Skip to main content
Erschienen in: Neural Processing Letters 6/2021

22.07.2021

Two-Objective Filtering for Takagi–Sugeno Fuzzy Hopfield Neural Networks with Time-Variant Delay

verfasst von: Qi Hu, Lezhu Chen, Jianping Zhou, Zhen Wang

Erschienen in: Neural Processing Letters | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper focuses on the issue of two-objec-tive filtering for Takagi–Sugeno fuzzy Hopfield neural networks with time-variant delay. The intention is to design a fuzzy filter subject to random occurring gain perturbations to make sure that the filtering-error system achieves a pre-defined \({\mathscr {H}}_{\infty }\) and \({\mathscr {L}}_{2}\mathscr {-L}_{\infty }\) disturbance attenuation level in mean square simultaneously. Without imposing any additional constraints on the differentiability of the time-delay function, a criterion of the mean-square \({\mathscr {H}}_{\infty }\) and \({\mathscr {L}}_{2}\mathscr {-L} _{\infty }\) performance analysis for the filtering-error system is derived by means of an augmented Lyapunov functional and the second-order Bessel–Legendre inequality. Then, a numerically tractable design scheme is developed for the desired non-fragile \({\mathscr {H}}_{\infty }\) and \( {\mathscr {L}}_{2}\mathscr {-L}_{\infty }\) filter, where the gains are able to be determined by the solution of some linear matrix inequalities. At last, a numerical example with simulations is provided to illustrate the applicability and superiority of the present \({\mathscr {H}}_{\infty }\) and \( {\mathscr {L}}_{2}\mathscr {-L}_{\infty }\) filtering method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Suganthan PN, Teoh EK, Mital DP (1995) Pattern recognition by homomorphic graph matching using Hopfield neural networks. Image Vis Comput 13(1):45–60CrossRef Suganthan PN, Teoh EK, Mital DP (1995) Pattern recognition by homomorphic graph matching using Hopfield neural networks. Image Vis Comput 13(1):45–60CrossRef
2.
Zurück zum Zitat Cheng L, Hou Z, Tan M (2006) Relaxation labeling using an improved Hopfield neural network. In: Huang DS, Li K, Irwin GW (eds) Intelligent computing in signal processing and pattern recognition, vol 345. Springer, Berlin, pp 430–439CrossRef Cheng L, Hou Z, Tan M (2006) Relaxation labeling using an improved Hopfield neural network. In: Huang DS, Li K, Irwin GW (eds) Intelligent computing in signal processing and pattern recognition, vol 345. Springer, Berlin, pp 430–439CrossRef
3.
Zurück zum Zitat Liu Q, Ye X, Zhang Y (2006) A Hopfield neural network based algorithm for RNA secondary structure prediction. In: First international multi-symposiums on computer and computational sciences (IMSCCS’06). IEEE, vol 1, pp 10–16 Liu Q, Ye X, Zhang Y (2006) A Hopfield neural network based algorithm for RNA secondary structure prediction. In: First international multi-symposiums on computer and computational sciences (IMSCCS’06). IEEE, vol 1, pp 10–16
4.
Zurück zum Zitat Wang X, Li Z (2019) A color image encryption algorithm based on Hopfield chaotic neural network. Opt Lasers Eng 115:107–118CrossRef Wang X, Li Z (2019) A color image encryption algorithm based on Hopfield chaotic neural network. Opt Lasers Eng 115:107–118CrossRef
5.
Zurück zum Zitat Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132MATHCrossRef Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132MATHCrossRef
6.
Zurück zum Zitat Lilly JH (2011) Fuzzy control and identification. Wiley, New YorkMATH Lilly JH (2011) Fuzzy control and identification. Wiley, New YorkMATH
7.
Zurück zum Zitat Xia J, Zhang J, Sun W, Zhang B, Wang Z (2019) Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans Syst Man Cybern Syst 49(7):1541–1548CrossRef Xia J, Zhang J, Sun W, Zhang B, Wang Z (2019) Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans Syst Man Cybern Syst 49(7):1541–1548CrossRef
8.
Zurück zum Zitat Nithya V, Sakthivel R, Alzahrani F (2020) Dissipative-based non-fragile filtering for fuzzy networked control systems with switching communication channels. Appl Math Comput 373:125011MathSciNetMATH Nithya V, Sakthivel R, Alzahrani F (2020) Dissipative-based non-fragile filtering for fuzzy networked control systems with switching communication channels. Appl Math Comput 373:125011MathSciNetMATH
9.
