Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2018

30.06.2018

Turbulent Flame Speeds of Premixed Supersonic Flame Kernels

verfasst von: Bradley A. Ochs, Dan Fries, Devesh Ranjan, Suresh Menon

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It is unclear whether turbulent flame speed scalings established in low speed regimes are applicable to supersonic flames. To investigate this question, the canonical flame kernel is investigated in a scramjet-like channel having a one degree wall divergence. The growth, shape and internal kernel dynamics are investigated. Results are presented for three Mach numbers, four equivalence ratios, and three turbulence generators. Schlieren photography provides flame images for growth rate statistics and particle image velocimetry (PIV) provides turbulence statistics and investigation of internal kernel dynamics. Supersonic flame kernels are self-propagating and respond to the equivalence ratio in a fashion that is similar to low speed flames. However, supersonic flame kernels have features that are not present in subsonic flame kernels. Baroclinicity, resulting from pressure-density misalignment, creates a reacting vortex ring structure. Further, the mean kernel shape has a Mach number dependence and the vortex ring enhances the turbulent flame speed through entrainment of reactants and augmented flame surface growth. Hence, the previously established (low speed) flame speed scalings are inappropriate for supersonic flame kernels. Drawing motivation from vortex ring literature, the ring propagation velocity is used as the characteristic velocity and a new flame speed scaling is proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
M0 = 2.0 kernels are slightly smaller than M0 = 1.75 kernels and this is most likely due to the smaller turbulence intensity in that case (see Table 1).
 
2
While the NS are Galilean invariant, the boundary conditions are not. However, utilizing fairly simple arguments, one can easily see that supersonic inflow and outflow boundary conditions cannot influence the flame. Therefore, there should be very little difference between freely propagating subsonic and supersonic flame kernels given similar chemical and flow conditions.
 
3
Most shock-bubble studies use a stationary bubble and moving shock. With a simple change of reference frame, one can easily see that this situation is exactly opposite the expansion accelerated kernel used in this study.
 
