Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 5/2016

16.07.2016 | RESEARCH PAPER

Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint

verfasst von: Gengdong Cheng, Liang Xu

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studies maximum out-of-plane buckling load design of thin bending plates for a given amount of material. Two kinds of plates are considered. One is made of periodic homogeneous porous material. Another is uniformly stiffened solid plate. The plate material, thickness, design domain of its middle plane and boundary conditions are given. The pattern of prescribed in-plane external load or displacements along the part of boundaries, which move freely, is given. Both plate topology and micro-structural topology of porous material or stiffener layout are concurrently optimized. The artificial element material densities in both macro and micro-scale are chosen as design variables. The volume preserving nonlinear density filter is applied to obtain the black-white optimum topology and comparison of its different sensitivities is made to show the reason for oscillation during optimization process in Appendix. The new numerical implementation of asymptotic homogenization method (NIAH, Cheng (Acta Mech Sinica 29(4): 550–556, 2013) and Cai (Int J Solids Struct 51(1), 284–292, 2014) is applied to homogenization of periodic plate structures and analytic sensitivity analysis of effective stiffness with respect to the topological design variables in both macro-scale and micro-scale. On basis of that, this paper implements the sensitivity analysis of out-of-plane buckling load by using commercial FEA software and enables the application of gradient-based search algorithm in optimization. Several numerical implementation details are discussed. Three numerical examples are given to show the validity of this method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Armand JL, Lodier B (1978) Optimal design of bending elements. Int J Numer Methods Eng 13(2):373–384CrossRefMATH Armand JL, Lodier B (1978) Optimal design of bending elements. Int J Numer Methods Eng 13(2):373–384CrossRefMATH
Zurück zum Zitat Bakhvalov N, Panasenko G (1989) Homogenisation: averaging process in periodic media. Kluwer Academic Publ, DordrechtCrossRefMATH Bakhvalov N, Panasenko G (1989) Homogenisation: averaging process in periodic media. Kluwer Academic Publ, DordrechtCrossRefMATH
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetCrossRefMATH
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer Berlin, Heidelberg, New YorkMATH Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer Berlin, Heidelberg, New YorkMATH
Zurück zum Zitat Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North Holland Publ, AmsterdamMATH Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North Holland Publ, AmsterdamMATH
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRefMATH
Zurück zum Zitat Cai Y, Xu L, Cheng GD (2014) Novel numerical implementation of asymptotic homogenization method for periodic plate structures. Int J Solids Struct 51(1):284–292CrossRef Cai Y, Xu L, Cheng GD (2014) Novel numerical implementation of asymptotic homogenization method for periodic plate structures. Int J Solids Struct 51(1):284–292CrossRef
Zurück zum Zitat Cheng KT, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323MathSciNetCrossRefMATH Cheng KT, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323MathSciNetCrossRefMATH
Zurück zum Zitat Cheng GD, Cai YW, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sinica 29(4):550–556MathSciNetCrossRefMATH Cheng GD, Cai YW, Xu L (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sinica 29(4):550–556MathSciNetCrossRefMATH
Zurück zum Zitat Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimization of three-dimensional structures. Struct Multidiscip Optim 35(2):107–115CrossRef Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimization of three-dimensional structures. Struct Multidiscip Optim 35(2):107–115CrossRef
Zurück zum Zitat Deng JD, Yan J, Cheng GD (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597MathSciNetCrossRefMATH Deng JD, Yan J, Cheng GD (2013) Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct Multidiscip Optim 47(4):583–597MathSciNetCrossRefMATH
