Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3-4/2017

04.10.2017

Turbulent Drag Reduction by Uniform Blowing Over a Two-dimensional Roughness

verfasst von: Eisuke Mori, Maurizio Quadrio, Koji Fukagata

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3-4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct numerical simulation (DNS) of turbulent channel flow over a two-dimensional irregular rough wall with uniform blowing (UB) was performed. The main objective is to investigate the drag reduction effectiveness of UB on a rough-wall turbulent boundary layer toward its practical application. The DNS was performed under a constant flow rate at the bulk Reynolds number values of 5600 and 14000, which correspond to the friction Reynolds numbers of about 180 and 400 in the smooth-wall case, respectively. Based upon the decomposition of drag into the friction and pressure contributions, the present flow is considered to belong to the transitionally-rough regime. Unlike recent experimental results, it turns out that the drag reduction effect of UB on the present two-dimensional rough wall is similar to that for a smooth wall. The friction drag is reduced similarly to the smooth-wall case by the displacement of the mean velocity profile. Besides, the pressure drag, which does not exist in the smooth-wall case, is also reduced; namely, UB makes the rough wall aerodynamically smoother. Examination of turbulence statistics suggests that the effects of roughness and UB are relatively independent to each other in the outer layer, which suggests that Stevenson’s formula can be modified so as to account for the roughness effect by simply adding the roughness function term.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wood, R.M.: Impact of advanced aerodynamic technology on transportation energy consumption. SAE Paper 2004-01-1306 (2004) Wood, R.M.: Impact of advanced aerodynamic technology on transportation energy consumption. SAE Paper 2004-01-1306 (2004)
2.
Zurück zum Zitat Kornilov, V.I.: Current state and prospects of researches on the control of turbulent boundary layer by air blowing. Prog. Aerosp. Sci. 76, 1–23 (2015)CrossRef Kornilov, V.I.: Current state and prospects of researches on the control of turbulent boundary layer by air blowing. Prog. Aerosp. Sci. 76, 1–23 (2015)CrossRef
3.
Zurück zum Zitat Moin, P., Bewley, T.: Feedback control of turbulence Appl. Mech. Rev. 47, S3–S13 (2001)CrossRef Moin, P., Bewley, T.: Feedback control of turbulence Appl. Mech. Rev. 47, S3–S13 (2001)CrossRef
4.
Zurück zum Zitat Gad-el-Hak, M.: Flow control: The future. J. Aircraft 38, 402–421 (2001)CrossRef Gad-el-Hak, M.: Flow control: The future. J. Aircraft 38, 402–421 (2001)CrossRef
5.
Zurück zum Zitat Walsh, M.J.: Riblets as a viscous drag reduction technique. AIAA J. 21, 485–486 (1983)CrossRef Walsh, M.J.: Riblets as a viscous drag reduction technique. AIAA J. 21, 485–486 (1983)CrossRef
6.
Zurück zum Zitat Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil. Trans. R. Soc. A 368, 4775–4806 (2010)CrossRef Dean, B., Bhushan, B.: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil. Trans. R. Soc. A 368, 4775–4806 (2010)CrossRef
7.
Zurück zum Zitat Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)CrossRef Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89–109 (2010)CrossRef
9.
Zurück zum Zitat Kasagi, N., Suzuki, Y., Fukagata, K.: Microelectromechanical system-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231–251 (2009)CrossRefMATH Kasagi, N., Suzuki, Y., Fukagata, K.: Microelectromechanical system-based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41, 231–251 (2009)CrossRefMATH
10.
Zurück zum Zitat Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)CrossRefMATH Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)CrossRefMATH
11.
Zurück zum Zitat Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4, 1605–1607 (1992)CrossRef Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4, 1605–1607 (1992)CrossRef
12.
Zurück zum Zitat Baron, A., Quadrio, M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311–326 (1996)CrossRefMATH Baron, A., Quadrio, M.: Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55, 311–326 (1996)CrossRefMATH
13.
