Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 2/2023

01.11.2022 | Original Article

Two-stage semi-supervised clustering ensemble framework based on constraint weight

verfasst von: Ding Zhang, Youlong Yang, Haiquan Qiu

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Semi-supervised clustering ensemble introduces partial supervised information, usually pairwise constraints, to achieve better performance than clustering ensemble. Although it has been successful in many aspects, there are still several limitations that need to be further improved. Firstly, supervised information is only utilized in ensemble generation, but not in the consensus process. Secondly, all clustering solutions participate in getting a final partition without considering redundancy among clustering solutions. Thirdly, each cluster in the same clustering solution is treated equally, which neglects the influence of different clusters to the final clustering result. To address these issues, we propose a two-stage semi-supervised clustering ensemble framework which considers both ensemble member selection and the weighting of clusters. Especially, we define the weight of each pairwise constraint to assist ensemble members selection and the weighting of clusters. In the first stage, a subset of clustering solutions is obtained based on the quality and diversity of clustering solutions in consideration of supervised information. In the second stage, the quality of each cluster is determined by the consistency of unsupervised and supervised information. For the unsupervised information consistency of a cluster, we consider evaluating it by the consistency of a cluster relative to all clustering solutions. For the supervised information consistency of a cluster, it depends on how satisfied a cluster is with the supervised information. In the end, the final partition is achieved by a weighted co-association matrix as consensus function. Experimental results on various datasets show that the proposed framework outperforms most of state-of-the-art clustering algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666CrossRef Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8):651–666CrossRef
2.
Zurück zum Zitat Ding Y, Zhao Y, Shen X, Musuvathi M, Mytkowicz T (2015) Yinyang k-means: a drop-in replacement of the classic k-means with consistent speedup. In International conference on machine learning, pp 579-587 Ding Y, Zhao Y, Shen X, Musuvathi M, Mytkowicz T (2015) Yinyang k-means: a drop-in replacement of the classic k-means with consistent speedup. In International conference on machine learning, pp 579-587
3.
Zurück zum Zitat Zhang Z, Liu L, Shen F, Shen H, Shao L (2018) Binary multi-view clustering. IEEE Trans Pattern Anal Mach Intell 41(7):1774–1782CrossRef Zhang Z, Liu L, Shen F, Shen H, Shao L (2018) Binary multi-view clustering. IEEE Trans Pattern Anal Mach Intell 41(7):1774–1782CrossRef
4.
Zurück zum Zitat Liu X, Li M, Tang C, Xia J, Xiong J, Liu L, Zhu E (2020) Efficient and effective regularized incomplete multi-view clustering. IEEE Trans Pattern Anal Mach Intell 43(8):2634–2646 Liu X, Li M, Tang C, Xia J, Xiong J, Liu L, Zhu E (2020) Efficient and effective regularized incomplete multi-view clustering. IEEE Trans Pattern Anal Mach Intell 43(8):2634–2646
5.
Zurück zum Zitat Xia S, Peng D, Meng D, Zhang C, Wang G, Giem E, Chen Z (2020) A fast adaptive k-means with no bounds. IEEE Trans Pattern Anal Mach Intell Xia S, Peng D, Meng D, Zhang C, Wang G, Giem E, Chen Z (2020) A fast adaptive k-means with no bounds. IEEE Trans Pattern Anal Mach Intell
6.
Zurück zum Zitat Zhou J, Zheng H, Pan L (2019) Ensemble clustering based on dense representation. Neurocomputing 357:66–76CrossRef Zhou J, Zheng H, Pan L (2019) Ensemble clustering based on dense representation. Neurocomputing 357:66–76CrossRef
7.
Zurück zum Zitat Li F, Qian Y, Wang J, Dang C, Jing L (2019) Clustering ensemble based on sample’s stability. Artif Intell 273:37–55MATHCrossRef Li F, Qian Y, Wang J, Dang C, Jing L (2019) Clustering ensemble based on sample’s stability. Artif Intell 273:37–55MATHCrossRef
8.
Zurück zum Zitat Yu L, Cao F, Zhao X, Yang X, Liang J (2020) Combining attribute content and label information for categorical data ensemble clustering. Appl Math Comput 381:125280MATH Yu L, Cao F, Zhao X, Yang X, Liang J (2020) Combining attribute content and label information for categorical data ensemble clustering. Appl Math Comput 381:125280MATH
9.
