Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3-4/2017

25.08.2017

Turbulent Duct Flow Controlled with Spanwise Wall Oscillations

verfasst von: Steffen Straub, Ricardo Vinuesa, Philipp Schlatter, Bettina Frohnapfel, Davide Gatti

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3-4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The spanwise oscillation of channel walls is known to substantially reduce the skin-friction drag in turbulent channel flows. In order to understand the limitations of this flow control approach when applied in ducts, direct numerical simulations of controlled turbulent duct flows with an aspect ratio of A R = 3 are performed. In contrast to channel flows, the spanwise extension of the duct is limited. Therefore, the spanwise wall oscillation either directly interacts with the duct side walls or its spatial extent is limited to a certain region of the duct. The present results show that this spanwise limitation of the oscillating region strongly diminishes the drag reduction potential of the control technique. We propose a simple model that allows estimating the achievable drag reduction rates in duct flows as a function of the width of the duct and the spanwise extent of the controlled region.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Karniadakis, G.E., Choi, K.-S.: Mechanisms on transverse motion in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003)MathSciNetCrossRefMATH Karniadakis, G.E., Choi, K.-S.: Mechanisms on transverse motion in turbulent wall flows. Annu. Rev. Fluid Mech. 35, 45–62 (2003)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Quadrio, M.: Drag reduction in turbulent boundary layer by in-plane wall motion. Philos. T. R. Soc. A 369(1940), 1428–1442 (2011)CrossRef Quadrio, M.: Drag reduction in turbulent boundary layer by in-plane wall motion. Philos. T. R. Soc. A 369(1940), 1428–1442 (2011)CrossRef
3.
Zurück zum Zitat Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH Quadrio, M., Ricco, P.: Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251–271 (2004)CrossRefMATH
4.
Zurück zum Zitat Quadrio, M., Ricco, P., Viotti, C.: Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH Quadrio, M., Ricco, P., Viotti, C.: Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Ricco, P., Hahn, S.: Turbulent drag reduction through rotating discs. J. Fluid Mech. 722, 267–290, 5 (2013). ISSN 1469-7645CrossRefMATH Ricco, P., Hahn, S.: Turbulent drag reduction through rotating discs. J. Fluid Mech. 722, 267–290, 5 (2013). ISSN 1469-7645CrossRefMATH
6.
Zurück zum Zitat Wise, D.J., Ricco, P.: Turbulent drag reduction through oscillating discs. J. Fluid Mech. 746, 536–564, 5 (2014). ISSN 1469-7645CrossRef Wise, D.J., Ricco, P.: Turbulent drag reduction through oscillating discs. J. Fluid Mech. 746, 536–564, 5 (2014). ISSN 1469-7645CrossRef
7.
Zurück zum Zitat Duque-Daza, C.A., Baig, M.F., Lockerby, D.A., Chernyshenko, S.I., Davies, C.: Modelling turbulent skin-friction control using linearised Navier-Stokes equations. J. Fluid Mech. 702, 403–414 (2012)MathSciNetCrossRefMATH Duque-Daza, C.A., Baig, M.F., Lockerby, D.A., Chernyshenko, S.I., Davies, C.: Modelling turbulent skin-friction control using linearised Navier-Stokes equations. J. Fluid Mech. 702, 403–414 (2012)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582, 009 (2016)MathSciNetCrossRef Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–582, 009 (2016)MathSciNetCrossRef
9.
Zurück zum Zitat Hurst, E., Yang, Q., Chung, Y.M.: The effect of reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55, 11 (2014). ISSN 1469-7645CrossRef Hurst, E., Yang, Q., Chung, Y.M.: The effect of reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55, 11 (2014). ISSN 1469-7645CrossRef
10.
Zurück zum Zitat Moarref, R., Jovanovic, M.R.: Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205–240 (2012)MathSciNetCrossRefMATH Moarref, R., Jovanovic, M.R.: Model-based design of transverse wall oscillations for turbulent drag reduction. J. Fluid Mech. 707, 205–240 (2012)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Agostini, L., Touber, E., Leschziner, M.A.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Fl. 51, 3–15 (2015). ISSN 0142-727X. Theme special issue celebrating the 75th birthdays of Brian Launder and Kemo HanjalicCrossRef Agostini, L., Touber, E., Leschziner, M.A.: The turbulence vorticity as a window to the physics of friction-drag reduction by oscillatory wall motion. Int. J. Heat Fluid Fl. 51, 3–15 (2015). ISSN 0142-727X. Theme special issue celebrating the 75th birthdays of Brian Launder and Kemo HanjalicCrossRef
