Skip to main content
Erschienen in: Applied Composite Materials 5-6/2019

13.09.2019

Two-Scale Prediction of Effective Thermal Conductivity of 3D Braided C/C Composites Considering Void Defects by Asymptotic Homogenization Method

verfasst von: Kun-long Wei, Jiang Li, Hong-bin Shi, Min Tang

Erschienen in: Applied Composite Materials | Ausgabe 5-6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to predict the effective thermal conductivities of three-dimensional (3D) braided carbon/carbon (C/C) composites with randomly distributed void defects. Two-scale prediction model is developed based on the asymptotic homogenization method. Unit cell models both on fiber-scale and fiber bundle-scale are established according to the scanning electron microscopy observation of the material, and the randomly distributed void defects are considered. The effective thermal conductivities of fiber bundles with void defects are predicted firstly, then the effective thermal conductivities of the 3D braided C/C composites are predicted considering void defects in matrix pocket and interface by introducing the predicted thermal conductivities of fiber bundles. The predicted effective thermal conductivities agree well with the experimental results, demonstrating the validity of the two-scale prediction model. A parametric study is then conducted to analyze the effects of void volume fraction and interfacial thermal conductivity on the predictions of the developed model. The results show that the random distribution of void defects has a little effect on the effective thermal conductivities, while the void volume fraction has a significant effect on the effective thermal conductivities. The thermal conductivities decrease generally linearly with the increase of void volume fractions, and the effect of void volume fraction of matrix pocket is greater than that of fiber reinforcement. The effective thermal conductivities increase with the increase of interfacial thermal conductivity, and the effect of void volume fraction of interface becomes larger with the increase of interfacial thermal conductivity. A higher interfacial thermal conductivity have a greater effect on the effective thermal conductivities of the material than a smaller interfacial thermal conductivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Soydan, O., Jale, T., Peter, F.: Microstructure and elastic properties of individualcomponents of C/C composites. Carbon. 47, 3403–3414 (2009)CrossRef Soydan, O., Jale, T., Peter, F.: Microstructure and elastic properties of individualcomponents of C/C composites. Carbon. 47, 3403–3414 (2009)CrossRef
2.
Zurück zum Zitat Dagli, L., Remonf, Y.: Identification of the non-linear behaviour a 4D carbon-carbon material designed for aeronautic application. Appl. Compos. Mater. 9, 1–15 (2002)CrossRef Dagli, L., Remonf, Y.: Identification of the non-linear behaviour a 4D carbon-carbon material designed for aeronautic application. Appl. Compos. Mater. 9, 1–15 (2002)CrossRef
3.
Zurück zum Zitat Luo, R., Liu, T., Li, J., Zhang, H., Chen, Z., Tian, G.: Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon. 42, 2887–2895 (2004)CrossRef Luo, R., Liu, T., Li, J., Zhang, H., Chen, Z., Tian, G.: Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon. 42, 2887–2895 (2004)CrossRef
4.
Zurück zum Zitat Grujicic, M., Zhao, C.L., Dusel, E.C.: Computational analysis of the thermal conductivity of the carbon-carbon composite materials. J. Mater. Sci. 41, 8244–8256 (2006)CrossRef Grujicic, M., Zhao, C.L., Dusel, E.C.: Computational analysis of the thermal conductivity of the carbon-carbon composite materials. J. Mater. Sci. 41, 8244–8256 (2006)CrossRef
5.
Zurück zum Zitat Yin, J., Zhang, H.B., Xiong, X., Zuo, J.L., Huang, B.Y.: Ablation performance of carbon/carbon composite throat after a solid rocket motor ground ignition test. Appl. Compos. Mater. 19, 237–245 (2012)CrossRef Yin, J., Zhang, H.B., Xiong, X., Zuo, J.L., Huang, B.Y.: Ablation performance of carbon/carbon composite throat after a solid rocket motor ground ignition test. Appl. Compos. Mater. 19, 237–245 (2012)CrossRef
6.
