1.
Lansdown, T.C., Brook-Carter, N., Kersloot, T.: Distraction from multiple in-vehicle secondary tasks: vehicle performance and mental workload implications. Ergonomics
47, 91–104 (2004)
CrossRef
2.
Green, P.: Visual and task demands of driver information systems. Technical report (1999)
3.
Jæger, M.G., Skov, M.B., Thomassen, N.G., et al.: You can touch, but you can’t look: interacting with in-vehicle systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1139–1148. ACM (2008)
4.
Horrey, W.J.: Assessing the effects of in-vehicle tasks on driving performance. Ergonomics
19, 4–7 (2011)
5.
Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. In: International Workshop on Automatic Face and Gesture Recognition, vol. 12, pp. 296–301 (1995)
6.
Liu, Y., Gan, Z., Sun, Y.: Static hand gesture recognition and its application based on support vector machines. In: Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2008, pp. 517–521 (2008)
7.
Alpern, M., Minardo, K.: Developing a car gesture interface for use as a secondary task. In: Extended Abstracts on Human Factors in Computing Systems, CHI EA 2003, pp. 932–933. ACM, New York (2003)
8.
Davis, J., Shah, M.: Recognizing hand gestures. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 331–340. Springer, Heidelberg (1994). doi:
10.1007/3-540-57956-7_37
CrossRef
9.
Hu, J., Brown, M.K., Turin, W.: Hmm based online handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell.
18, 1039–1045 (1996)
CrossRef
10.
Chen, F.S., Fu, C.M., Huang, C.L.: Hand gesture recognition using a real-time tracking method and hidden Markov models. Image Vis. Comput.
21, 745–758 (2003)
CrossRef
11.
Yang, J., Horie, R.: An improved computer interface comprising a recurrent neural network and a natural user interface. Image Vis. Comput.
60, 1386–1395 (2015)
12.
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput.
9, 1735–1780 (1997)
CrossRef
13.
Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty Fuzziness Knowl. Based Syst.
6, 107–116 (1998)
CrossRefMATH
14.
Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE (2013)
15.
Neverova, N., Wolf, C., Paci, G., Sommavilla, G., Taylor, G.W., Nebout, F.: A multi-scale approach to gesture detection and recognition. In: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 484–491. IEEE (2013)
16.
Yoon, H.S., Soh, J., Bae, Y.J., Yang, H.S.: Hand esture recognition using combined features of location, angle and velocity. Pattern Recogn.
34, 1491–1501 (2001)
CrossRefMATH
17.
Tewari, A., Grandidier, F., Taetz, B., Stricker, D.: Adding model constraints to CNN for top view hand pose recognition in range images. In: Proceedings of the ICPRAM 2005, pp. 170–177 (2016)
18.
Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: 1993 IEEE International Conference on Neural Networks, pp. 586–591. IEEE (1993)