Zurück zum Zitat Huang H, Ho DWC, Lam J (2005) Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays. IEEE Trans Circuits Syst II Express Briefs 52(5):251–255CrossRef Huang H, Ho DWC, Lam J (2005) Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays. IEEE Trans Circuits Syst II Express Briefs 52(5):251–255CrossRef
10.
Zurück zum Zitat Sakthivel R, Mathiyalagan K, Anthoni SM (2011) Design of a passification controller for uncertain fuzzy Hopfield neural networks with time-varying delays. Phys Scr 84(4):045024MATHCrossRef Sakthivel R, Mathiyalagan K, Anthoni SM (2011) Design of a passification controller for uncertain fuzzy Hopfield neural networks with time-varying delays. Phys Scr 84(4):045024MATHCrossRef
11.
Zurück zum Zitat Ahn CK (2011) Takagi–Sugeno fuzzy Hopfield neural networks for \({\mathscr {H}}_{\infty }\) nonlinear system identification. Neural Process Lett 34(1):59–70CrossRef Ahn CK (2011) Takagi–Sugeno fuzzy Hopfield neural networks for \({\mathscr {H}}_{\infty }\) nonlinear system identification. Neural Process Lett 34(1):59–70CrossRef
12.
Zurück zum Zitat Wang Z, Liu Y, Liu X (2009) State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw 22(1):41–48MathSciNetMATHCrossRef Wang Z, Liu Y, Liu X (2009) State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw 22(1):41–48MathSciNetMATHCrossRef
13.
Zurück zum Zitat Han J, Zhang Z, Zhang X, Zhou J (2020) Design of passive filters for time-delay neural networks with quantized output. Chin Phys B 29(11):110201CrossRef Han J, Zhang Z, Zhang X, Zhou J (2020) Design of passive filters for time-delay neural networks with quantized output. Chin Phys B 29(11):110201CrossRef
14.
15.
Zurück zum Zitat Balasubramaniam P, Vembarasan V, Rakkiyappan R (2012) Delay-dependent robust asymptotic state estimation of Takagi–Sugeno fuzzy Hopfield neural networks with mixed interval time-varying delays. Expert Syst Appl 39(1):472–481CrossRef Balasubramaniam P, Vembarasan V, Rakkiyappan R (2012) Delay-dependent robust asymptotic state estimation of Takagi–Sugeno fuzzy Hopfield neural networks with mixed interval time-varying delays. Expert Syst Appl 39(1):472–481CrossRef
16.
Zurück zum Zitat Shi P, Zhang Y, Chadli M, Agarwal RK (2015) Mixed \({\mathscr {H}}_{\infty }\) and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans Neural Netw Learn Syst 27(4):903–909MathSciNetCrossRef Shi P, Zhang Y, Chadli M, Agarwal RK (2015) Mixed \({\mathscr {H}}_{\infty }\) and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans Neural Netw Learn Syst 27(4):903–909MathSciNetCrossRef
17.
Zurück zum Zitat Arslan E, Vadivel R, Ali MS, Arik S (2017) Event-triggered \({\mathscr {H}}_{\infty }\) filtering for delayed neural networks via sampled-data. Neural Netw 91:11–21MATHCrossRef Arslan E, Vadivel R, Ali MS, Arik S (2017) Event-triggered \({\mathscr {H}}_{\infty }\) filtering for delayed neural networks via sampled-data. Neural Netw 91:11–21MATHCrossRef
18.
Zurück zum Zitat Zheng D, Hua M, Chen J, Bian C, Dai W (2019) Robust partially mode-dependent \({\mathscr {H}}_{\infty }\) filtering for discrete-time nonhomogeneous Markovian jump neural networks with additive gain perturbations. Math Methods Appl Sci 42(3):982–998MathSciNetMATHCrossRef Zheng D, Hua M, Chen J, Bian C, Dai W (2019) Robust partially mode-dependent \({\mathscr {H}}_{\infty }\) filtering for discrete-time nonhomogeneous Markovian jump neural networks with additive gain perturbations. Math Methods Appl Sci 42(3):982–998MathSciNetMATHCrossRef
19.
Zurück zum Zitat Li F, Zhao J, Song S, Huang X, Shen H (2020) \({\mathscr {H}}_{\infty }\) filtering for Markov jump neural networks subject to hidden-Markov mode observation and packet dropouts via an improved activation function dividing method. Neural Process Lett 51:1939–1955CrossRef Li F, Zhao J, Song S, Huang X, Shen H (2020) \({\mathscr {H}}_{\infty }\) filtering for Markov jump neural networks subject to hidden-Markov mode observation and packet dropouts via an improved activation function dividing method. Neural Process Lett 51:1939–1955CrossRef
20.
