Skip to main content

2018 | OriginalPaper | Buchkapitel

9. Turbulence Effects on Convective Heat Transfer

verfasst von : Forrest E. Ames

Erschienen in: Handbook of Thermal Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The subject of this chapter is the influence of flow field turbulence on heat transfer augmentation to both the turbulent and laminar boundary layers. Initially, the response of turbulence to the presence of a wall is reviewed as background to one of the key constraints in the interaction of turbulence to both turbulent and laminar boundary layers. Next, research on the influence of external turbulence to the flat plat turbulent boundary layer is discussed in terms of both the physics of the interaction of external turbulence with a developing turbulent boundary layer and the correlation of the resulting enhancement. A simple physics based eddy diffusivity model for the external turbulence is presented and predictive results using this model are presented and discussed. The influence of turbulence on laminar boundary layer heat transfer augmentation to stagnation region and other laminar regions is also reviewed. Initially, the influence of both the strain field and leading edge surface on the intensification of small scale turbulence and the blocking of relatively large scale turbulence is discussed. A physically based correlating method for stagnation region heat transfer augmentation is presented along with historical and alternate models. Heat transfer augmentation mechanisms in laminar regions with no intensification are also discussed and the simple physics based eddy diffusivity model for the turbulent boundary layer is extended to laminar flow prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ames FE (1994) Experimental study of vane heat transfer and aerodynamics at elevated levels of turbulence. NASA CR-4633 Ames FE (1994) Experimental study of vane heat transfer and aerodynamics at elevated levels of turbulence. NASA CR-4633
Zurück zum Zitat Ames FE (1996) Experimental study of vane heat transfer and film cooling at elevated levels of turbulence. NASA CR 198525 Ames FE (1996) Experimental study of vane heat transfer and film cooling at elevated levels of turbulence. NASA CR 198525
Zurück zum Zitat Ames FE (1997) The influence of large scale, high intensity turbulence on vane heat transfer. ASME J Turbomach 119:23CrossRef Ames FE (1997) The influence of large scale, high intensity turbulence on vane heat transfer. ASME J Turbomach 119:23CrossRef
Zurück zum Zitat Ames FE, Dvorak LA (2006) Turbulent transport in pin fin arrays – experimental data and predictions. ASME J Turbomach 128:71–81CrossRef Ames FE, Dvorak LA (2006) Turbulent transport in pin fin arrays – experimental data and predictions. ASME J Turbomach 128:71–81CrossRef
Zurück zum Zitat Ames FE, Moffat RJ (1990) Heat transfer with high intensity, large scale turbulence: the flat plate turbulent boundary layer and the cylindrical stagnation point, Report no. HMT-44, Thermosciences Division of Mechanical Engineering, Stanford University Ames FE, Moffat RJ (1990) Heat transfer with high intensity, large scale turbulence: the flat plate turbulent boundary layer and the cylindrical stagnation point, Report no. HMT-44, Thermosciences Division of Mechanical Engineering, Stanford University
Zurück zum Zitat Ames FE, Kwon O, Moffat RJ (1999) An algebraic model for high intensity large scale turbulence, ASME paper no. 99-GT-160 Ames FE, Kwon O, Moffat RJ (1999) An algebraic model for high intensity large scale turbulence, ASME paper no. 99-GT-160
Zurück zum Zitat Ames FE, Wang C, Barbot PA (2003) Measurement and prediction of the influence of catalytic and dry low NOx combustor turbulence on vane surface heat transfer. ASME J Turbomach 125:210–220CrossRef Ames FE, Wang C, Barbot PA (2003) Measurement and prediction of the influence of catalytic and dry low NOx combustor turbulence on vane surface heat transfer. ASME J Turbomach 125:210–220CrossRef
