Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

29.08.2016 | Ausgabe 3/2017

Journal of Scientific Computing 3/2017

Two-Step Fixed-Point Proximity Algorithms for Multi-block Separable Convex Problems

Zeitschrift:
Journal of Scientific Computing > Ausgabe 3/2017
Autoren:
Qia Li, Yuesheng Xu, Na Zhang
Wichtige Hinweise
This research is supported in part by Guangdong Provincial Government of China through the “Computational Science Innovative Research Team” program, by the Natural Science Foundation of China under Grants 11501584, 11471013 and 91530117, by the US National Science Foundation under Grant DMS-1522332, and by the Natural Science Foundation of Guangdong Province under Grants 2014A030310332 and 2014A030310414.

Abstract

Multi-block separable convex problems recently received considerable attention. Optimization problems of this type minimize separable convex objective functions with linear constraints. Challenges encountered in algorithmic development applying the classic alternating direction method of multipliers (ADMM) come from the fact that ADMM for the optimization problems of this type is not necessarily convergent. However, it is observed that ADMM applying to problems of this type outperforms numerically many of its variants with guaranteed theoretical convergence. The goal of this paper is to develop convergent and computationally efficient algorithms for solving multi-block separable convex problems. We first characterize the solutions of the optimization problems by proximity operators of the convex functions involved in their objective functions. We then design a class of two-step fixed-point iterative schemes for solving these problems based on the characterization. We further prove convergence of the iterative schemes and show that they have \(O\left( \frac{1}{k}\right) \) of convergence rate in the ergodic sense and the sense of the partial primal-dual gap, where k denotes the iteration number. Moreover, we derive specific two-step fixed-point proximity algorithms (2SFPPA) from the proposed iterative schemes and establish their global convergence. Numerical experiments for solving the sparse MRI problem demonstrate the numerical efficiency of the proposed 2SFPPA.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2017

Journal of Scientific Computing 3/2017 Zur Ausgabe

Premium Partner

    Bildnachweise