Zurück zum Zitat Choi HD, Ahn CK, Shi P, Lim MT, Song MK (2015) \({\mathscr {L}} _{2}\mathscr {-L}_{\infty }\) filtering for Takagi–Sugeno fuzzy neural networks based on Wirtinger-type inequalities. Neurocomputing 153:117–125CrossRef Choi HD, Ahn CK, Shi P, Lim MT, Song MK (2015) \({\mathscr {L}} _{2}\mathscr {-L}_{\infty }\) filtering for Takagi–Sugeno fuzzy neural networks based on Wirtinger-type inequalities. Neurocomputing 153:117–125CrossRef
21.
Zurück zum Zitat Lee TH, Park JH (2018) New methods of fuzzy sampled-data control for stabilization of chaotic systems. IEEE Trans Syst Man Cybern Syst 48(12):2026–2034 Lee TH, Park JH (2018) New methods of fuzzy sampled-data control for stabilization of chaotic systems. IEEE Trans Syst Man Cybern Syst 48(12):2026–2034
22.
Zurück zum Zitat Tai W, Zuo D, Xuan Z, Zhou J, Wang Z (2021) Non-fragile \({\mathscr {L}}_{2}-{\mathscr {L}}_{\infty }\) filtering for a class of switched neural networks. Math Comput Simul 185:629–645CrossRef Tai W, Zuo D, Xuan Z, Zhou J, Wang Z (2021) Non-fragile \({\mathscr {L}}_{2}-{\mathscr {L}}_{\infty }\) filtering for a class of switched neural networks. Math Comput Simul 185:629–645CrossRef
23.
Zurück zum Zitat Liu Y, Xia J, Song X, Shen H (2020) Extended dissipative synchronization for semi-Markov jump complex dynamic networks via memory sampled-data control scheme. J Frankl Inst 357(15):10900–10920MathSciNetMATHCrossRef Liu Y, Xia J, Song X, Shen H (2020) Extended dissipative synchronization for semi-Markov jump complex dynamic networks via memory sampled-data control scheme. J Frankl Inst 357(15):10900–10920MathSciNetMATHCrossRef
24.
Zurück zum Zitat Yan Z, Liu Y, Huang X, Zhou J, Shen H (2019) Mixed \({\mathscr {H}}_{\infty }\) and \({\mathscr {L}}_{2}-{\mathscr {L}}_{\infty }\) anti-synchronization control for chaotic delayed recurrent neural networks. Int J Control Autom Syst 17(12):3158–3169CrossRef Yan Z, Liu Y, Huang X, Zhou J, Shen H (2019) Mixed \({\mathscr {H}}_{\infty }\) and \({\mathscr {L}}_{2}-{\mathscr {L}}_{\infty }\) anti-synchronization control for chaotic delayed recurrent neural networks. Int J Control Autom Syst 17(12):3158–3169CrossRef
25.
Zurück zum Zitat You X, Song Q, Zhao Z (2020) Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays. Neural Netw 123:248–260MATHCrossRef You X, Song Q, Zhao Z (2020) Existence and finite-time stability of discrete fractional-order complex-valued neural networks with time delays. Neural Netw 123:248–260MATHCrossRef
26.
Zurück zum Zitat Zhou J, Liu Y, Park JH, Kong Q, Wang Z (2021) Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete Contin Dyn Syst-S 14(4):1569–1589MathSciNet Zhou J, Liu Y, Park JH, Kong Q, Wang Z (2021) Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete Contin Dyn Syst-S 14(4):1569–1589MathSciNet
27.
Zurück zum Zitat Arik S (2020) New criteria for stability of neutral-type neural networks with multiple time delays. IEEE Trans Neural Netw Learn Syst 31(5):1504–1513MathSciNetCrossRef Arik S (2020) New criteria for stability of neutral-type neural networks with multiple time delays. IEEE Trans Neural Netw Learn Syst 31(5):1504–1513MathSciNetCrossRef
28.
Zurück zum Zitat Wang Y, Hu X, Shi K, Song X, Shen H (2020) Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals. J Frankl Inst 357(15):10921–10936MathSciNetMATHCrossRef Wang Y, Hu X, Shi K, Song X, Shen H (2020) Network-based passive estimation for switched complex dynamical networks under persistent dwell-time with limited signals. J Frankl Inst 357(15):10921–10936MathSciNetMATHCrossRef
29.
