Skip to main content

2023 | OriginalPaper | Buchkapitel

Two-Dimensional Hydrodynamic Forces in an Array of Shape-Morphed Cantilever Beams

verfasst von : Lalsingh Devsoth, Ashok Kumar Pandey

Erschienen in: Microactuators, Microsensors and Micromechanisms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we estimated the hydrodynamic force in an array of cantilever beams separated by a distance \(\bar{s}\) oscillating in a viscous fluid. The beam is assumed to be sufficiently long to consider 2D flow and has symmetric as well as asymmetric shape morphing curvature while oscillating in a fluid. The fluid-structure interaction problem is modelled by considering the unsteady Stokes equation. The resulting 1D boundary integral problem is solved by the boundary element method (BEM) numerically in MATLAB to obtain the desired pressure distribution on the beam. It is found that as the frequency oscillation of the rigid beam is increased, both the damping as well as added mass effects are decreased at different rates due to the gradual decrease in unsteady viscous layer. Finally, the hydrodynamic coupling effect on the beam is demonstrated at \(\beta =0.1\). However, for increase in the symmetric and asymmetric shape morphing parameters, the hydrodynamic decoupling appears lower than the gap ratio 5. The cantilever beam with optimal shape morphing parameter can be useful for the optimal designs of atomic force microscopy (AFM).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84(1), 64–76 (1998)CrossRef Sader, J.E.: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84(1), 64–76 (1998)CrossRef
2.
Zurück zum Zitat Sader, J.E., Chon, J.W., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70(10), 3967–3969 (1999)CrossRef Sader, J.E., Chon, J.W., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70(10), 3967–3969 (1999)CrossRef
3.
Zurück zum Zitat Ahsan, S.N., Aureli, M.: Nonlinear oscillations of shape-morphing submerged structures: Control of hydrodynamic forces and power dissipation via active flexibility. J. Fluids Struct. 74, 35–52 (2017)CrossRef Ahsan, S.N., Aureli, M.: Nonlinear oscillations of shape-morphing submerged structures: Control of hydrodynamic forces and power dissipation via active flexibility. J. Fluids Struct. 74, 35–52 (2017)CrossRef
4.
Zurück zum Zitat Ahsan, S.N., Aureli, M.: Three-dimensional analysis of hydrodynamic forces and power dissipation in shape-morphing cantilevers oscillating in viscous fluids. Int. J. Mech. Sci. 149, 436–451 (2018)CrossRef Ahsan, S.N., Aureli, M.: Three-dimensional analysis of hydrodynamic forces and power dissipation in shape-morphing cantilevers oscillating in viscous fluids. Int. J. Mech. Sci. 149, 436–451 (2018)CrossRef
5.
Zurück zum Zitat Ahsan, S.N., Aureli, M.: Finite amplitude oscillations of flanged laminas in viscous flows: vortex-structure interactions for hydrodynamic damping control. J. Fluids Struct. 59, 297–315 (2015)CrossRef Ahsan, S.N., Aureli, M.: Finite amplitude oscillations of flanged laminas in viscous flows: vortex-structure interactions for hydrodynamic damping control. J. Fluids Struct. 59, 297–315 (2015)CrossRef
6.
Zurück zum Zitat Hu, L., Yan, H., Zhang, W.M., Zou, H.X., Peng, Z.K., Meng, G.: Theoretical and experimental study on dynamic characteristics of V-shaped beams immersed in viscous fluids: from small to finite amplitude. J. Fluids Struct. 82, 215–244 (2018)CrossRef Hu, L., Yan, H., Zhang, W.M., Zou, H.X., Peng, Z.K., Meng, G.: Theoretical and experimental study on dynamic characteristics of V-shaped beams immersed in viscous fluids: from small to finite amplitude. J. Fluids Struct. 82, 215–244 (2018)CrossRef
7.
Zurück zum Zitat Basak, S., Raman, A.: Hydrodynamic coupling between micromechanical beams oscillating in viscous fluids. Phys. Fluids 19(1), 017105 (2007)CrossRefMATH Basak, S., Raman, A.: Hydrodynamic coupling between micromechanical beams oscillating in viscous fluids. Phys. Fluids 19(1), 017105 (2007)CrossRefMATH
8.
Zurück zum Zitat Ande, R., Gutschmidt, S., Sellier, M.: Fluid dynamics investigation of a large array. Phys. Fluids 33(7), 073608 (2021)CrossRef Ande, R., Gutschmidt, S., Sellier, M.: Fluid dynamics investigation of a large array. Phys. Fluids 33(7), 073608 (2021)CrossRef
9.