Zurück zum Zitat Jain BJ (2016) Condorcet’s jury theorem for consensus clustering and its implications for diversity. arXiv preprint arXiv:1604.07711 Jain BJ (2016) Condorcet’s jury theorem for consensus clustering and its implications for diversity. arXiv preprint arXiv:​1604.​07711
10.
Zurück zum Zitat Yu Z, Chen H, You J, Wong HS, Liu J, Han G (2014) Double selection based semi-supervised clustering ensemble for tumor clustering from gene expression profiles. IEEE/ACM Trans Comput Biol Bioinf 11(4):727–740CrossRef Yu Z, Chen H, You J, Wong HS, Liu J, Han G (2014) Double selection based semi-supervised clustering ensemble for tumor clustering from gene expression profiles. IEEE/ACM Trans Comput Biol Bioinf 11(4):727–740CrossRef
11.
Zurück zum Zitat Yang F, Li T, Zhou Q, Xiao H (2017) Cluster ensemble selection with constraints. Neurocomputing 235:59–70CrossRef Yang F, Li T, Zhou Q, Xiao H (2017) Cluster ensemble selection with constraints. Neurocomputing 235:59–70CrossRef
12.
Zurück zum Zitat Xiao W, Yang Y, Wang H, Li T, Xing H (2016) Semi-supervised hierarchical clustering ensemble and its application. Neurocomputing 173:1362–1376CrossRef Xiao W, Yang Y, Wang H, Li T, Xing H (2016) Semi-supervised hierarchical clustering ensemble and its application. Neurocomputing 173:1362–1376CrossRef
13.
Zurück zum Zitat Topchy A, Jain AK, Punch W (2003) Combining multiple weak clusterings. In: Third IEEE international conference on data mining, pp 331–338 Topchy A, Jain AK, Punch W (2003) Combining multiple weak clusterings. In: Third IEEE international conference on data mining, pp 331–338
14.
Zurück zum Zitat Fred AL, Jain AK (2002) Data clustering using evidence accumulation. In: Object recognition supported by user interaction for service robots 4, pp 276–280 Fred AL, Jain AK (2002) Data clustering using evidence accumulation. In: Object recognition supported by user interaction for service robots 4, pp 276–280
15.
Zurück zum Zitat Yu Z, Luo P, You J, Wong HS, Leung H, Wu S, Han G (2015) Incremental semi-supervised clustering ensemble for high dimensional data clustering. IEEE Trans Knowl Data Eng 28(3):701–714CrossRef Yu Z, Luo P, You J, Wong HS, Leung H, Wu S, Han G (2015) Incremental semi-supervised clustering ensemble for high dimensional data clustering. IEEE Trans Knowl Data Eng 28(3):701–714CrossRef
16.
Zurück zum Zitat Fern XZ, Brodley CE (2003) Random projection for high dimensional data clustering: a cluster ensemble approach. In: Proceedings of the 20th international conference on machine learning, pp 186–193 Fern XZ, Brodley CE (2003) Random projection for high dimensional data clustering: a cluster ensemble approach. In: Proceedings of the 20th international conference on machine learning, pp 186–193
17.
Zurück zum Zitat Fred AL, Jain AK (2005) Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 27(6):835–850CrossRef Fred AL, Jain AK (2005) Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern Anal Mach Intell 27(6):835–850CrossRef
18.
Zurück zum Zitat Iam-On N, Boongoen T, Garrett S, Price C (2011) A link-based approach to the cluster ensemble problem. IEEE Trans Pattern Anal Mach Intell 33(12):2396–2409CrossRef Iam-On N, Boongoen T, Garrett S, Price C (2011) A link-based approach to the cluster ensemble problem. IEEE Trans Pattern Anal Mach Intell 33(12):2396–2409CrossRef
19.
Zurück zum Zitat Liu H, Wu J, Liu T, Tao D, Fu Y (2017) Spectral ensemble clustering via weighted k-means: theoretical and practical evidence. IEEE Trans Knowl Data Eng 29(5):1129–1143CrossRef Liu H, Wu J, Liu T, Tao D, Fu Y (2017) Spectral ensemble clustering via weighted k-means: theoretical and practical evidence. IEEE Trans Knowl Data Eng 29(5):1129–1143CrossRef
20.