Literatur
1.
Zurück zum Zitat Abdel-Gayed, R., Bradley, D., Lawes, M.: Turbulent burning velocities: a general correlation in terms of straining rates. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 414, pp. 389-413 (1987)CrossRef Abdel-Gayed, R., Bradley, D., Lawes, M.: Turbulent burning velocities: a general correlation in terms of straining rates. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 414, pp. 389-413 (1987)CrossRef
2.
Zurück zum Zitat Bradley, D., Lawes, M., Mansour, M.: Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa. Combust. Flame 158 (1), 123–138 (2011)CrossRef Bradley, D., Lawes, M., Mansour, M.: Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa. Combust. Flame 158 (1), 123–138 (2011)CrossRef
3.
Zurück zum Zitat Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34(1), 1519–1526 (2013)CrossRef Bradley, D., Lawes, M., Liu, K., Mansour, M.S.: Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34(1), 1519–1526 (2013)CrossRef
4.
Zurück zum Zitat Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044,503 (2012)CrossRef Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044,503 (2012)CrossRef
5.
Zurück zum Zitat Chaudhuri, S., Wu, F., Law, C.K.: Scaling of turbulent flame speed for expanding flames with markstein diffusion considerations. Phys. Rev. E 88(3), 033,005 (2013)CrossRef Chaudhuri, S., Wu, F., Law, C.K.: Scaling of turbulent flame speed for expanding flames with markstein diffusion considerations. Phys. Rev. E 88(3), 033,005 (2013)CrossRef
6.
Zurück zum Zitat Eisazadeh-Far, K., Parsinejad, F., Metghalchi, H., Keck, J.C.: On flame kernel formation and propagation in premixed gases. Combust. Flame 157(12), 2211–2221 (2010)CrossRef Eisazadeh-Far, K., Parsinejad, F., Metghalchi, H., Keck, J.C.: On flame kernel formation and propagation in premixed gases. Combust. Flame 157(12), 2211–2221 (2010)CrossRef
7.
Zurück zum Zitat Fries, D., Ochs, B.A., Menon, S.: Experimental studies of freely propagating turbulent premixed kernels with comparison to classical flame bomb studies. 54th AIAA Aerospace Sciences Meeting, San Diego, 2016 AIAA-2306399 (2016) Fries, D., Ochs, B.A., Menon, S.: Experimental studies of freely propagating turbulent premixed kernels with comparison to classical flame bomb studies. 54th AIAA Aerospace Sciences Meeting, San Diego, 2016 AIAA-2306399 (2016)
8.
Zurück zum Zitat Grady, N., Pitz, R., Ochs, B., Menon, S., Scarborough, D., Slais, T.: Propagation of premixed flame kernels in high speed channel flows with moderate turbulence. 53rd AIAA Aerospace Sciences Meeting AIAA-2015-0169 (2015) Grady, N., Pitz, R., Ochs, B., Menon, S., Scarborough, D., Slais, T.: Propagation of premixed flame kernels in high speed channel flows with moderate turbulence. 53rd AIAA Aerospace Sciences Meeting AIAA-2015-0169 (2015)
9.
Zurück zum Zitat Grady, N., Pitz, R., Slais, T., Berlette, J., Ochs, B., Menon, S.: 52nd Aerospace Sciences Meeting, National Harbor, MD, 2014) OH PLIF laser diagnostics of turbulent, premixed, freely propagating flame kernels Grady, N., Pitz, R., Slais, T., Berlette, J., Ochs, B., Menon, S.: 52nd Aerospace Sciences Meeting, National Harbor, MD, 2014) OH PLIF laser diagnostics of turbulent, premixed, freely propagating flame kernels
10.
Zurück zum Zitat Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M: Effects of stretch on the local structure of preely propagating premixed low-turbulent flames with various Lewis numbers. Symp. (Int.) Combust. 27(1), 841–847 (1998)CrossRef Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M: Effects of stretch on the local structure of preely propagating premixed low-turbulent flames with various Lewis numbers. Symp. (Int.) Combust. 27(1), 841–847 (1998)CrossRef
11.
Zurück zum Zitat Damköhler, G.: The effect of turbulence on the flame velocity in gas mixtures. Zeitschrift Electrochem 46, 601–626 (1940) Damköhler, G.: The effect of turbulence on the flame velocity in gas mixtures. Zeitschrift Electrochem 46, 601–626 (1940)
12.
Zurück zum Zitat Shelkin, K.: On combustion in a turbulent flow. National Advisory Committee for Aeronautics Technical Memorandum No. 1110 (1947) Shelkin, K.: On combustion in a turbulent flow. National Advisory Committee for Aeronautics Technical Memorandum No. 1110 (1947)
13.
Zurück zum Zitat Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-d unsteady methane-air flames. Symp. (Int.) Combust. 27(1), 833–839 (1998)CrossRef Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-d unsteady methane-air flames. Symp. (Int.) Combust. 27(1), 833–839 (1998)CrossRef
14.
Zurück zum Zitat Sjöholm, J., Rosell, J., Li, B., Richter, M., Li, Z., Bai, X.S., Aldén, M: Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proc. Combust. Inst. 34(1), 1475–1482 (2013)CrossRef Sjöholm, J., Rosell, J., Li, B., Richter, M., Li, Z., Bai, X.S., Aldén, M: Simultaneous visualization of OH, CH, CH2O and toluene PLIF in a methane jet flame with varying degrees of turbulence. Proc. Combust. Inst. 34(1), 1475–1482 (2013)CrossRef
15.