Zurück zum Zitat Ames FE, Argenziano M, Wang C (2004) Measurement and prediction of heat transfer distributions on an aft loaded vane subjected to the influence of catalytic and dry low NOx combustor turbulence. ASME J Turbomachi 126:139–149CrossRef Ames FE, Argenziano M, Wang C (2004) Measurement and prediction of heat transfer distributions on an aft loaded vane subjected to the influence of catalytic and dry low NOx combustor turbulence. ASME J Turbomachi 126:139–149CrossRef
Zurück zum Zitat Ames FE, Dvorak LA, Morrow MJ (2005) Turbulent augmentation of internal convection off pins in staggered pin fin arrays. ASME J Turbomach 127:183–190CrossRef Ames FE, Dvorak LA, Morrow MJ (2005) Turbulent augmentation of internal convection off pins in staggered pin fin arrays. ASME J Turbomach 127:183–190CrossRef
Zurück zum Zitat Bae S, Lele SK, Sung HG (2002) The influence of inflow disturbances on stagnation region heat transfer. ASME J Heat Transfer 122:258–265CrossRef Bae S, Lele SK, Sung HG (2002) The influence of inflow disturbances on stagnation region heat transfer. ASME J Heat Transfer 122:258–265CrossRef
Zurück zum Zitat Barrett MJ, Hollingsworth DK (2003a) Heat transfer in turbulent boundary layers subjected to free-stream turbulence—part I: experimental results. J Turbomach 125(2):232–241CrossRef Barrett MJ, Hollingsworth DK (2003a) Heat transfer in turbulent boundary layers subjected to free-stream turbulence—part I: experimental results. J Turbomach 125(2):232–241CrossRef
Zurück zum Zitat Barrett MJ, Hollingsworth DK (2003b) Heat transfer in turbulent boundary layers subjected to free-stream turbulence—part II: analysis and correlation. J Turbomach 125(2):242–251CrossRef Barrett MJ, Hollingsworth DK (2003b) Heat transfer in turbulent boundary layers subjected to free-stream turbulence—part II: analysis and correlation. J Turbomach 125(2):242–251CrossRef
Zurück zum Zitat Becko Y (1975) Heat transfer analysis along the blades of a gas turbine stator by thermal and kinematic boundary layer theory, ASME paper no. 75-GT-15 Becko Y (1975) Heat transfer analysis along the blades of a gas turbine stator by thermal and kinematic boundary layer theory, ASME paper no. 75-GT-15
Zurück zum Zitat Blair MF (1983a) Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development, part I-experimental data. J Heat Transf 105:33CrossRef Blair MF (1983a) Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development, part I-experimental data. J Heat Transf 105:33CrossRef
Zurück zum Zitat Blair MF (1983b) Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development, part II-analysis of results. J Heat Transf 105:41CrossRef Blair MF (1983b) Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development, part II-analysis of results. J Heat Transf 105:41CrossRef
Zurück zum Zitat Blair MF, Werle MJ (1980) The influence of free-stream turbulence on the zero-pressure gradient fully turbulent boundary layer, UTRC Report R-80-914388-12 Blair MF, Werle MJ (1980) The influence of free-stream turbulence on the zero-pressure gradient fully turbulent boundary layer, UTRC Report R-80-914388-12
Zurück zum Zitat Boyle RJ, Ameri AA (2015) Effects of turbulence intensity and scale on turbine blade heat transfer, ASME paper no. GT2015–43597 Boyle RJ, Ameri AA (2015) Effects of turbulence intensity and scale on turbine blade heat transfer, ASME paper no. GT2015–43597
Zurück zum Zitat Boyle RJ, Giel PW, Ames FE (2004) Predictions for the effects of freestream turbulence on turbine blade heat transfer, ASME paper no. GT-2004-54332 Boyle RJ, Giel PW, Ames FE (2004) Predictions for the effects of freestream turbulence on turbine blade heat transfer, ASME paper no. GT-2004-54332