Zurück zum Zitat Guedes JM, Lubrano E, Rodrigues HC, Turteltaub S (2006) Hierarchical optimization of material and structure for thermal transient problems. In: Iutam symposium on topological design optimization of structures, machines and materials: status and perspectives, vol 137, pp 527–536 Guedes JM, Lubrano E, Rodrigues HC, Turteltaub S (2006) Hierarchical optimization of material and structure for thermal transient problems. In: Iutam symposium on topological design optimization of structures, machines and materials: status and perspectives, vol 137, pp 527–536
Zurück zum Zitat Guest JK, Prévost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22):7028–7047CrossRefMATH Guest JK, Prévost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43(22):7028–7047CrossRefMATH
Zurück zum Zitat Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetCrossRefMATH
Zurück zum Zitat Ji J, Ding XH (2014) Stiffener layout optimization of inlet structure for electrostatic precipitator by improved adaptive growth method. Adv Mech Eng 6:979604CrossRef Ji J, Ding XH (2014) Stiffener layout optimization of inlet structure for electrostatic precipitator by improved adaptive growth method. Adv Mech Eng 6:979604CrossRef
Zurück zum Zitat Ji J, Ding XH, Xiong M (2014) Optimal stiffener layout of plate/shell structures by bionic growth method. Comput Struct 135:88–99CrossRef Ji J, Ding XH, Xiong M (2014) Optimal stiffener layout of plate/shell structures by bionic growth method. Comput Struct 135:88–99CrossRef
Zurück zum Zitat Kalamkarov AL (1987) On the determination of effective characteristics of cellular plates and shells of periodic structure. Mech Solids 22(2):175–179 Kalamkarov AL (1987) On the determination of effective characteristics of cellular plates and shells of periodic structure. Mech Solids 22(2):175–179
Zurück zum Zitat Kalamkarov AL, Kolpakov AG (1997) Analysis, design, and optimization of composite structures. John Wiley & Sons, Chichester, New-YorkMATH Kalamkarov AL, Kolpakov AG (1997) Analysis, design, and optimization of composite structures. John Wiley & Sons, Chichester, New-YorkMATH
Zurück zum Zitat Kolpakov AG (1991) Calculation of the characteristics of thin elastic rods with a periodic structure. J Appl Math Mech 55(3):358–365MathSciNetCrossRef Kolpakov AG (1991) Calculation of the characteristics of thin elastic rods with a periodic structure. J Appl Math Mech 55(3):358–365MathSciNetCrossRef
Zurück zum Zitat Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421MathSciNetCrossRefMATH Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421MathSciNetCrossRefMATH
Zurück zum Zitat Lindgaard E, Lund E (2011) A unified approach to nonlinear buckling optimization of composite structures. Comput Struct 89(3):357–370CrossRefMATH Lindgaard E, Lund E (2011) A unified approach to nonlinear buckling optimization of composite structures. Comput Struct 89(3):357–370CrossRefMATH
Zurück zum Zitat Liu L, Yan J, Cheng GD (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13–14):1417–1425CrossRef Liu L, Yan J, Cheng GD (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13–14):1417–1425CrossRef
Zurück zum Zitat Lund E, Stegmann J (2006) Eigenfrequency and buckling optimization of laminated composite shell structures using discrete material optimization. IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer Netherlands: 147–156 Lund E, Stegmann J (2006) Eigenfrequency and buckling optimization of laminated composite shell structures using discrete material optimization. IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Springer Netherlands: 147–156
Zurück zum Zitat Luo J, Gea HC (1998) A systematic topology optimization approach for optimal stiffener design. Struct Optim 16(4):280–288CrossRef Luo J, Gea HC (1998) A systematic topology optimization approach for optimal stiffener design. Struct Optim 16(4):280–288CrossRef
Zurück zum Zitat Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10(2):71–78CrossRef Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10(2):71–78CrossRef
Zurück zum Zitat Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Methods Eng 54(6):809–834MathSciNetCrossRefMATH Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Methods Eng 54(6):809–834MathSciNetCrossRefMATH
Zurück zum Zitat Niu B, Yan J, Cheng GD (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132CrossRef Niu B, Yan J, Cheng GD (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132CrossRef
Zurück zum Zitat Olhoff N (1970) Optimal design of vibrating circular plates. Int J Solids Struct 6(1):139–156CrossRefMATH Olhoff N (1970) Optimal design of vibrating circular plates. Int J Solids Struct 6(1):139–156CrossRefMATH