Zurück zum Zitat Tamadonfar, P., Gülder, Ö.L.: Experimental investigation of the inner structure of premixed turbulent methane/air flames in the thin reaction zones regime. Combust. Flame 162(1), 115–128 (2015)CrossRef Tamadonfar, P., Gülder, Ö.L.: Experimental investigation of the inner structure of premixed turbulent methane/air flames in the thin reaction zones regime. Combust. Flame 162(1), 115–128 (2015)CrossRef
16.
Zurück zum Zitat Zhou, B., Brackmann, C., Li, Q., Wang, Z., Petersson, P., Li, Z., Aldén, M., Xs, B.: Distributed reactions in highly turbulent premixed methane/air flames: Part I. Flame structure characterization. Combust. Flame 162(7), 2937–2953 (2015)CrossRef Zhou, B., Brackmann, C., Li, Q., Wang, Z., Petersson, P., Li, Z., Aldén, M., Xs, B.: Distributed reactions in highly turbulent premixed methane/air flames: Part I. Flame structure characterization. Combust. Flame 162(7), 2937–2953 (2015)CrossRef
17.
Zurück zum Zitat Summerfield, M., Reiter, S.H., Kebely, V., Mascolo, R.W.: The structure and propagation mechanism of turbulent flames in high speed flow. Jet Propuls. 25(8), 377–384 (1955)CrossRef Summerfield, M., Reiter, S.H., Kebely, V., Mascolo, R.W.: The structure and propagation mechanism of turbulent flames in high speed flow. Jet Propuls. 25(8), 377–384 (1955)CrossRef
18.
Zurück zum Zitat Chen, Y.C., Mansour, M.S.: Investigation of flame broadening in turbulent premixed flames in the thin-reaction-zones regime. Symp. (Int.) Combust. 27(1), 833–839 (1998)CrossRef Chen, Y.C., Mansour, M.S.: Investigation of flame broadening in turbulent premixed flames in the thin-reaction-zones regime. Symp. (Int.) Combust. 27(1), 833–839 (1998)CrossRef
19.
Zurück zum Zitat Shy, S., Liu, C., Lin, J., Chen, L., Lipatnikov, A., Yang, S.: Correlations of high-pressure lean methane and syngas turbulent burning velocities: effects of turbulent Reynolds, Damköhler, and Karlovitz numbers. Proc. Combust. Inst. 35(2), 1509–1516 (2015)CrossRef Shy, S., Liu, C., Lin, J., Chen, L., Lipatnikov, A., Yang, S.: Correlations of high-pressure lean methane and syngas turbulent burning velocities: effects of turbulent Reynolds, Damköhler, and Karlovitz numbers. Proc. Combust. Inst. 35(2), 1509–1516 (2015)CrossRef
20.
Zurück zum Zitat Ingenito, A., Bruno, C.: Physics and regimes of supersonic combustion. AIAA J. 48(3), 515–525 (2010)CrossRef Ingenito, A., Bruno, C.: Physics and regimes of supersonic combustion. AIAA J. 48(3), 515–525 (2010)CrossRef
21.
Zurück zum Zitat Shepherd, I., Cheng, R.: The burning rate of premixed flames in moderate and intense turbulence. Combust. Flame 127(3), 2066–2075 (2001)CrossRef Shepherd, I., Cheng, R.: The burning rate of premixed flames in moderate and intense turbulence. Combust. Flame 127(3), 2066–2075 (2001)CrossRef
22.
Zurück zum Zitat Bradley, D., Haq, M., Hicks, R., Kitagawa, T., Lawes, M., Sheppard, C., Woolley, R.: Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combust. Flame 133(4), 415–430 (2003)CrossRef Bradley, D., Haq, M., Hicks, R., Kitagawa, T., Lawes, M., Sheppard, C., Woolley, R.: Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combust. Flame 133(4), 415–430 (2003)CrossRef
23.
Zurück zum Zitat Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M.: Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame 123(4), 507–521 (2000)CrossRef Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M.: Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame 123(4), 507–521 (2000)CrossRef
24.
Zurück zum Zitat Zimont, V.L.: Damköhler-Shelkin paradox in the theory of turbulent flame propagation, and a concept of the premixed flame at the intermediate asymptotic stage. Flow Turbul. Combust. 97(3), 875–912 (2016)CrossRef Zimont, V.L.: Damköhler-Shelkin paradox in the theory of turbulent flame propagation, and a concept of the premixed flame at the intermediate asymptotic stage. Flow Turbul. Combust. 97(3), 875–912 (2016)CrossRef
25.
Zurück zum Zitat Peters, N.: A spectral closure for premixed turbulent combustion in the flamelet regime. J. Fluid Mech. 242, 611–629 (1992)MathSciNetCrossRef Peters, N.: A spectral closure for premixed turbulent combustion in the flamelet regime. J. Fluid Mech. 242, 611–629 (1992)MathSciNetCrossRef
26.
Zurück zum Zitat Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84(2), 026,322 (2011)CrossRef Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84(2), 026,322 (2011)CrossRef
27.
Zurück zum Zitat Forch, B.E.: Resonant laser ignition of reactive gases. In: OE/LASE’94, International Society for Optics and Photonics, pp. 118–128 (1994) Forch, B.E.: Resonant laser ignition of reactive gases. In: OE/LASE’94, International Society for Optics and Photonics, pp. 118–128 (1994)
28.
Zurück zum Zitat Bradley, D., Sheppard, C., Suardjaja, I., Woolley, R.: Fundamentals of high-energy spark ignition with lasers. Combust. Flame 138(1), 55–77 (2004)CrossRef Bradley, D., Sheppard, C., Suardjaja, I., Woolley, R.: Fundamentals of high-energy spark ignition with lasers. Combust. Flame 138(1), 55–77 (2004)CrossRef
29.