Zurück zum Zitat Zhou Y, Liu Y, Zhou J, Wang Z (2021) Quantized passive filtering for switched delayed neural networks. Nonlinear Anal Model Control 26(1):93–112MathSciNetMATHCrossRef Zhou Y, Liu Y, Zhou J, Wang Z (2021) Quantized passive filtering for switched delayed neural networks. Nonlinear Anal Model Control 26(1):93–112MathSciNetMATHCrossRef
30.
Zurück zum Zitat Ru T, Xia J, Huang X, Chen X, Wang J (2020) Reachable set estimation of delayed fuzzy inertial neural networks with Markov jumping parameters. J Frankl Inst 357(11):6882–6898MathSciNetMATHCrossRef Ru T, Xia J, Huang X, Chen X, Wang J (2020) Reachable set estimation of delayed fuzzy inertial neural networks with Markov jumping parameters. J Frankl Inst 357(11):6882–6898MathSciNetMATHCrossRef
31.
Zurück zum Zitat Chang X, Yang G (2013) Nonfragile \({\mathscr {H}}_{\infty }\) filter design for T–S fuzzy systems in standard form. IEEE Trans Ind Electron 61(7):3448–3458CrossRef Chang X, Yang G (2013) Nonfragile \({\mathscr {H}}_{\infty }\) filter design for T–S fuzzy systems in standard form. IEEE Trans Ind Electron 61(7):3448–3458CrossRef
32.
Zurück zum Zitat Xia J, Gao H, Liu M, Zhuang G, Zhang B (2018) Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems. J Frankl Inst 355(6):3031–3049MathSciNetMATHCrossRef Xia J, Gao H, Liu M, Zhuang G, Zhang B (2018) Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems. J Frankl Inst 355(6):3031–3049MathSciNetMATHCrossRef
33.
Zurück zum Zitat Tai W, Teng Q, Zhou Y, Zhou J, Wang Z (2019) Chaos synchronization of stochastic reaction–diffusion time-delay neural networks via non-fragile output-feedback control. Appl Math Comput 354:115–127MathSciNetMATH Tai W, Teng Q, Zhou Y, Zhou J, Wang Z (2019) Chaos synchronization of stochastic reaction–diffusion time-delay neural networks via non-fragile output-feedback control. Appl Math Comput 354:115–127MathSciNetMATH
34.
Zurück zum Zitat Bao H, Park JH, Cao J (2019) Non-fragile state estimation for fractional-order delayed memristive BAM neural networks. Neural Netw 119:190–199MATHCrossRef Bao H, Park JH, Cao J (2019) Non-fragile state estimation for fractional-order delayed memristive BAM neural networks. Neural Netw 119:190–199MATHCrossRef
35.
Zurück zum Zitat Lin Y, Zhuang G, Sun W, Zhao J, Chu Y (2021) Resilient \({\mathscr {H}}_{\infty }\) dynamic output feedback controller design for USJSs with time-varying delays. Appl Math Comput 395:125875MathSciNetMATH Lin Y, Zhuang G, Sun W, Zhao J, Chu Y (2021) Resilient \({\mathscr {H}}_{\infty }\) dynamic output feedback controller design for USJSs with time-varying delays. Appl Math Comput 395:125875MathSciNetMATH
36.
Zurück zum Zitat Zhang S, Wang Z, Dong DH, Alsaadi FE, Hayat T (2015) Nonfragile \({\mathscr {H}}_{\infty }\) fuzzy filtering with randomly occurring gain variations and channel fadings. IEEE Trans Fuzzy Syst 24(3):505–518CrossRef Zhang S, Wang Z, Dong DH, Alsaadi FE, Hayat T (2015) Nonfragile \({\mathscr {H}}_{\infty }\) fuzzy filtering with randomly occurring gain variations and channel fadings. IEEE Trans Fuzzy Syst 24(3):505–518CrossRef
37.
Zurück zum Zitat Mathiyalagan K, Su H, Shi P, Sakthivel R (2015) Exponential \({\mathscr {H}}_{\infty }\) filtering for discrete-time switched neural networks with random delays. IEEE Trans Cybern 45(4):676–687CrossRef Mathiyalagan K, Su H, Shi P, Sakthivel R (2015) Exponential \({\mathscr {H}}_{\infty }\) filtering for discrete-time switched neural networks with random delays. IEEE Trans Cybern 45(4):676–687CrossRef
38.