Zurück zum Zitat Ning, Q.G., Chou, T.W.: Closed-form solutions of the in-plane effective thermal conductivities of woven-fabric composites. Compos. Sci. Technol. 55, 41–48 (1995)CrossRef Ning, Q.G., Chou, T.W.: Closed-form solutions of the in-plane effective thermal conductivities of woven-fabric composites. Compos. Sci. Technol. 55, 41–48 (1995)CrossRef
7.
Zurück zum Zitat Chou, T.W., Ning, Q.G.: A general analytical model for predicting the transverse effective thermal conductivities of woven fabric composites. Composites Part A:Applied Science & Manufacturing. 29, 315–322 (1998)CrossRef Chou, T.W., Ning, Q.G.: A general analytical model for predicting the transverse effective thermal conductivities of woven fabric composites. Composites Part A:Applied Science & Manufacturing. 29, 315–322 (1998)CrossRef
8.
Zurück zum Zitat Ronghua, N.I.E., Guiqiong, J.I.A.O., Bo, W.A.N.G.: Prediction on coefficient of thermal conductivity for 2D braided C/SiC composites. Acta Meteriae compositae Sinica. 26, 169–174 (2009) Ronghua, N.I.E., Guiqiong, J.I.A.O., Bo, W.A.N.G.: Prediction on coefficient of thermal conductivity for 2D braided C/SiC composites. Acta Meteriae compositae Sinica. 26, 169–174 (2009)
9.
Zurück zum Zitat Marcos-Gómez, D., Ching-Lloyd, J., Elizalde, M.R., Clegg, W.J., Molina-Aldareguia, J.M.: Predicting the thermal conductivity of composite materials with imperfect interfaces. Compos. Sci. Technol. 70, 2276–2283 (2010)CrossRef Marcos-Gómez, D., Ching-Lloyd, J., Elizalde, M.R., Clegg, W.J., Molina-Aldareguia, J.M.: Predicting the thermal conductivity of composite materials with imperfect interfaces. Compos. Sci. Technol. 70, 2276–2283 (2010)CrossRef
10.
Zurück zum Zitat Gou, J.J., Ren, X.J., Fang, W.Z., Li, S.G., Tao, W.Q.: Two small unit cell models for prediction of thermal properties of 8-harness satin woven pierced composites. Composites Part B. 135, 218–231 (2018)CrossRef Gou, J.J., Ren, X.J., Fang, W.Z., Li, S.G., Tao, W.Q.: Two small unit cell models for prediction of thermal properties of 8-harness satin woven pierced composites. Composites Part B. 135, 218–231 (2018)CrossRef
11.
Zurück zum Zitat Jiang, L., Xu, G., Cheng, S., Lu, X., Zeng, T.: Predicting the thermal conductivity and temperature distribution in 3D braided composites. Compos. Struct. 108, 578–583 (2014)CrossRef Jiang, L., Xu, G., Cheng, S., Lu, X., Zeng, T.: Predicting the thermal conductivity and temperature distribution in 3D braided composites. Compos. Struct. 108, 578–583 (2014)CrossRef
12.
Zurück zum Zitat Li, H., Li, S., Wang, Y.: Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales. J. Mater. Res. 26, 384–394 (2011)CrossRef Li, H., Li, S., Wang, Y.: Prediction of effective thermal conductivities of woven fabric composites using unit cells at multiple length scales. J. Mater. Res. 26, 384–394 (2011)CrossRef
13.
Zurück zum Zitat Dong, K., Zhang, J., Jin, L., Gu, B., Sun, B.: Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites. Compos. Struct. 143, 9–22 (2016)CrossRef Dong, K., Zhang, J., Jin, L., Gu, B., Sun, B.: Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites. Compos. Struct. 143, 9–22 (2016)CrossRef
14.
