vertical backward-facing step. J. Heat Transf. 117(4), 895–901 (1995)CrossRefMATH
30.
Zurück zum Zitat Abu-Mulaweh, H.I., Chen, T.S., Armaly, B.F.: Turbulent natural convection flow over a backward-facing step. Exper. Heat Transf. 12(4), 295–308 (1999)CrossRefMATH Abu-Mulaweh, H.I., Chen, T.S., Armaly, B.F.: Turbulent natural convection flow over a backward-facing step. Exper. Heat Transf. 12(4), 295–308 (1999)CrossRefMATH
31.
Zurück zum Zitat Abu-Mulaweh, H.I., Armaly, B.F., Chen, T.S.: Turbulent mixed convection flow over a backward-facing step. Int. J. Heat Mass Transf. 44(14), 2661–2669 (2001)CrossRefMATH Abu-Mulaweh, H.I., Armaly, B.F., Chen, T.S.: Turbulent mixed convection flow over a backward-facing step. Int. J. Heat Mass Transf. 44(14), 2661–2669 (2001)CrossRefMATH
32.
Zurück zum Zitat Abu-Mulaweh, H.I.: Effects of backward- and forward-facing steps on turbulent natural convection flow along a vertical flat plate. Int. J. Therm. Sci. 41(4), 376–385 (2002)CrossRef Abu-Mulaweh, H.I.: Effects of backward- and forward-facing steps on turbulent natural convection flow along a vertical flat plate. Int. J. Therm. Sci. 41(4), 376–385 (2002)CrossRef
33.
Zurück zum Zitat Lin, J.T., Armaly, B.F., Chen, T.S.: Mixed convection in buoyancy-assisting, vertical backward-facing step flows. Int. J. Heat Mass Transf. 33(10), 2121–2132 (1990)CrossRef Lin, J.T., Armaly, B.F., Chen, T.S.: Mixed convection in buoyancy-assisting, vertical backward-facing step flows. Int. J. Heat Mass Transf. 33(10), 2121–2132 (1990)CrossRef
34.
Zurück zum Zitat Schumm, T., Frohnapfel, B., Marocco, L.: Numerical simulation of the turbulent convective buoyant flow of sodium over a backward- facing step. J. Phys. Conf. Ser. 745(3), 032,051 (2016)CrossRef Schumm, T., Frohnapfel, B., Marocco, L.: Numerical simulation of the turbulent convective buoyant flow of sodium over a backward- facing step. J. Phys. Conf. Ser. 745(3), 032,051 (2016)CrossRef
35.
Zurück zum Zitat Sobolev, V.: Database of thermophysical properties of liquid metal coolants for GEN-IV. Technical Report 1069, Centre d’Etude de l’Energie Nucléaire, Belgium (2011) Sobolev, V.: Database of thermophysical properties of liquid metal coolants for GEN-IV. Technical Report 1069, Centre d’Etude de l’Energie Nucléaire, Belgium (2011)
36.
Zurück zum Zitat Hering, W., Stieglitz, R., Wetzel, T.: Application of liquid metals for solar energy systems. EPJ Web Conf. 33, 03003 (2012)CrossRef Hering, W., Stieglitz, R., Wetzel, T.: Application of liquid metals for solar energy systems. EPJ Web Conf. 33, 03003 (2012)CrossRef
37.
Zurück zum Zitat Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys. Fluids 18, 011702 (2006)CrossRef Hoyas, S., Jiménez, J.: Scaling of the velocity fluctuations in turbulent channels up to Re τ = 2003. Phys. Fluids 18, 011702 (2006)CrossRef
38.
Zurück zum Zitat Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH
39.
Zurück zum Zitat Fröhlich, J.: Résolution numérique des équations de Navier-Stokes à faible nombre de mach par méthode spectrale. Ph.D. thesis, Université de Nice - Sophia-Antipolis, Sophia-Antipolis (1990) Fröhlich, J.: Résolution numérique des équations de Navier-Stokes à faible nombre de mach par méthode spectrale. Ph.D. thesis, Université de Nice - Sophia-Antipolis, Sophia-Antipolis (1990)
40.
Zurück zum Zitat Kempe, T., Fröhlich, J.: An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231(9), 3663–3684 (2012)MathSciNetCrossRefMATH Kempe, T., Fröhlich, J.: An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231(9), 3663–3684 (2012)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Santarelli, C.: Direct Numerical Simulations of bubbles in turbulent flows with heat transfer. Dissertation, Technische Universität Dresden, Dresden (2015) Santarelli, C.: Direct Numerical Simulations of bubbles in turbulent flows with heat transfer. Dissertation, Technische Universität Dresden, Dresden (2015)
42.
Zurück zum Zitat Lumley, J.L.: Pressure-strain correlation. Phys. Fluids 18(6), 750–750 (1975)CrossRef Lumley, J.L.: Pressure-strain correlation. Phys. Fluids 18(6), 750–750 (1975)CrossRef
43.
Zurück zum Zitat Mansour, N.N., Kim, J., Moin, P.: Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15–44 (1988)CrossRef Mansour, N.N., Kim, J., Moin, P.: Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15–44 (1988)CrossRef
44.
Zurück zum Zitat Perot, B., Moin, P.: Shear-free turbulent boundary layers, Part I: Physical insights into near wall turbulence. J. Fluid Mech. 295, 199–227 (1995)MathSciNetCrossRefMATH Perot, B., Moin, P.: Shear-free turbulent boundary layers, Part I: Physical insights into near wall turbulence. J. Fluid Mech. 295, 199–227 (1995)MathSciNetCrossRefMATH
Metadaten
Titel
Turbulence Budgets in Buoyancy-affected Vertical Backward-facing Step Flow at Low Prandtl Number
verfasst von
Martin Niemann
Jochen Fröhlich
Publikationsdatum
13.10.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3-4/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9862-6

Weitere Artikel der Ausgabe 3-4/2017

Flow, Turbulence and Combustion 3-4/2017 Zur Ausgabe

EditorialNotes

Preface

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.