Zurück zum Zitat Huang D, Wang C-D, Lai J-H (2017) Locally weighted ensemble clustering. IEEE Trans Cybernet 48(5):1460–1473CrossRef Huang D, Wang C-D, Lai J-H (2017) Locally weighted ensemble clustering. IEEE Trans Cybernet 48(5):1460–1473CrossRef
21.
Zurück zum Zitat Bai L, Liang J, Du H, Guo Y (2018) An information-theoretical framework for cluster ensemble. IEEE Trans Knowl Data Eng 31(8):1464–1477 Bai L, Liang J, Du H, Guo Y (2018) An information-theoretical framework for cluster ensemble. IEEE Trans Knowl Data Eng 31(8):1464–1477
22.
Zurück zum Zitat Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3(12):583–617MATH Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3(12):583–617MATH
23.
Zurück zum Zitat Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of the twenty-first international conference on machine learning, p 36 Fern XZ, Brodley CE (2004) Solving cluster ensemble problems by bipartite graph partitioning. In: Proceedings of the twenty-first international conference on machine learning, p 36
24.
Zurück zum Zitat Huang D, Lai JH, Wang CD (2015) Robust ensemble clustering using probability trajectories. IEEE Trans Knowl Data Eng 28(5):1312–1326CrossRef Huang D, Lai JH, Wang CD (2015) Robust ensemble clustering using probability trajectories. IEEE Trans Knowl Data Eng 28(5):1312–1326CrossRef
25.
Zurück zum Zitat Křvánek M, Morávek J (1986) Np-hard problems in hierarchical-tree clustering. Acta Inform 23(3):311–323MATHCrossRef Křvánek M, Morávek J (1986) Np-hard problems in hierarchical-tree clustering. Acta Inform 23(3):311–323MATHCrossRef
26.
Zurück zum Zitat Li T, Ding C, Jordan MI (2007) Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In: Seventh IEEE international conference on data mining, pp 577–582 Li T, Ding C, Jordan MI (2007) Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization. In: Seventh IEEE international conference on data mining, pp 577–582
27.
Zurück zum Zitat Vega-Pons S, Correa-Morris J, Ruiz-Shulcloper J (2010) Weighted partition consensus via kernels. Pattern Recogn 43(8):2712–2724MATHCrossRef Vega-Pons S, Correa-Morris J, Ruiz-Shulcloper J (2010) Weighted partition consensus via kernels. Pattern Recogn 43(8):2712–2724MATHCrossRef
28.
Zurück zum Zitat Franek L, Jiang X (2014) Ensemble clustering by means of clustering embedding in vector spaces. Pattern Recogn 47(2):833–842MATHCrossRef Franek L, Jiang X (2014) Ensemble clustering by means of clustering embedding in vector spaces. Pattern Recogn 47(2):833–842MATHCrossRef
29.
Zurück zum Zitat Yu Z, Li L, Gao Y, You J, Liu J, Wong HS, Han G (2014) Hybrid clustering solution selection strategy. Pattern Recogn 47(10):3362–3375CrossRef Yu Z, Li L, Gao Y, You J, Liu J, Wong HS, Han G (2014) Hybrid clustering solution selection strategy. Pattern Recogn 47(10):3362–3375CrossRef
30.
Zurück zum Zitat Jia J, Xiao X, Liu B, Jiao L (2011) Bagging-based spectral clustering ensemble selection. Pattern Recogn Lett 32(10):1456–1467CrossRef Jia J, Xiao X, Liu B, Jiao L (2011) Bagging-based spectral clustering ensemble selection. Pattern Recogn Lett 32(10):1456–1467CrossRef
31.
Zurück zum Zitat Ma T, Yu T, Wu X, Cao J, Al-Abdulkarim A, Al-Dhelaan A, Al-Dhelaan M (2020) Multiple clustering and selecting algorithms with combining strategy for selective clustering ensemble. Soft Comput 24(20):15129–15141CrossRef Ma T, Yu T, Wu X, Cao J, Al-Abdulkarim A, Al-Dhelaan A, Al-Dhelaan M (2020) Multiple clustering and selecting algorithms with combining strategy for selective clustering ensemble. Soft Comput 24(20):15129–15141CrossRef
32.