Zurück zum Zitat Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH
14.
Zurück zum Zitat Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. A 369, 1428–1442 (2011)CrossRef Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. A 369, 1428–1442 (2011)CrossRef
16.
Zurück zum Zitat Min, T., Kang, S.M., Speyer, J.L., Kim, J.: Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309–318 (2006)CrossRefMATH Min, T., Kang, S.M., Speyer, J.L., Kim, J.: Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309–318 (2006)CrossRefMATH
17.
Zurück zum Zitat Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)CrossRef Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)CrossRef
18.
Zurück zum Zitat Mamori, H., Iwamoto, K., Murata, A.: Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow. Phys. Fluids 26, 015101 (2014)CrossRef Mamori, H., Iwamoto, K., Murata, A.: Effect of the parameters of traveling waves created by blowing and suction on the relaminarization phenomena in fully developed turbulent channel flow. Phys. Fluids 26, 015101 (2014)CrossRef
19.
Zurück zum Zitat Bewley, T.R.: A fundamental limit on the balance of power in a transpiration-controlled channel flow. J. Fluid Mech 632, 443–446 (2009)MathSciNetCrossRefMATH Bewley, T.R.: A fundamental limit on the balance of power in a transpiration-controlled channel flow. J. Fluid Mech 632, 443–446 (2009)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Fukagata, K., Sugiyama, K., Kasagi, N.: On the lower bound of net driving power in controlled duct flows. Phys. D 238, 1082–1086 (2009)MathSciNetCrossRefMATH Fukagata, K., Sugiyama, K., Kasagi, N.: On the lower bound of net driving power in controlled duct flows. Phys. D 238, 1082–1086 (2009)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Prandtl, L.: Über Flüssigkeitsbewegung Bei Sehr Kleiner Reibung. In: Verhandlungen Des III Internationalen Mathematiker-Kongresses, Heidelberg, pp 484–491 (1904) Prandtl, L.: Über Flüssigkeitsbewegung Bei Sehr Kleiner Reibung. In: Verhandlungen Des III Internationalen Mathematiker-Kongresses, Heidelberg, pp 484–491 (1904)
22.
Zurück zum Zitat Mickley, H.S., Ross, R.C., Squyers, A.L., Stewart, W.E.: Heat, mass, and momentum transfer for flow over a flat plate with blowing or suction. NACA Technical Note 3208 (1957) Mickley, H.S., Ross, R.C., Squyers, A.L., Stewart, W.E.: Heat, mass, and momentum transfer for flow over a flat plate with blowing or suction. NACA Technical Note 3208 (1957)
23.
Zurück zum Zitat Mickley, H.S., Davis, R.S.: Momentum transfer for flow over a flat plate with blowing. NACA Technical Note 4017 (1957) Mickley, H.S., Davis, R.S.: Momentum transfer for flow over a flat plate with blowing. NACA Technical Note 4017 (1957)
24.
Zurück zum Zitat Jeromin, L.O.F.: The status of research in turbulent boundary layers with fluid injection. Prog. Aerosp. Sci. 10, 65–189 (1970)CrossRefMATH Jeromin, L.O.F.: The status of research in turbulent boundary layers with fluid injection. Prog. Aerosp. Sci. 10, 65–189 (1970)CrossRefMATH
25.
Zurück zum Zitat Moin, P.: Numerical Simulation of Wall-Bounded Turbulent Shear Flows. In: Krause, E. (ed.) Eighth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 170, pp 55–76. Springer, Berlin (1982) Moin, P.: Numerical Simulation of Wall-Bounded Turbulent Shear Flows. In: Krause, E. (ed.) Eighth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, vol. 170, pp 55–76. Springer, Berlin (1982)
26.
Zurück zum Zitat Sumitani, Y., Kasagi, N.: Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA J. 32, 1220–1228 (1995)CrossRef Sumitani, Y., Kasagi, N.: Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA J. 32, 1220–1228 (1995)CrossRef
27.