Zurück zum Zitat Britter RE, Hunt JCR, Mumford JC (1979) The distortion of turbulence by a circular cylinder. J Fluid Mech 92(2):269CrossRef Britter RE, Hunt JCR, Mumford JC (1979) The distortion of turbulence by a circular cylinder. J Fluid Mech 92(2):269CrossRef
Zurück zum Zitat Brown A, Burton RC (1978) The effects of free-stream turbulence intensity and velocity distribution on heat transfer to curved surfaces. ASME J Eng Power 100:159–165CrossRef Brown A, Burton RC (1978) The effects of free-stream turbulence intensity and velocity distribution on heat transfer to curved surfaces. ASME J Eng Power 100:159–165CrossRef
Zurück zum Zitat Charnay G, Mathieu J, Comte-Bellot G (1976) Response of the turbulent boundary layer to random fluctuations in the external stream. Phys Fluids 19(9):1261CrossRef Charnay G, Mathieu J, Comte-Bellot G (1976) Response of the turbulent boundary layer to random fluctuations in the external stream. Phys Fluids 19(9):1261CrossRef
Zurück zum Zitat Chowdhury NHK, Ames FE (2013) The response of high intensity turbulence in the presence of large stagnation regions, ASME paper no. GT2013–95055 Chowdhury NHK, Ames FE (2013) The response of high intensity turbulence in the presence of large stagnation regions, ASME paper no. GT2013–95055
Zurück zum Zitat Dullenkopf K, Mayle RE (1995) An account of free-stream turbulence length scale on laminar heat transfer. ASME J Turbomach 117:401–406CrossRef Dullenkopf K, Mayle RE (1995) An account of free-stream turbulence length scale on laminar heat transfer. ASME J Turbomach 117:401–406CrossRef
Zurück zum Zitat Dunham J (1972) Predictions of boundary layer transition on turbomachinery blades (Predictions of boundary layer transition on turbomachine blades). AGARD-AG-164, pp 55–71 Dunham J (1972) Predictions of boundary layer transition on turbomachinery blades (Predictions of boundary layer transition on turbomachine blades). AGARD-AG-164, pp 55–71
Zurück zum Zitat Durbin PA (1995) Separated flow computations with the k-epsilon-v-squared model. AIAA J 33(4):659–664CrossRef Durbin PA (1995) Separated flow computations with the k-epsilon-v-squared model. AIAA J 33(4):659–664CrossRef
Zurück zum Zitat Forest AE (1977) Engineering predictions of transitional boundary layers. In AGARD Laminar-Turbulent Transition 19 p (SEE N78-14316 05-34) Forest AE (1977) Engineering predictions of transitional boundary layers. In AGARD Laminar-Turbulent Transition 19 p (SEE N78-14316 05-34)
Zurück zum Zitat Gandaparavu P, Ames FE (2013) The influence of leading edge diameter on stagnation region heat transfer augmentation including effects of turbulence level, scale, and Reynolds number. ASME J Turbomach 135:011008-1-8 Gandaparavu P, Ames FE (2013) The influence of leading edge diameter on stagnation region heat transfer augmentation including effects of turbulence level, scale, and Reynolds number. ASME J Turbomach 135:011008-1-8
Zurück zum Zitat Gifford AR, Diller TE, Vlachos PP (2011) The physical mechanism of heat transfer augmentation in stagnation flow subject to freestream turbulence. ASME J Heat Transfer 133:021901-1-11CrossRef Gifford AR, Diller TE, Vlachos PP (2011) The physical mechanism of heat transfer augmentation in stagnation flow subject to freestream turbulence. ASME J Heat Transfer 133:021901-1-11CrossRef
Zurück zum Zitat Hancock PE, Bradshaw P (1983) The effect of free stream turbulence on turbulent boundary layers. J Fluids Eng 105:284CrossRef Hancock PE, Bradshaw P (1983) The effect of free stream turbulence on turbulent boundary layers. J Fluids Eng 105:284CrossRef
Zurück zum Zitat Hancock PE, Bradshaw P (1989) Turbulence structure of a boundary layer beneath a turbulent free stream. J Fluid Mech 205:45CrossRef Hancock PE, Bradshaw P (1989) Turbulence structure of a boundary layer beneath a turbulent free stream. J Fluid Mech 205:45CrossRef