12.
Zurück zum Zitat Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635, 003 (2014)CrossRef Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from DNS-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635, 003 (2014)CrossRef
13.
Zurück zum Zitat Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)CrossRefMATH Touber, E., Leschziner, M.A.: Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms. J. Fluid Mech. 693, 150–200 (2012)CrossRefMATH
14.
Zurück zum Zitat Yakeno, A., Hasegawa, Y., Kasagi, N.: Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26, 085109 (2014)CrossRef Yakeno, A., Hasegawa, Y., Kasagi, N.: Modification of quasi-streamwise vortical structure in a drag-reduced turbulent channel flow with spanwise wall oscillation. Phys. Fluids 26, 085109 (2014)CrossRef
15.
Zurück zum Zitat Gatti, D., Güttler, A., Frohnapfel, B., Tropea, C.: Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow. Exp. Fluids 56(5), 110 (2015)CrossRef Gatti, D., Güttler, A., Frohnapfel, B., Tropea, C.: Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow. Exp. Fluids 56(5), 110 (2015)CrossRef
16.
Zurück zum Zitat Gouder, K., Potter, M., Morrison, J.F.: Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp. Fluids 54 (1441), 1441 (2013)CrossRef Gouder, K., Potter, M., Morrison, J.F.: Turbulent friction drag reduction using electroactive polymer and electromagnetically driven surfaces. Exp. Fluids 54 (1441), 1441 (2013)CrossRef
17.
Zurück zum Zitat Choi, K.S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14(7), 2530–2542 (2002)CrossRefMATH Choi, K.S.: Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys. Fluids 14(7), 2530–2542 (2002)CrossRefMATH
18.
Zurück zum Zitat Choi, K.-S., DeBisschop, J.-R., Clayton, B.R.: Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36(7), 1157–1163 (1998)CrossRef Choi, K.-S., DeBisschop, J.-R., Clayton, B.R.: Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36(7), 1157–1163 (1998)CrossRef
19.
Zurück zum Zitat Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Science 29, 41–52 (2004)CrossRef Ricco, P., Wu, S.: On the effects of lateral wall oscillations on a turbulent boundary layer. Exp. Therm. Fluid Science 29, 41–52 (2004)CrossRef
20.
Zurück zum Zitat Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper 97–1870 (1997) Trujillo, S.M., Bogard, D.G., Ball, K.S.: Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper 97–1870 (1997)
21.
Zurück zum Zitat Auteri, F., Baron, A., Belan, M., Campanardi, G., Quadrio, M.: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22(11), 115103 (2010)CrossRef Auteri, F., Baron, A., Belan, M., Campanardi, G., Quadrio, M.: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22(11), 115103 (2010)CrossRef
22.
Zurück zum Zitat Choi, K.-S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7–9 (1998)CrossRef Choi, K.-S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7–9 (1998)CrossRef
23.
Zurück zum Zitat Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Fl. 38, 1–12 (2012). ISSN 0142-727XCrossRef Skote, M.: Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Int. J. Heat Fluid Fl. 38, 1–12 (2012). ISSN 0142-727XCrossRef
24.
Zurück zum Zitat Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25, 075109 (2013)CrossRef Lardeau, S., Leschziner, M.A.: The streamwise drag-reduction response of a boundary layer subjected to a sudden imposition of transverse oscillatory wall motion. Phys. Fluids 25, 075109 (2013)CrossRef
25.
Zurück zum Zitat Skote, M.: Comparison between spatial: temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)MathSciNetCrossRefMATH Skote, M.: Comparison between spatial: temporal wall oscillations in turbulent boundary layer flows. J. Fluid Mech. 730, 273–294 (2013)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Patera, A.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54, 468–588 (1984)CrossRefMATH Patera, A.: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54, 468–588 (1984)CrossRefMATH