Zurück zum Zitat Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefMATH Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefMATH
28.
Zurück zum Zitat Kametani, Y., Fukagata, K.: Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154–172 (2011)MathSciNetCrossRefMATH Kametani, Y., Fukagata, K.: Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J. Fluid Mech. 681, 154–172 (2011)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)CrossRef Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)CrossRef
30.
Zurück zum Zitat Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux. J. Turbul. 17, 913–929 (2016)MathSciNetCrossRef Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Drag reduction in spatially developing turbulent boundary layers by spatially intermittent blowing at constant mass-flux. J. Turbul. 17, 913–929 (2016)MathSciNetCrossRef
31.
Zurück zum Zitat Liu, P.Q., Duan, H.S., He, Y.W.: Numerical study of suction-blowing flow control technology for an airfoil. J. Aircraft 47, 229–239 (2010)CrossRef Liu, P.Q., Duan, H.S., He, Y.W.: Numerical study of suction-blowing flow control technology for an airfoil. J. Aircraft 47, 229–239 (2010)CrossRef
32.
Zurück zum Zitat Noguchi, D., Fukagata, K., Tokugawa, N.: Friction drag reduction of a spatially developing boundary layer using a combined uniform suction and blowing. J. Fluid Sci. Technol. 11, JFST0004 (2016)CrossRef Noguchi, D., Fukagata, K., Tokugawa, N.: Friction drag reduction of a spatially developing boundary layer using a combined uniform suction and blowing. J. Fluid Sci. Technol. 11, JFST0004 (2016)CrossRef
33.
Zurück zum Zitat Schetz, J.A., Nerney, B.: Turbulent boundary layer with injection and surface roughness. AIAA J. 15, 1288–1294 (1977)CrossRef Schetz, J.A., Nerney, B.: Turbulent boundary layer with injection and surface roughness. AIAA J. 15, 1288–1294 (1977)CrossRef
34.
Zurück zum Zitat Voisinet, R.L.P.: Influence of roughness and blowing on compressible turbulent boundary layer flow. Final Report, Naval Surface Weapons Center, Silver Spring, MD, NSWC TR 79–153 (1979) Voisinet, R.L.P.: Influence of roughness and blowing on compressible turbulent boundary layer flow. Final Report, Naval Surface Weapons Center, Silver Spring, MD, NSWC TR 79–153 (1979)
35.
Zurück zum Zitat Miller, M.A., Martin, A., Bailey, S.C.C.: Investigation of the scaling of roughness and blowing effects on turbulent channel flow. Exp. Fluids 55, 1675 (2014)CrossRef Miller, M.A., Martin, A., Bailey, S.C.C.: Investigation of the scaling of roughness and blowing effects on turbulent channel flow. Exp. Fluids 55, 1675 (2014)CrossRef
36.
Zurück zum Zitat Schultz, M.P., Flack, K.A.: Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21, 015104 (2009)CrossRefMATH Schultz, M.P., Flack, K.A.: Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21, 015104 (2009)CrossRefMATH
37.
Zurück zum Zitat Clauser, F.H.: Turbulent boundary layer. Adv. Appl. Mech. 4, 1–51 (1956)CrossRef Clauser, F.H.: Turbulent boundary layer. Adv. Appl. Mech. 4, 1–51 (1956)CrossRef
38.
Zurück zum Zitat Perry, A.E., Li, J.D.: Experimental support for the attached-eddy hypothesis in zero-pressure gradient turbulent boundary layers. J. Fluid Mech. 218, 405–438 (1990)CrossRef Perry, A.E., Li, J.D.: Experimental support for the attached-eddy hypothesis in zero-pressure gradient turbulent boundary layers. J. Fluid Mech. 218, 405–438 (1990)CrossRef
39.
Zurück zum Zitat Stevenson, T.N.: A law of the wall for turbulent boundary layers with suction and injection. CoA Report Aero No. 166 The College of Aeronautics Cranfield (1963) Stevenson, T.N.: A law of the wall for turbulent boundary layers with suction and injection. CoA Report Aero No. 166 The College of Aeronautics Cranfield (1963)
40.