Zurück zum Zitat Hollingsworth DK, Bourgogne HA (1995) The development of a turbulent boundary layer in high free-stream turbulence produced by a two-stream mixing layer. Exp Thermal Fluid Sci 11 (2):210–222CrossRef Hollingsworth DK, Bourgogne HA (1995) The development of a turbulent boundary layer in high free-stream turbulence produced by a two-stream mixing layer. Exp Thermal Fluid Sci 11 (2):210–222CrossRef
Zurück zum Zitat Huffman GD, Zimmerman DR, Bennett WA (1972) The effect of free stream turbulence level on the flow and heat transfer in the entrance region of an annulus. Int J Heat Mass Transf 20:763 Huffman GD, Zimmerman DR, Bennett WA (1972) The effect of free stream turbulence level on the flow and heat transfer in the entrance region of an annulus. Int J Heat Mass Transf 20:763
Zurück zum Zitat Hylton LD, Mihelc MS, Turner ER, Nealy DA, York RE (1983) Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes. National Aeronautics and Space Administration, NASA Lewis Research Center, Cleveland Hylton LD, Mihelc MS, Turner ER, Nealy DA, York RE (1983) Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes. National Aeronautics and Space Administration, NASA Lewis Research Center, Cleveland
Zurück zum Zitat Kestin J (1966) The effect of free-stream turbulence on heat transfer rate. In: Irvine TF, Harnett JP (eds) Advances in heat transfer, 3rd edn. Academic, London Kestin J (1966) The effect of free-stream turbulence on heat transfer rate. In: Irvine TF, Harnett JP (eds) Advances in heat transfer, 3rd edn. Academic, London
Zurück zum Zitat Kestin J, Wood RT (1971) The influence of turbulence on mass transfer from cylinders. J Heat Transf 93(4):321CrossRef Kestin J, Wood RT (1971) The influence of turbulence on mass transfer from cylinders. J Heat Transf 93(4):321CrossRef
Zurück zum Zitat Kwon O, Ames FE (1996) A velocity and length scale approach to k-ε modeling. ASME J Heat Transf 118: 857.CrossRef Kwon O, Ames FE (1996) A velocity and length scale approach to k-ε modeling. ASME J Heat Transf 118: 857.CrossRef
Zurück zum Zitat Lander RD (1969) Evaluation of the effect of free stream turbulence on the heat transfer to turbine airfoil (No. PWA-3713). Pratt and Whitney Aircraft Group East Hartford Lander RD (1969) Evaluation of the effect of free stream turbulence on the heat transfer to turbine airfoil (No. PWA-3713). Pratt and Whitney Aircraft Group East Hartford
Zurück zum Zitat Lowery GW, Vachon RI (1975) The effect of turbulence on heat transfer from heated cylinders. Int J Heat Mass Transf 18:1229CrossRef Lowery GW, Vachon RI (1975) The effect of turbulence on heat transfer from heated cylinders. Int J Heat Mass Transf 18:1229CrossRef
Zurück zum Zitat Maciejewski PK, Moffat RJ (1989) Heat transfer with very high free-stream turbulence, Report HMT-42, Deptartment of Mechanical Engineering, Stanford University Maciejewski PK, Moffat RJ (1989) Heat transfer with very high free-stream turbulence, Report HMT-42, Deptartment of Mechanical Engineering, Stanford University
Zurück zum Zitat Maciejewski PK, Moffat RJ (1992) Heat transfer with very high free-stream turbulence: part I-experimental data and part II-analysis of results. ASME J Heat Transfer 114:847 Maciejewski PK, Moffat RJ (1992) Heat transfer with very high free-stream turbulence: part I-experimental data and part II-analysis of results. ASME J Heat Transfer 114:847
Zurück zum Zitat MacMullin R, Elrod W, Rivir R (1989) Free-stream turbulence from a circular wall jet on a flat plate heat transfer and boundary layer flow. J Turbomach 111(1):78–86CrossRef MacMullin R, Elrod W, Rivir R (1989) Free-stream turbulence from a circular wall jet on a flat plate heat transfer and boundary layer flow. J Turbomach 111(1):78–86CrossRef