Zurück zum Zitat Li, C., Ma, X., Guan, Y., Tang, J., Zhang, B.: Microcantilever array biosensor for simultaneous detection of carcinoembryonic antigens and \(\alpha \)-fetoprotein based on real-time monitoring of the profile of cantilever. ACS Sens. 4(11), 3034–3041 (2019)CrossRef Li, C., Ma, X., Guan, Y., Tang, J., Zhang, B.: Microcantilever array biosensor for simultaneous detection of carcinoembryonic antigens and \(\alpha \)-fetoprotein based on real-time monitoring of the profile of cantilever. ACS Sens. 4(11), 3034–3041 (2019)CrossRef
10.
Zurück zum Zitat Manickavasagam, A.K.: Hydrodynamic coupling of arrays in fluids (2020) Manickavasagam, A.K.: Hydrodynamic coupling of arrays in fluids (2020)
11.
Zurück zum Zitat Hosaka, H., Itao, K.: Coupled vibration of microcantilever array induced by airflow force. J. Vib. Acoust. 124(1), 26–32 (2002)CrossRef Hosaka, H., Itao, K.: Coupled vibration of microcantilever array induced by airflow force. J. Vib. Acoust. 124(1), 26–32 (2002)CrossRef
12.
Zurück zum Zitat Green, C.P., Sader, J.E. Small amplitude oscillations of a thin beam immersed in a viscous fluid near a solid surface. Phys. Fluids 17(7), 073102 (2005) Green, C.P., Sader, J.E. Small amplitude oscillations of a thin beam immersed in a viscous fluid near a solid surface. Phys. Fluids 17(7), 073102 (2005)
13.
Zurück zum Zitat Tuck, E.O.: Calculation of unsteady flows due to small motions of cylinders in a viscous fluid. J. Eng. Math. 3(1), 29–44 (1969)CrossRefMATH Tuck, E.O.: Calculation of unsteady flows due to small motions of cylinders in a viscous fluid. J. Eng. Math. 3(1), 29–44 (1969)CrossRefMATH
14.
Zurück zum Zitat Landau, L.D., Lifshitz, E.M.: Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, vol. 6. Elsevier (2013) Landau, L.D., Lifshitz, E.M.: Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, vol. 6. Elsevier (2013)
15.
Zurück zum Zitat Lang, H.P., Hegner, M., Gerber, C.: Cantilever array sensors. Mater. Today 8(4), 30–36 (2005)CrossRef Lang, H.P., Hegner, M., Gerber, C.: Cantilever array sensors. Mater. Today 8(4), 30–36 (2005)CrossRef
16.
Zurück zum Zitat Kimber, M., Garimella, S.V., Raman, A.: An experimental study of fluidic coupling between multiple piezoelectric fans. In: Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006, pp. 333–340. IEEE (2006) Kimber, M., Garimella, S.V., Raman, A.: An experimental study of fluidic coupling between multiple piezoelectric fans. In: Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, 2006. ITHERM 2006, pp. 333–340. IEEE (2006)
17.
Zurück zum Zitat Lang, H.P., Hegner, M., Gerber, C.: Nanomechanical cantilever array sensors. In: Springer Handbook of Nanotechnology, pp. 457–485. Springer, Berlin, Heidelberg (2017) Lang, H.P., Hegner, M., Gerber, C.: Nanomechanical cantilever array sensors. In: Springer Handbook of Nanotechnology, pp. 457–485. Springer, Berlin, Heidelberg (2017)
18.
Zurück zum Zitat Amiri, I.S., Addanki, S.: Simulation fabrication and characterization of micro-cantilever array based ozone sensor. Results Phys. 10, 923–933 (2018)CrossRef Amiri, I.S., Addanki, S.: Simulation fabrication and characterization of micro-cantilever array based ozone sensor. Results Phys. 10, 923–933 (2018)CrossRef
19.
Zurück zum Zitat Akarapu, A., Nighot, R.P., Devsoth, L., Yadav, M., Pal, P., Pandey, A.K.: Experimental and theoretical analysis of drag forces in micromechanical-beam arrays. Phys. Rev. Appl. 13(3), 034003 (2020)CrossRef Akarapu, A., Nighot, R.P., Devsoth, L., Yadav, M., Pal, P., Pandey, A.K.: Experimental and theoretical analysis of drag forces in micromechanical-beam arrays. Phys. Rev. Appl. 13(3), 034003 (2020)CrossRef
20.
Zurück zum Zitat Ashok, A., Kumar, P.M., Singh, S.S., Raju, P., Pal, P., Pandey, A.K.: Achieving wideband micromechanical system using coupled non-uniform beams array. Sens. Actuators A: Phys. 273, 12–18 (2018)CrossRef Ashok, A., Kumar, P.M., Singh, S.S., Raju, P., Pal, P., Pandey, A.K.: Achieving wideband micromechanical system using coupled non-uniform beams array. Sens. Actuators A: Phys. 273, 12–18 (2018)CrossRef
21.
Zurück zum Zitat Meirovitch, L., Parker, R.G.: Fundam. Vibr. Appl. Mech. Rev. 54(6), B100–B101 (2001)CrossRef Meirovitch, L., Parker, R.G.: Fundam. Vibr. Appl. Mech. Rev. 54(6), B100–B101 (2001)CrossRef
22.
Zurück zum Zitat Kreyszig, E., Stroud, K., Stephenson, G.: Advanced engineering mathematics. Integration, 9(4) (2008) Kreyszig, E., Stroud, K., Stephenson, G.: Advanced engineering mathematics. Integration, 9(4) (2008)
Metadaten
Titel
Two-Dimensional Hydrodynamic Forces in an Array of Shape-Morphed Cantilever Beams
verfasst von
Lalsingh Devsoth
Ashok Kumar Pandey
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-20353-4_18

Neuer Inhalt