Zurück zum Zitat Raupach, M.R., Antonia, R.A., Rajagopalan, S.: Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 1–25 (1991)CrossRef Raupach, M.R., Antonia, R.A., Rajagopalan, S.: Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 1–25 (1991)CrossRef
42.
Zurück zum Zitat Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: DNS Of a turbulent boundary with surface roughness. J. Fluid Mech. 729, 603–637 (2013)MathSciNetCrossRefMATH Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: DNS Of a turbulent boundary with surface roughness. J. Fluid Mech. 729, 603–637 (2013)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Napoli, E., Armenio, V., De Marchis, M: The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385–394 (2008)CrossRefMATH Napoli, E., Armenio, V., De Marchis, M: The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385–394 (2008)CrossRefMATH
44.
Zurück zum Zitat Milici, B., De Marchis, M., Sardina, G., Napoli, E.: Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. J. Fluid Mech. 739, 465–478 (2014)CrossRef Milici, B., De Marchis, M., Sardina, G., Napoli, E.: Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. J. Fluid Mech. 739, 465–478 (2014)CrossRef
45.
Zurück zum Zitat Kang, S., Choi, H.: Active wall motions for skin-friction drag reduction. Phys. Fluids 12, 3301–3304 (2000)CrossRefMATH Kang, S., Choi, H.: Active wall motions for skin-friction drag reduction. Phys. Fluids 12, 3301–3304 (2000)CrossRefMATH
46.
Zurück zum Zitat Kajishima, T: Finite-difference method for convective terms using non-uniform grid. Trans. JSME/B 65, 1607–1612 (1999). (in Japanese)CrossRef Kajishima, T: Finite-difference method for convective terms using non-uniform grid. Trans. JSME/B 65, 1607–1612 (1999). (in Japanese)CrossRef
47.
Zurück zum Zitat Spalart, P.R., Moser, R.D., Rogers, M.M.: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)MathSciNetCrossRefMATH Spalart, P.R., Moser, R.D., Rogers, M.M.: Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324 (1991)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Amsden, A.A., Harlow, F.H.: A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322–325 (1970)CrossRefMATH Amsden, A.A., Harlow, F.H.: A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322–325 (1970)CrossRefMATH
49.
Zurück zum Zitat Quadrio, M., Frohnapfel, B., Hasegawa, Y.: Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow. Eur. J. Mech. B/Fluids 55, 286–293 (2016)MathSciNetCrossRef Quadrio, M., Frohnapfel, B., Hasegawa, Y.: Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow. Eur. J. Mech. B/Fluids 55, 286–293 (2016)MathSciNetCrossRef
50.
Zurück zum Zitat De Marchis, M., Napoli, E., Armenio, V.: Turbulence structures over irregular rough surfaces. J. Turbul. 11, N3 (2010)CrossRef De Marchis, M., Napoli, E., Armenio, V.: Turbulence structures over irregular rough surfaces. J. Turbul. 11, N3 (2010)CrossRef
51.
Zurück zum Zitat Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re, τ = 590. Phys. Fluids 11, 943–945 (1999)CrossRefMATH Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re, τ = 590. Phys. Fluids 11, 943–945 (1999)CrossRefMATH
52.
Zurück zum Zitat Flack, K., Schultz, M.P.: Review of hydraulic roughness scales in the fully rough regime. J. Fluids Eng. 132, 041203 (2010)CrossRef Flack, K., Schultz, M.P.: Review of hydraulic roughness scales in the fully rough regime. J. Fluids Eng. 132, 041203 (2010)CrossRef
53.
Zurück zum Zitat Raupach, M.R., Shaw, R.H.: Averaging procedures for flow within vegetation canopies. Bound.-Layer Meteor. 22, 79–90 (1982)CrossRef Raupach, M.R., Shaw, R.H.: Averaging procedures for flow within vegetation canopies. Bound.-Layer Meteor. 22, 79–90 (1982)CrossRef
54.