Zurück zum Zitat Mayle RE (1991) The role of laminar-turbulent transition in gas turbine engines, 1991 ASME international gas turbine institute scholar award paper. J Turbomach 113:509–537CrossRef Mayle RE (1991) The role of laminar-turbulent transition in gas turbine engines, 1991 ASME international gas turbine institute scholar award paper. J Turbomach 113:509–537CrossRef
Zurück zum Zitat Mehendale AB, Han JC, Ou S (1991) Influence of high mainstream turbulence on leading edge heat transfer. ASME J Heat Transfer 113:843–850CrossRef Mehendale AB, Han JC, Ou S (1991) Influence of high mainstream turbulence on leading edge heat transfer. ASME J Heat Transfer 113:843–850CrossRef
Zurück zum Zitat Nealy DA, Mihelc MS, Hylton LD, Gladden HJ (1984) Measurements of heat transfer distribution over the surfaces of highly loaded turbine nozzle guide vanes. J Eng Gas Turbines Power 106:149–158CrossRef Nealy DA, Mihelc MS, Hylton LD, Gladden HJ (1984) Measurements of heat transfer distribution over the surfaces of highly loaded turbine nozzle guide vanes. J Eng Gas Turbines Power 106:149–158CrossRef
Zurück zum Zitat Nix AC, Diller TE, Ng WF (2007) Experimental measurements and modeling of the effects of large-scale freestream turbulence on heat transfer. ASME J Turbomach 129:542–550CrossRef Nix AC, Diller TE, Ng WF (2007) Experimental measurements and modeling of the effects of large-scale freestream turbulence on heat transfer. ASME J Turbomach 129:542–550CrossRef
Zurück zum Zitat Oo AN, Ching CY (2002) Stagnation line heat transfer augmentation due to freestream vortical structures and vorticity. ASME J Heat Transfer 124:583–587CrossRef Oo AN, Ching CY (2002) Stagnation line heat transfer augmentation due to freestream vortical structures and vorticity. ASME J Heat Transfer 124:583–587CrossRef
Zurück zum Zitat Rigby DL, Van Fossen GJ (1991) Increased heat transfer to a cylindrical leading edge due to spanwise variations in the freestream velocity. In: AIAA-91-1739, AIAA 22nd fluid dynamics, plasma dynamics and lasers conference, Honolulu Rigby DL, Van Fossen GJ (1991) Increased heat transfer to a cylindrical leading edge due to spanwise variations in the freestream velocity. In: AIAA-91-1739, AIAA 22nd fluid dynamics, plasma dynamics and lasers conference, Honolulu
Zurück zum Zitat Sadeh WZ, Sullivan PP (1980) Turbulence amplification in flow about an airfoil. In: ASME 1980 international gas turbine conference and products show, ASME paper no. 80-GT-111, pp V01BT02A017-V01BT02A017 Sadeh WZ, Sullivan PP (1980) Turbulence amplification in flow about an airfoil. In: ASME 1980 international gas turbine conference and products show, ASME paper no. 80-GT-111, pp V01BT02A017-V01BT02A017
Zurück zum Zitat Sahm MK, Moffat RJ (1992) Turbulent boundary layers with high turbulence: experimental heat transfer and structure on flat and convex walls, Report no. HMT-45, Deptartment of Mechanical Engineering, Stanford University Sahm MK, Moffat RJ (1992) Turbulent boundary layers with high turbulence: experimental heat transfer and structure on flat and convex walls, Report no. HMT-45, Deptartment of Mechanical Engineering, Stanford University
Zurück zum Zitat Sanitjai S, Goldstein RJ (2001) Effect of free stream turbulence on local mass transfer from a circular cylinder. Int J Heat Mass Transf 44(15):2863–2875CrossRef Sanitjai S, Goldstein RJ (2001) Effect of free stream turbulence on local mass transfer from a circular cylinder. Int J Heat Mass Transf 44(15):2863–2875CrossRef
Zurück zum Zitat Schmidt RC, Patankar SV (1988) Two-equation low-Reynolds-number turbulence modeling of transitional boundary layer flows characteristic of gas turbine blades. PhD thesis, Final contractor report, NASA CR 4145 Schmidt RC, Patankar SV (1988) Two-equation low-Reynolds-number turbulence modeling of transitional boundary layer flows characteristic of gas turbine blades. PhD thesis, Final contractor report, NASA CR 4145