Zurück zum Zitat Wagstaff K, Cardie C, Rogers S, Schrodl S (2001) Constrained k-means clustering with background knowledge. Icml 1:577–584 Wagstaff K, Cardie C, Rogers S, Schrodl S (2001) Constrained k-means clustering with background knowledge. Icml 1:577–584
33.
Zurück zum Zitat Zeng H, Cheung YM (2011) Semi-supervised maximum margin clustering with pairwise constraints. IEEE Trans Knowl Data Eng 24(5):926–939CrossRef Zeng H, Cheung YM (2011) Semi-supervised maximum margin clustering with pairwise constraints. IEEE Trans Knowl Data Eng 24(5):926–939CrossRef
34.
Zurück zum Zitat Anand S, Mittal S, Tuzel O, Meer P (2013) Semi-supervised kernel mean shift clustering. IEEE Trans Pattern Anal Mach Intell 36(6):1201–1215CrossRef Anand S, Mittal S, Tuzel O, Meer P (2013) Semi-supervised kernel mean shift clustering. IEEE Trans Pattern Anal Mach Intell 36(6):1201–1215CrossRef
35.
Zurück zum Zitat Liu CL, Hsaio WH, Lee CH, Gou FS (2013) Semi-supervised linear discriminant clustering. IEEE Trans Cybernet 44(7):989–1000CrossRef Liu CL, Hsaio WH, Lee CH, Gou FS (2013) Semi-supervised linear discriminant clustering. IEEE Trans Cybernet 44(7):989–1000CrossRef
36.
Zurück zum Zitat Lu Z, Peng Y (2013) Exhaustive and efficient constraint propagation: a graph-based learning approach and its applications. Int J Comput Vis 103(3):306–325MATHCrossRef Lu Z, Peng Y (2013) Exhaustive and efficient constraint propagation: a graph-based learning approach and its applications. Int J Comput Vis 103(3):306–325MATHCrossRef
37.
Zurück zum Zitat Xiong S, Azimi J, Fern XZ (2013) Active learning of constraints for semi-supervised clustering. IEEE Trans Knowl Data Eng 26(1):43–54CrossRef Xiong S, Azimi J, Fern XZ (2013) Active learning of constraints for semi-supervised clustering. IEEE Trans Knowl Data Eng 26(1):43–54CrossRef
38.
Zurück zum Zitat Zhang D, Chen S, Zhou ZH, Yang Q (2008) Constraint projections for ensemble learning. In AAAI, pp 758–763 Zhang D, Chen S, Zhou ZH, Yang Q (2008) Constraint projections for ensemble learning. In AAAI, pp 758–763
39.
Zurück zum Zitat Yu Z, Kuang Z, Liu J, Chen H, Zhang J, You J, Han G (2017) Adaptive ensembling of semi-supervised clustering solutions. IEEE Trans Knowl Data Eng 29(8):1577–1590CrossRef Yu Z, Kuang Z, Liu J, Chen H, Zhang J, You J, Han G (2017) Adaptive ensembling of semi-supervised clustering solutions. IEEE Trans Knowl Data Eng 29(8):1577–1590CrossRef
40.
Zurück zum Zitat Yu Z, Luo P, Liu J, Wong HS, You J, Han G, Zhang J (2018) Semi-supervised ensemble clustering based on selected constraint projection. IEEE Trans Knowl Data Eng 30(12):2394–2407CrossRef Yu Z, Luo P, Liu J, Wong HS, You J, Han G, Zhang J (2018) Semi-supervised ensemble clustering based on selected constraint projection. IEEE Trans Knowl Data Eng 30(12):2394–2407CrossRef
41.
Zurück zum Zitat Lai Y, He S, Lin Z, Yang F, Zhou QF, Zhou X (2019) An adaptive robust semi-supervised clustering framework using weighted consensus of random k-means ensemble. IEEE Trans Knowl Data Eng Lai Y, He S, Lin Z, Yang F, Zhou QF, Zhou X (2019) An adaptive robust semi-supervised clustering framework using weighted consensus of random k-means ensemble. IEEE Trans Knowl Data Eng
42.