28.
Zurück zum Zitat Marin, O., Vinuesa, R., Obabko, A.V., Schlatter, P.: Characterization of the secondary flow in hexagonal ducts. Phys. Fluids 28(12), 125101 (2016)CrossRef Marin, O., Vinuesa, R., Obabko, A.V., Schlatter, P.: Characterization of the secondary flow in hexagonal ducts. Phys. Fluids 28(12), 125101 (2016)CrossRef
29.
Zurück zum Zitat Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATH
30.
Zurück zum Zitat Luchini, P., Quadrio, M.: A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211, 551–571 (2006)CrossRefMATH Luchini, P., Quadrio, M.: A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211, 551–571 (2006)CrossRefMATH
31.
Zurück zum Zitat Vinuesa, R., Noorani, A., Lozano-Durán, A., El Khoury, G.K., Schlatter, P., Fischer, P.F., Nagib, H.M.: Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul. 15(10), 677–706 (2014)CrossRef Vinuesa, R., Noorani, A., Lozano-Durán, A., El Khoury, G.K., Schlatter, P., Fischer, P.F., Nagib, H.M.: Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul. 15(10), 677–706 (2014)CrossRef
32.
Zurück zum Zitat Straub, S., Vinuesa, R., Schlatter, P., Frohnapfel, B., Gatti, D.: Direct Numerical Simulation of Controlled Turbulent Duct Flows. Master’s thesis, Karlsruhe Institute of Technology (2015) Straub, S., Vinuesa, R., Schlatter, P., Frohnapfel, B., Gatti, D.: Direct Numerical Simulation of Controlled Turbulent Duct Flows. Master’s thesis, Karlsruhe Institute of Technology (2015)
33.
Zurück zum Zitat Ricco, P., Quadrio, M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Fl. 29, 601–612 (2008)CrossRef Ricco, P., Quadrio, M.: Wall-oscillation conditions for drag reduction in turbulent channel flow. Int. J. Heat Fluid Fl. 29, 601–612 (2008)CrossRef
34.
Zurück zum Zitat Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016). ISSN 1572-9648MathSciNetCrossRef Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016). ISSN 1572-9648MathSciNetCrossRef
35.
Zurück zum Zitat Lozano-Durán, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to re τ = 4200. Phys. Fluids 26(1), 011702 (2014)CrossRef Lozano-Durán, A., Jiménez, J.: Effect of the computational domain on direct simulations of turbulent channels up to re τ = 4200. Phys. Fluids 26(1), 011702 (2014)CrossRef
36.
Zurück zum Zitat Vinuesa, R., Schlatter, P., Nagib, H.M.: Characterization of the secondary flow in turbulent rectangular ducts with varying aspect ratio. In: International Symposium Turbulence & Shear Flow Phenomena (TSFP-9), 30 June–3 July, Melbourne, Australia (2015) Vinuesa, R., Schlatter, P., Nagib, H.M.: Characterization of the secondary flow in turbulent rectangular ducts with varying aspect ratio. In: International Symposium Turbulence & Shear Flow Phenomena (TSFP-9), 30 June–3 July, Melbourne, Australia (2015)
37.
Zurück zum Zitat Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), L73–76 (2002)CrossRefMATH Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14(11), L73–76 (2002)CrossRefMATH
38.
Zurück zum Zitat Oliver, T.A., Malaya, N., Ulerich, R., Moser, R.D.: Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids 26(3), 035101 (2014)CrossRef Oliver, T.A., Malaya, N., Ulerich, R., Moser, R.D.: Estimating uncertainties in statistics computed from direct numerical simulation. Phys. Fluids 26(3), 035101 (2014)CrossRef
39.
Zurück zum Zitat Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11(4), 943–945 (1999)CrossRefMATH
40.
Zurück zum Zitat Örlü, R., Schlatter, P.: Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers. Exp. Fluids 54(6), 1547 (2013)CrossRef Örlü, R., Schlatter, P.: Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers. Exp. Fluids 54(6), 1547 (2013)CrossRef
Metadaten
Titel
Turbulent Duct Flow Controlled with Spanwise Wall Oscillations
verfasst von
Steffen Straub
Ricardo Vinuesa
Philipp Schlatter
Bettina Frohnapfel
Davide Gatti
Publikationsdatum
25.08.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3-4/2017
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9846-6

Weitere Artikel der Ausgabe 3-4/2017

Flow, Turbulence and Combustion 3-4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.