Zurück zum Zitat Smith MC, Kuethe AM (1966) Effects of turbulence on laminar skin friction and heat transfer. Phys Fluids 9(12):2337CrossRef Smith MC, Kuethe AM (1966) Effects of turbulence on laminar skin friction and heat transfer. Phys Fluids 9(12):2337CrossRef
Zurück zum Zitat Thole KA, Bogard DG (1995) Enhanced heat transfer and skin friction due to high freestream turbulence. ASME J Turbomach 117:418CrossRef Thole KA, Bogard DG (1995) Enhanced heat transfer and skin friction due to high freestream turbulence. ASME J Turbomach 117:418CrossRef
Zurück zum Zitat Thomas NH, Hancock PE (1977) Grid turbulence near a moving wall. J Fluid Mech 82(Part 3):481CrossRef Thomas NH, Hancock PE (1977) Grid turbulence near a moving wall. J Fluid Mech 82(Part 3):481CrossRef
Zurück zum Zitat Uzkan T, Reynolds WC (1967) A shear-free turbulent boundary layer. J Fluid Mech 28:803CrossRef Uzkan T, Reynolds WC (1967) A shear-free turbulent boundary layer. J Fluid Mech 28:803CrossRef
Zurück zum Zitat Van Fossen GJ, Bunker RS (2001) Augmentation of stagnation region heat transfer due to turbulence from a DLN can combustor. ASME J Turbomach 123:140–146CrossRef Van Fossen GJ, Bunker RS (2001) Augmentation of stagnation region heat transfer due to turbulence from a DLN can combustor. ASME J Turbomach 123:140–146CrossRef
Zurück zum Zitat Van Fossen GJ, Bunker RS (2002) Augmentation of stagnation region heat transfer due to turbulence from an advanced dual-annular combustor. In: ASME Turbo Expo 2002: power for land, sea, and air, ASME paper no. GT2002–30184, pp 199–206 Van Fossen GJ, Bunker RS (2002) Augmentation of stagnation region heat transfer due to turbulence from an advanced dual-annular combustor. In: ASME Turbo Expo 2002: power for land, sea, and air, ASME paper no. GT2002–30184, pp 199–206
Zurück zum Zitat Van Fossen GJ, Simoneau RJ, Ching CY (1995) Influence of turbulence parameters, Reynolds number, and body shape on stagnation region heat transfer, ASME. J Heat Transf 117:597–603CrossRef Van Fossen GJ, Simoneau RJ, Ching CY (1995) Influence of turbulence parameters, Reynolds number, and body shape on stagnation region heat transfer, ASME. J Heat Transf 117:597–603CrossRef
Zurück zum Zitat Varty J, Ames FE (2016) Experimental heat transfer distributions over an aft loaded vane with a large leading edge at very high turbulence levels, ASME paper no. IMECE2016-67029 Varty J, Ames FE (2016) Experimental heat transfer distributions over an aft loaded vane with a large leading edge at very high turbulence levels, ASME paper no. IMECE2016-67029
Zurück zum Zitat Wissink JG, Rodi W (2011) Direct numerical simulation of heat transfer from the stagnation region of a heated cylinder affected by an impinging wake. J Fluid Mech 669:64–89CrossRef Wissink JG, Rodi W (2011) Direct numerical simulation of heat transfer from the stagnation region of a heated cylinder affected by an impinging wake. J Fluid Mech 669:64–89CrossRef
Zurück zum Zitat Zapp GM (1950) The effect of turbulence on local heat transfer coefficients around a cylinder normal to an air stream. Master’s thesis, Oregon State College Zapp GM (1950) The effect of turbulence on local heat transfer coefficients around a cylinder normal to an air stream. Master’s thesis, Oregon State College
Zurück zum Zitat Zukauskas A, Ziugzda J (1985) Heat transfer of a cylinder in crossflow. Hemisphere Publishing Corporation, Washington, DC Zukauskas A, Ziugzda J (1985) Heat transfer of a cylinder in crossflow. Hemisphere Publishing Corporation, Washington, DC
Metadaten
Titel
Turbulence Effects on Convective Heat Transfer
verfasst von
Forrest E. Ames
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_17

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.