Zurück zum Zitat Zhao, Y., Song, L., Li, J., Jiao, Y.: Multi-scale finite element analyses of thermal conductivities of three dimensional woven composites. Appl. Compos. Mater. 24, 1525–1542 (2017)CrossRef Zhao, Y., Song, L., Li, J., Jiao, Y.: Multi-scale finite element analyses of thermal conductivities of three dimensional woven composites. Appl. Compos. Mater. 24, 1525–1542 (2017)CrossRef
15.
Zurück zum Zitat Bensoussan, A.: Asymptotic Analysis for Periodic Structures. North-Holland Pub. Co (1978) Bensoussan, A.: Asymptotic Analysis for Periodic Structures. North-Holland Pub. Co (1978)
16.
Zurück zum Zitat Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Springer, Berlin, Heidelberg (1980) Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Springer, Berlin, Heidelberg (1980)
17.
Zurück zum Zitat Yongcun, Z.H.A.N.G., Shipeng, S.H.A.N.G., Yujing, L.I.A.N.G.: A new algorithm of asymptotic homogenization method for predicting the effective thermal conductivity and its implementation of periodic composite materials. Acta Meteriae compositae Sinica. 35, 208–217 (2018) Yongcun, Z.H.A.N.G., Shipeng, S.H.A.N.G., Yujing, L.I.A.N.G.: A new algorithm of asymptotic homogenization method for predicting the effective thermal conductivity and its implementation of periodic composite materials. Acta Meteriae compositae Sinica. 35, 208–217 (2018)
18.
Zurück zum Zitat Hassani, B., Hinton, E.: A review of homogenization and topology optimization I—homogenization theory for media with periodic structures. Comput. Struct. 69, 707–717 (1998)CrossRef Hassani, B., Hinton, E.: A review of homogenization and topology optimization I—homogenization theory for media with periodic structures. Comput. Struct. 69, 707–717 (1998)CrossRef
19.
Zurück zum Zitat Hassani, B., Hinton, E.: A review of homogenization and topology optimization II—analytical and numerical solution of homogenization equations. Comput. Struct. 69, 719–738 (1998)CrossRef Hassani, B., Hinton, E.: A review of homogenization and topology optimization II—analytical and numerical solution of homogenization equations. Comput. Struct. 69, 719–738 (1998)CrossRef
20.
Zurück zum Zitat Geng-dong, C., Shu-tian, L.: Prediction of thermal conductivity of unidirectional fiber reinforced composites. Acta Meteriae compositae Sinica. 13, 78–85 (1996) Geng-dong, C., Shu-tian, L.: Prediction of thermal conductivity of unidirectional fiber reinforced composites. Acta Meteriae compositae Sinica. 13, 78–85 (1996)
21.
Zurück zum Zitat Shabana, Y.M., Noda, N.: Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method. Int. J. Solids Struct. 45, 3494–3506 (2008)CrossRef Shabana, Y.M., Noda, N.: Numerical evaluation of the thermomechanical effective properties of a functionally graded material using the homogenization method. Int. J. Solids Struct. 45, 3494–3506 (2008)CrossRef
22.
Zurück zum Zitat Dasgupta, A., Agarwal, R.K.: Orthotropic thermal conductivity of plain-weave fabric composites using a homogenization technique. J. Compos. Mater. 26, 2736–2758 (1992)CrossRef Dasgupta, A., Agarwal, R.K.: Orthotropic thermal conductivity of plain-weave fabric composites using a homogenization technique. J. Compos. Mater. 26, 2736–2758 (1992)CrossRef
23.
Zurück zum Zitat Nasution, M.R.E., Watanabe, N., Kondo, A., Yudhanto, A.: Thermomechanical properties and stress analysis of 3D textile composites by asymptotic expansion homogenization method. Compos. Part B. 60, 378–391 (2014)CrossRef Nasution, M.R.E., Watanabe, N., Kondo, A., Yudhanto, A.: Thermomechanical properties and stress analysis of 3D textile composites by asymptotic expansion homogenization method. Compos. Part B. 60, 378–391 (2014)CrossRef
24.