Zurück zum Zitat Yang F, Li X, Li Q, Li T (2014) Exploring the diversity in cluster ensemble generation: random sampling and random projection. Expert Syst Appl 41(10):4844–4866CrossRef Yang F, Li X, Li Q, Li T (2014) Exploring the diversity in cluster ensemble generation: random sampling and random projection. Expert Syst Appl 41(10):4844–4866CrossRef
43.
Zurück zum Zitat Li F, Qian Y, Wang J, Dang C, Liu B (2018) Cluster’s quality evaluation and selective clustering ensemble. ACM Trans Knowl Discov Data (TKDD) 12(5):1–27 Li F, Qian Y, Wang J, Dang C, Liu B (2018) Cluster’s quality evaluation and selective clustering ensemble. ACM Trans Knowl Discov Data (TKDD) 12(5):1–27
44.
Zurück zum Zitat Law MH, Topchy AP, Jain AK (2004) Multiobjective data clustering. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, Vol 2, pp II–II Law MH, Topchy AP, Jain AK (2004) Multiobjective data clustering. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, Vol 2, pp II–II
45.
Zurück zum Zitat Alizadeh H, Minaei-Bidgoli B, Parvin H (2014) Cluster ensemble selection based on a new cluster stability measure. Intell Data Anal 18(3):389–408CrossRef Alizadeh H, Minaei-Bidgoli B, Parvin H (2014) Cluster ensemble selection based on a new cluster stability measure. Intell Data Anal 18(3):389–408CrossRef
46.
Zurück zum Zitat Asuncion A, Newman D (2007) UCI machine learning repository Asuncion A, Newman D (2007) UCI machine learning repository
47.
Zurück zum Zitat Cai D, He X, Han J, Huang TS (2010) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560 Cai D, He X, Han J, Huang TS (2010) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33(8):1548–1560
48.
Zurück zum Zitat Statnikov A, Tsamardinos I, Dosbayev Y, Aliferis CF (2005) GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int J Med Informat 74(7–8):491–503CrossRef Statnikov A, Tsamardinos I, Dosbayev Y, Aliferis CF (2005) GEMS: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int J Med Informat 74(7–8):491–503CrossRef
49.
Zurück zum Zitat Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11:2837–2854MATH Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11:2837–2854MATH
50.
Zurück zum Zitat Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850CrossRef Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850CrossRef
51.
Zurück zum Zitat Wang H, Li T, Li T, Yang Y (2014) Constraint neighborhood projections for semi-supervised clustering. IEEE Trans Cybernet 44(5):636–643CrossRef Wang H, Li T, Li T, Yang Y (2014) Constraint neighborhood projections for semi-supervised clustering. IEEE Trans Cybernet 44(5):636–643CrossRef
52.
Zurück zum Zitat Huang D, Wang CD, Wu JS, Lai JH, Kwoh CK (2019) Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans Knowl Data Eng 32(6):1212–1226CrossRef Huang D, Wang CD, Wu JS, Lai JH, Kwoh CK (2019) Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans Knowl Data Eng 32(6):1212–1226CrossRef
53.
Zurück zum Zitat Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392MATHCrossRef Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392MATHCrossRef
54.
Zurück zum Zitat Huang R, Lam W, Zhang Z (2007) Active learning of constraints for semi-supervised text clustering. In: Proceedings of the 2007 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, pp 113–124 Huang R, Lam W, Zhang Z (2007) Active learning of constraints for semi-supervised text clustering. In: Proceedings of the 2007 SIAM international conference on data mining. Society for Industrial and Applied Mathematics, pp 113–124
55.
Zurück zum Zitat Xiong C, Johnson DM, Corso JJ (2016) Active clustering with model-based uncertainty reduction. IEEE Trans Pattern Anal Mach Intell 39(1):5–17CrossRef Xiong C, Johnson DM, Corso JJ (2016) Active clustering with model-based uncertainty reduction. IEEE Trans Pattern Anal Mach Intell 39(1):5–17CrossRef
Metadaten
Titel
Two-stage semi-supervised clustering ensemble framework based on constraint weight
verfasst von
Ding Zhang
Youlong Yang
Haiquan Qiu
Publikationsdatum
01.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 2/2023
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01651-2

Weitere Artikel der Ausgabe 2/2023

International Journal of Machine Learning and Cybernetics 2/2023 Zur Ausgabe

Neuer Inhalt