Zurück zum Zitat Bhaganagar, K., Leighton, R.: Three-level decomposition for the analysis of turbulent flow over rough-wall. J. Appl. Fluid Mech. 6, 257–265 (2013) Bhaganagar, K., Leighton, R.: Three-level decomposition for the analysis of turbulent flow over rough-wall. J. Appl. Fluid Mech. 6, 257–265 (2013)
55.
Zurück zum Zitat Durbin, P.A., Medic, G., Seo, J.-M., Eaton, J.K., Song, S.: Rough wall modification of two-layer k − 𝜖. J. Fluids Eng. 123, 16–21 (2001)CrossRef Durbin, P.A., Medic, G., Seo, J.-M., Eaton, J.K., Song, S.: Rough wall modification of two-layer k𝜖. J. Fluids Eng. 123, 16–21 (2001)CrossRef
56.
Zurück zum Zitat Flack, K., Schultz, M.P., Rose, W.B.: The onset of roughness effects in the transitionally rough regime. Int. J. Heat Fluid Flow 35, 160–167 (2012)CrossRef Flack, K., Schultz, M.P., Rose, W.B.: The onset of roughness effects in the transitionally rough regime. Int. J. Heat Fluid Flow 35, 160–167 (2012)CrossRef
57.
Zurück zum Zitat Krogstad, P.-Å., Anderson, H.I., Bakken, O.M., Ashrafian, A.: An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327–352 (2005)CrossRefMATH Krogstad, P.-Å., Anderson, H.I., Bakken, O.M., Ashrafian, A.: An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327–352 (2005)CrossRefMATH
58.
Zurück zum Zitat White, F.M.: Fluid Mechanics, 8th Edition in SI Units, p 327. McGraw-Hill, New York (2016) White, F.M.: Fluid Mechanics, 8th Edition in SI Units, p 327. McGraw-Hill, New York (2016)
59.
Zurück zum Zitat Avsarkisov, V., Oberlack, M., Hoyas, S.: New scaling laws for turbulent Poiseuille flow with wall transpiration. J. Fluid Mech. 746, 99–122 (2014)MathSciNetCrossRef Avsarkisov, V., Oberlack, M., Hoyas, S.: New scaling laws for turbulent Poiseuille flow with wall transpiration. J. Fluid Mech. 746, 99–122 (2014)MathSciNetCrossRef
60.
Zurück zum Zitat Townsend, A.A.: The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press, Cambridge (1976)MATH Townsend, A.A.: The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press, Cambridge (1976)MATH
61.
Zurück zum Zitat Bhaganagar, K., Kim, J., Coleman, G.: Effect of roughness on wall-bounded turbulence. flow Turbul Combust. 72, 463–492 (2004)CrossRefMATH Bhaganagar, K., Kim, J., Coleman, G.: Effect of roughness on wall-bounded turbulence. flow Turbul Combust. 72, 463–492 (2004)CrossRefMATH
62.
Zurück zum Zitat Flack, K.A., Schultz, M.P.: Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101305 (2016)CrossRef Flack, K.A., Schultz, M.P.: Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101305 (2016)CrossRef
63.
Zurück zum Zitat Vigdorovich, I.: A law of the wall for turbulent boundary layers with suction: Stevenson’s formula revisited. Phys. Fluids 28, 085102 (2016)CrossRef Vigdorovich, I.: A law of the wall for turbulent boundary layers with suction: Stevenson’s formula revisited. Phys. Fluids 28, 085102 (2016)CrossRef
Metadaten
Titel
Turbulent Drag Reduction by Uniform Blowing Over a Two-dimensional Roughness
verfasst von
Eisuke Mori
Maurizio Quadrio
Koji Fukagata
Publikationsdatum
04.10.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3-4/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9858-2

Weitere Artikel der Ausgabe 3-4/2017

Flow, Turbulence and Combustion 3-4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.