Zurück zum Zitat Zhai, J., Cheng, S., Zeng, T., Wang, Z.H., Jiang, L.L.: Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method. Compos. Struct. 176, 664–672 (2017)CrossRef Zhai, J., Cheng, S., Zeng, T., Wang, Z.H., Jiang, L.L.: Thermo-mechanical behavior analysis of 3D braided composites by multiscale finite element method. Compos. Struct. 176, 664–672 (2017)CrossRef
25.
Zurück zum Zitat Songhe, M.E.N.G., Jin, K.A.N., Chenghai, X.U., Liming, W.E.I.: Relations between Microstructure and Mechanical Properties of Fiber-Matrix Interfaces in C/C Composite. Acta Materiae Compositae Sinica. 27, 129–132 (2010) Songhe, M.E.N.G., Jin, K.A.N., Chenghai, X.U., Liming, W.E.I.: Relations between Microstructure and Mechanical Properties of Fiber-Matrix Interfaces in C/C Composite. Acta Materiae Compositae Sinica. 27, 129–132 (2010)
26.
Zurück zum Zitat Yongzhong, S., Junshan, W.: Pore structure of 3D carbon/carbon composites. Carbon techniques. 35, 32–35 (2016) Yongzhong, S., Junshan, W.: Pore structure of 3D carbon/carbon composites. Carbon techniques. 35, 32–35 (2016)
27.
Zurück zum Zitat Wang, X., Li, J., Zhang, Y., Wang, Y.: Improvement of interfacial bonding and mechanical properties of cu-Al2O3 composite by Cr-nanoparticle-induced interfacial modification. J. Alloys Compd. 695, 2121–2130 (2017) Wang, X., Li, J., Zhang, Y., Wang, Y.: Improvement of interfacial bonding and mechanical properties of cu-Al2O3 composite by Cr-nanoparticle-induced interfacial modification. J. Alloys Compd. 695, 2121–2130 (2017)
28.
Zurück zum Zitat Wang, X., Wang, Y., Su, Y., Qu, Z.: Synergetic strengthening effects on copper matrix induced by Al2O3 particle revealed from micro-scale mechanical deformation and microstructure evolutions. Ceram. Int. 45, 14889–14895 (2019)CrossRef Wang, X., Wang, Y., Su, Y., Qu, Z.: Synergetic strengthening effects on copper matrix induced by Al2O3 particle revealed from micro-scale mechanical deformation and microstructure evolutions. Ceram. Int. 45, 14889–14895 (2019)CrossRef
29.
Zurück zum Zitat Klett, J.W., Ervin, V.J., Edie, D.D.: Finite-element modeling of heat transfer in carbon/carbon composites. Compos. Sci. Technol. 59, 593–607 (1999)CrossRef Klett, J.W., Ervin, V.J., Edie, D.D.: Finite-element modeling of heat transfer in carbon/carbon composites. Compos. Sci. Technol. 59, 593–607 (1999)CrossRef
31.
Zurück zum Zitat Liu, Y., Qu, Z.G., Guo, J., Zhao, X.M.: Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns. Int. J. Heat Mass Transf. 140, 410–419 (2019)CrossRef Liu, Y., Qu, Z.G., Guo, J., Zhao, X.M.: Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns. Int. J. Heat Mass Transf. 140, 410–419 (2019)CrossRef
32.
Zurück zum Zitat Vorel, J., Sejnoha, M.: Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the mori-tanaka method. Struct. Eng. Mech. 33, 429–446 (2009)CrossRef Vorel, J., Sejnoha, M.: Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the mori-tanaka method. Struct. Eng. Mech. 33, 429–446 (2009)CrossRef
33.
Zurück zum Zitat Shigang, A., Rujie, H., Yongmao, P.: A numerical study on the thermal conductivity of 3D woven C/C composites at high temperature. Appl. Compos. Mater. 22, 823–835 (2015)CrossRef Shigang, A., Rujie, H., Yongmao, P.: A numerical study on the thermal conductivity of 3D woven C/C composites at high temperature. Appl. Compos. Mater. 22, 823–835 (2015)CrossRef
34.