Zurück zum Zitat Y Liu, Z Xuan, Z Wang, J Zhou, Y Liu (2020) Sampled-data exponential synchronization of time-delay neural networks subject to random controller gain perturbations. Applied Mathematics Computation 385:125429 Y Liu, Z Xuan, Z Wang, J Zhou, Y Liu (2020) Sampled-data exponential synchronization of time-delay neural networks subject to random controller gain perturbations. Applied Mathematics Computation 385:125429
39.
Zurück zum Zitat Seuret A, Gouaisbaut F (2015) Hierarchy of LMI conditions for the stability analysis of time-delay systems. Syst Control Lett 81:1–7MathSciNetMATHCrossRef Seuret A, Gouaisbaut F (2015) Hierarchy of LMI conditions for the stability analysis of time-delay systems. Syst Control Lett 81:1–7MathSciNetMATHCrossRef
40.
Zurück zum Zitat Park P, Ko JW, Jeong C (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1):235–238MathSciNetMATHCrossRef Park P, Ko JW, Jeong C (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1):235–238MathSciNetMATHCrossRef
41.
Zurück zum Zitat Xie L, Fu M, de Souza CE (1992) \(\mathscr {H}_{\infty }\) control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans Automat Contr 37(8):1253–1256 Xie L, Fu M, de Souza CE (1992) \(\mathscr {H}_{\infty }\) control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans Automat Contr 37(8):1253–1256
42.
Zurück zum Zitat Park JH, Lee TH, Liu Y, Chen J (2019) Dynamic systems with time delays: stability and control. Springer, BerlinMATHCrossRef Park JH, Lee TH, Liu Y, Chen J (2019) Dynamic systems with time delays: stability and control. Springer, BerlinMATHCrossRef
44.
Zurück zum Zitat Zhou J, Liu Y, Xia J, Wang Z, Arik S (2020) Resilient fault-tolerant anti-synchronization for stochastic delayed reaction–diffusion neural networks with semi-Markov jump parameters. Neural Netw 125:194–204MATHCrossRef Zhou J, Liu Y, Xia J, Wang Z, Arik S (2020) Resilient fault-tolerant anti-synchronization for stochastic delayed reaction–diffusion neural networks with semi-Markov jump parameters. Neural Netw 125:194–204MATHCrossRef
45.
Zurück zum Zitat Ali M, Usha M, Alsaedi A, Ahmad B (2020) Synchronization of stochastic complex dynamical networks with mixed time-varying coupling delays. Neural Process Lett 52:1233–1250CrossRef Ali M, Usha M, Alsaedi A, Ahmad B (2020) Synchronization of stochastic complex dynamical networks with mixed time-varying coupling delays. Neural Process Lett 52:1233–1250CrossRef
46.
Zurück zum Zitat Yang X, Li X, Lu J, Cheng Z (2020) Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control. IEEE Trans Cybern 50:4043–4052CrossRef Yang X, Li X, Lu J, Cheng Z (2020) Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control. IEEE Trans Cybern 50:4043–4052CrossRef
47.
Zurück zum Zitat Yan Z, Huang X, Cao J (2020) Variable-sampling-period dependent global stabilization of delayed memristive neural networks via refined switching event-triggered control. Sci China Inf Sci 63:212201MathSciNetCrossRef Yan Z, Huang X, Cao J (2020) Variable-sampling-period dependent global stabilization of delayed memristive neural networks via refined switching event-triggered control. Sci China Inf Sci 63:212201MathSciNetCrossRef
48.
Zurück zum Zitat Liu K, Seuret A, Xia Y (2017) Stability analysis of systems with time-varying delays via the second-order Bessel–Legendre inequality. Automatica 76:138–142MathSciNetMATHCrossRef Liu K, Seuret A, Xia Y (2017) Stability analysis of systems with time-varying delays via the second-order Bessel–Legendre inequality. Automatica 76:138–142MathSciNetMATHCrossRef
49.
Metadaten
Titel
Two-Objective Filtering for Takagi–Sugeno Fuzzy Hopfield Neural Networks with Time-Variant Delay
verfasst von
Qi Hu
Lezhu Chen
Jianping Zhou
Zhen Wang
Publikationsdatum
22.07.2021
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 6/2021
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10580-0

Weitere Artikel der Ausgabe 6/2021

Neural Processing Letters 6/2021 Zur Ausgabe

Neuer Inhalt