Zurück zum Zitat Cardin, C., Renou, B., Cabot, G., Boukhalfa, A.M.: Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames: New insight into ignition transition. Combust. Flame 160(8), 1414–1427 (2013)CrossRef Cardin, C., Renou, B., Cabot, G., Boukhalfa, A.M.: Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames: New insight into ignition transition. Combust. Flame 160(8), 1414–1427 (2013)CrossRef
30.
Zurück zum Zitat Mulla, I.A., Chakravarthy, S.R., Swaminathan, N., Balachandran, R.: Evolution of flame-kernel in laser-induced spark ignited mixtures: a parametric study. Combust. Flame 164, 303–318 (2016)CrossRef Mulla, I.A., Chakravarthy, S.R., Swaminathan, N., Balachandran, R.: Evolution of flame-kernel in laser-induced spark ignited mixtures: a parametric study. Combust. Flame 164, 303–318 (2016)CrossRef
31.
Zurück zum Zitat Canny, J.: A computational approach to edge detection. In: Readings in Computer Vision, pp 184–203. Elsevier (1987) Canny, J.: A computational approach to edge detection. In: Readings in Computer Vision, pp 184–203. Elsevier (1987)
32.
Zurück zum Zitat Mei, R.: Velocity fidelity of flow tracer particles. Exp. Fluids 22(1), 1–13 (1996)CrossRef Mei, R.: Velocity fidelity of flow tracer particles. Exp. Fluids 22(1), 1–13 (1996)CrossRef
34.
Zurück zum Zitat Benedict, L., Gould, R.: Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22(2), 129–136 (1996)CrossRef Benedict, L., Gould, R.: Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22(2), 129–136 (1996)CrossRef
35.
Zurück zum Zitat Gu, X., Haq, M., Lawes, M., Woolley, R.: Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame 121(1), 41–58 (2000)CrossRef Gu, X., Haq, M., Lawes, M., Woolley, R.: Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame 121(1), 41–58 (2000)CrossRef
36.
Zurück zum Zitat Abdel-Gayed, R.G., Alkhishali, K.J., Bradley, D.: Turbulent burning velocities and flame straining in explosions. Proc. Royal Soc. Lond. Ser. a-Math. Phys. Eng. Sci. 391(1801), 393–414 (1984)CrossRef Abdel-Gayed, R.G., Alkhishali, K.J., Bradley, D.: Turbulent burning velocities and flame straining in explosions. Proc. Royal Soc. Lond. Ser. a-Math. Phys. Eng. Sci. 391(1801), 393–414 (1984)CrossRef
37.
Zurück zum Zitat Pope, S.B.: Turbulent Flows Cambridge University Press. Cambridge, UK (2001) Pope, S.B.: Turbulent Flows Cambridge University Press. Cambridge, UK (2001)
38.
Zurück zum Zitat Pierce, A.D.: Acoustics: an introduction to its physical principles and applications. McGraw-Hill, New York (1981) Pierce, A.D.: Acoustics: an introduction to its physical principles and applications. McGraw-Hill, New York (1981)
39.
Zurück zum Zitat Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRef Haas, J.F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRef
40.
Zurück zum Zitat Chen, Z.: Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit. Combust. Flame 157(12), 2267–2276 (2010)CrossRef Chen, Z.: Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit. Combust. Flame 157(12), 2267–2276 (2010)CrossRef
41.
Zurück zum Zitat Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys. Rev. Lett. 98(2), 024,502 (2007)CrossRef Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J., Bonazza, R.: Experimental investigation of primary and secondary features in high-Mach-number shock-bubble interaction. Phys. Rev. Lett. 98(2), 024,502 (2007)CrossRef
42.
Zurück zum Zitat Ranjan, D., Niederhaus, J.H., Oakley, J.G., Anderson, M.H., Bonazza, R., Greenough, J.A.: Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20(3), 036,101 (2008)CrossRef Ranjan, D., Niederhaus, J.H., Oakley, J.G., Anderson, M.H., Bonazza, R., Greenough, J.A.: Shock-bubble interactions: Features of divergent shock-refraction geometry observed in experiments and simulations. Phys. Fluids 20(3), 036,101 (2008)CrossRef
43.
44.
Zurück zum Zitat Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13(2), 297–319 (1960)MathSciNetCrossRef Richtmyer, R.D.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math. 13(2), 297–319 (1960)MathSciNetCrossRef
45.
Zurück zum Zitat Markstein, G.H.: Experimental and theoretical studies of flame front stability. J. Aero. Sci. 18, 199–209 (1951)CrossRef Markstein, G.H.: Experimental and theoretical studies of flame front stability. J. Aero. Sci. 18, 199–209 (1951)CrossRef
46.
47.
Zurück zum Zitat Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 318, 129–163 (1996)CrossRef Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 318, 129–163 (1996)CrossRef
48.
Zurück zum Zitat Gühler, M., Sallet, D.W.: The formation of vortex rings and their initial motion. Z. Flugwissenschaften Weltraumforschung 3, 109–115 (1979) Gühler, M., Sallet, D.W.: The formation of vortex rings and their initial motion. Z. Flugwissenschaften Weltraumforschung 3, 109–115 (1979)
Metadaten
Titel
Turbulent Flame Speeds of Premixed Supersonic Flame Kernels
verfasst von
Bradley A. Ochs
Dan Fries
Devesh Ranjan
Suresh Menon
Publikationsdatum
30.06.2018
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-018-9947-x

Weitere Artikel der Ausgabe 3/2018

Flow, Turbulence and Combustion 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.