Zurück zum Zitat Fitzer, E., Manocha Lalit, M.: Thermal Properties of Carbon/Carbon Composites. In: Thermal Properties of Carbon/Carbon. In: Fitzer E, M Manocha Lalit. Carbon Reinforcements and Carbon/Carbon Composites, pp. 237–262. Springer, Berlin, Heidelberg (1998)CrossRef Fitzer, E., Manocha Lalit, M.: Thermal Properties of Carbon/Carbon Composites. In: Thermal Properties of Carbon/Carbon. In: Fitzer E, M Manocha Lalit. Carbon Reinforcements and Carbon/Carbon Composites, pp. 237–262. Springer, Berlin, Heidelberg (1998)CrossRef
35.
Zurück zum Zitat Lian-xing, W., Feng-xian, L., Xiao-long, Z.: Comparison of C/C composites thermal conductivity. Coal conversion. 62-71, 34 (2011) Lian-xing, W., Feng-xian, L., Xiao-long, Z.: Comparison of C/C composites thermal conductivity. Coal conversion. 62-71, 34 (2011)
36.
Zurück zum Zitat Yan, D., Wen, J., Xu, G.: A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC. Appl. Therm. Eng. 94, 827–835 (2015)CrossRef Yan, D., Wen, J., Xu, G.: A Monte Carlo simulation and effective thermal conductivity calculation for unidirectional fiber reinforced CMC. Appl. Therm. Eng. 94, 827–835 (2015)CrossRef
37.
Zurück zum Zitat Li, C.Z., Sun, X.H., Chen, M.W., Baozhu, Y.: Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites. Compos. Struct. 215, 278–288 (2019)CrossRef Li, C.Z., Sun, X.H., Chen, M.W., Baozhu, Y.: Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites. Compos. Struct. 215, 278–288 (2019)CrossRef
38.
Zurück zum Zitat Pilling, M.W., Yates, B., Black, M.A., Tattersall, P.: The thermal conductivity of carbon fibre-reinforced composites. J. Mater. Sci. 14, 1326–1338 (1979)CrossRef Pilling, M.W., Yates, B., Black, M.A., Tattersall, P.: The thermal conductivity of carbon fibre-reinforced composites. J. Mater. Sci. 14, 1326–1338 (1979)CrossRef
40.
Zurück zum Zitat Wang, X., Wang, X., Liu, M., Crimp, M.A., Wang, Y., Qu, Z.: Anisotropic thermal expansion coefficient of multilayer graphene reinforced copper matrix composites. J. Alloys Compd. 755, 114–122 (2018)CrossRef Wang, X., Wang, X., Liu, M., Crimp, M.A., Wang, Y., Qu, Z.: Anisotropic thermal expansion coefficient of multilayer graphene reinforced copper matrix composites. J. Alloys Compd. 755, 114–122 (2018)CrossRef
41.
Zurück zum Zitat Song, J., Zhang, Y.: Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites. Int. J. Heat Mass Transf. 141, 1049–1055 (2019)CrossRef Song, J., Zhang, Y.: Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites. Int. J. Heat Mass Transf. 141, 1049–1055 (2019)CrossRef
Metadaten
Titel
Two-Scale Prediction of Effective Thermal Conductivity of 3D Braided C/C Composites Considering Void Defects by Asymptotic Homogenization Method
verfasst von
Kun-long Wei
Jiang Li
Hong-bin Shi
Min Tang
Publikationsdatum
13.09.2019
Verlag
Springer Netherlands
Erschienen in
Applied Composite Materials / Ausgabe 5-6/2019
Print ISSN: 0929-189X
Elektronische ISSN: 1573-4897
DOI
https://doi.org/10.1007/s10443-019-09785-3

Weitere Artikel der Ausgabe 5-6/2019

Applied Composite Materials 5-6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.