Zurück zum Zitat Prager W, Rozvany GIN (1977) Optimal layout of grillages. J Struct Mech 5(1):1–18CrossRef Prager W, Rozvany GIN (1977) Optimal layout of grillages. J Struct Mech 5(1):1–18CrossRef
Zurück zum Zitat Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10CrossRef Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10CrossRef
Zurück zum Zitat Rozvany GIN, Prager W (1979) A new class of structural optimization problems: optimal archgrids. Comput Methods Appl Mech Eng 19(1):127–150MathSciNetCrossRefMATH Rozvany GIN, Prager W (1979) A new class of structural optimization problems: optimal archgrids. Comput Methods Appl Mech Eng 19(1):127–150MathSciNetCrossRefMATH
Zurück zum Zitat Rozvany GIN, Olhoff N, Cheng KT, Taylor JE (1982) On the solid plate paradox in structural optimization. J Struct Mech 10(1):1–32MathSciNetCrossRef Rozvany GIN, Olhoff N, Cheng KT, Taylor JE (1982) On the solid plate paradox in structural optimization. J Struct Mech 10(1):1–32MathSciNetCrossRef
Zurück zum Zitat Shaw AD, Dayyani I, Friswell MI (2015) Optimisation of composite corrugated skins for buckling in morphing aircraft. Compos Struct 119:227–237CrossRef Shaw AD, Dayyani I, Friswell MI (2015) Optimisation of composite corrugated skins for buckling in morphing aircraft. Compos Struct 119:227–237CrossRef
Zurück zum Zitat Sigmund O (1994a) Design of material structures using topology optimization. Technical University of Denmark, Denmark Sigmund O (1994a) Design of material structures using topology optimization. Technical University of Denmark, Denmark
Zurück zum Zitat Sigmund O (1994b) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329MathSciNetCrossRefMATH Sigmund O (1994b) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329MathSciNetCrossRefMATH
Zurück zum Zitat Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. Siam J Optim 12(2):555–573MathSciNetCrossRefMATH Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. Siam J Optim 12(2):555–573MathSciNetCrossRefMATH
Zurück zum Zitat Tamijani AY, Mulani SB, Kapania RK (2014) A framework combining meshfree analysis and adaptive kriging for optimization of stiffened panels. Struct Multidiscip Optim 49(4):577–594CrossRef Tamijani AY, Mulani SB, Kapania RK (2014) A framework combining meshfree analysis and adaptive kriging for optimization of stiffened panels. Struct Multidiscip Optim 49(4):577–594CrossRef
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784CrossRefMATH
Zurück zum Zitat Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRef
Zurück zum Zitat Xu L, Cheng GD (2016b) Shear stiffness prediction of Reissner-Mindlin plates with periodic microstructures. Mechanics of Advanced Materials and Structures (Accepted) Xu L, Cheng GD (2016b) Shear stiffness prediction of Reissner-Mindlin plates with periodic microstructures. Mechanics of Advanced Materials and Structures (Accepted)
Zurück zum Zitat Xu SL, Cai YW, Cheng GD (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetCrossRefMATH Xu SL, Cai YW, Cheng GD (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505MathSciNetCrossRefMATH
Zurück zum Zitat Xu L, Cheng GD, Yi SN (2016) A new method of shear stiffness prediction of periodic Timoshenko beams. Mech Adv Mater Struct 23(6):670–680CrossRef Xu L, Cheng GD, Yi SN (2016) A new method of shear stiffness prediction of periodic Timoshenko beams. Mech Adv Mater Struct 23(6):670–680CrossRef
Zurück zum Zitat Yan J, Cheng GD, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2:259–266CrossRef Yan J, Cheng GD, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidiscip Des Optim 2:259–266CrossRef
Zurück zum Zitat Yi SN, Xu L, Cheng GD, Cai YW (2015) FEM formulation of homogenization method for effective properties of periodic heterogeneous beam and size effect of basic cell in thickness direction. Comput Struct 156(1):1–11CrossRef Yi SN, Xu L, Cheng GD, Cai YW (2015) FEM formulation of homogenization method for effective properties of periodic heterogeneous beam and size effect of basic cell in thickness direction. Comput Struct 156(1):1–11CrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef
Metadaten
Titel
Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint
verfasst von
Gengdong Cheng
Liang Xu
Publikationsdatum
16.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 5/2016
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1542-y

Weitere Artikel der Ausgabe 5/2016

Structural and Multidisciplinary Optimization 5/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.