Skip to main content

2017 | OriginalPaper | Buchkapitel

2. Types of Functionally Graded Materials and Their Areas of Application

verfasst von : Rasheedat Modupe Mahamood, Esther Titilayo Akinlabi

Erschienen in: Functionally Graded Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Functionally graded materials (FGMs) are advanced composite materials that are used to solve a number of engineering problems, as well as in the biomedical implant applications for the replacement of human tissues. These materials are used to eliminate the stress singularities that occur, as a result of the property mismatch in the constituent materials in a composite. There are different types of FGMs that are used today, depending on the type of application, for which the material is intended. In this chapter, the different types of FGMs are presented. The areas of application of this novel material are also explained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Niino, M., Hirai, T., Watanabe, R.: The functionally gradient materials. J. Jpn. Soc. Compos. Mater. 13, 257–264 (1987)CrossRef Niino, M., Hirai, T., Watanabe, R.: The functionally gradient materials. J. Jpn. Soc. Compos. Mater. 13, 257–264 (1987)CrossRef
2.
Zurück zum Zitat Report on. Fundamental study on relaxation of thermal stress for high-temperature material by tailoring the graded structure. In: Department of Science and Technology Agency (1992) Report on. Fundamental study on relaxation of thermal stress for high-temperature material by tailoring the graded structure. In: Department of Science and Technology Agency (1992)
3.
Zurück zum Zitat Dumont, A.-L., Bonnet, J.-P., Chartier, T., Ferreira, J.M.F.: MoSi2/Al2O3 FGM: elaboration by tape casting and SHS. J. Eur. Ceram. Soc. 21, 2353–2360 (2001)CrossRef Dumont, A.-L., Bonnet, J.-P., Chartier, T., Ferreira, J.M.F.: MoSi2/Al2O3 FGM: elaboration by tape casting and SHS. J. Eur. Ceram. Soc. 21, 2353–2360 (2001)CrossRef
4.
Zurück zum Zitat Saiyathibrahim, A., Mohamed, N.S.S., Dhanapal, P.: Processing techniques of functionally graded materials—a review. In: International Conference on Systems, Science, Control, Communication, Engineering and Technology, pp. 98–105 (2015) Saiyathibrahim, A., Mohamed, N.S.S., Dhanapal, P.: Processing techniques of functionally graded materials—a review. In: International Conference on Systems, Science, Control, Communication, Engineering and Technology, pp. 98–105 (2015)
5.
Zurück zum Zitat Nemat-Alla, M.M., Ata, M.H., Bayoumi, M.R., Khair-Eldeen, W.: Powder metallurgical fabrication and microstructural investigations of aluminum/steel functionally graded material. Mater. Sci. Appl. 2, 1708–1718 (2011) Nemat-Alla, M.M., Ata, M.H., Bayoumi, M.R., Khair-Eldeen, W.: Powder metallurgical fabrication and microstructural investigations of aluminum/steel functionally graded material. Mater. Sci. Appl. 2, 1708–1718 (2011)
6.
Zurück zum Zitat Jin, X., Wu, L., Sun, Y., Guo, L.: Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials. Mater. Sci. Eng. A 509, 63–68 (2009)CrossRef Jin, X., Wu, L., Sun, Y., Guo, L.: Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials. Mater. Sci. Eng. A 509, 63–68 (2009)CrossRef
7.
Zurück zum Zitat Wosko, M., Paszkiewicz, B., Piasecki, T., Szyszka, A., Paszkiewicz, R., Tlaczala, M.: Applications of functionally graded materials in opto-electronic devices. Optica Applicata 35(3), 663–667 (2005) Wosko, M., Paszkiewicz, B., Piasecki, T., Szyszka, A., Paszkiewicz, R., Tlaczala, M.: Applications of functionally graded materials in opto-electronic devices. Optica Applicata 35(3), 663–667 (2005)
8.
Zurück zum Zitat Bharti, I., Gupta, N., Gupta, K.M.: Novel applications of functionally graded nano, opto-electronic and thermo-electric materials. Int. J. Mater. Mech. Manuf. 1, 221–224 (2013) Bharti, I., Gupta, N., Gupta, K.M.: Novel applications of functionally graded nano, opto-electronic and thermo-electric materials. Int. J. Mater. Mech. Manuf. 1, 221–224 (2013)
9.
Zurück zum Zitat Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84, 402–410 (2015) Mahamood, R.M., Akinlabi, E.T.: Laser-metal deposition of functionally graded Ti6Al4V/TiC. Mater. Des. 84, 402–410 (2015)
10.
Zurück zum Zitat Mahamood, R.M., Akinlabi, E.T., Shukla M., Pityana, S.: Functionally graded material: An overview. In: Proceedings of the world congress on engineering WCE 2012, vol. 3, pp. 1593–1597 (2012) Mahamood, R.M., Akinlabi, E.T., Shukla M., Pityana, S.: Functionally graded material: An overview. In: Proceedings of the world congress on engineering WCE 2012, vol. 3, pp. 1593–1597 (2012)
11.
Zurück zum Zitat Mahamood, R.M., Akinlabi, E.T.: Modelling of process parameters influence on degree of porosity in laser-metal deposition process. In: Yang G-C et al. (eds) Transactions on Engineering Technologies. Springer, pp. 31–42 (2015) Mahamood, R.M., Akinlabi, E.T.: Modelling of process parameters influence on degree of porosity in laser-metal deposition process. In: Yang G-C et al. (eds) Transactions on Engineering Technologies. Springer, pp. 31–42 (2015)
13.
Zurück zum Zitat Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T.J., Grill, W.: Titanium-powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J. Mater. Sci. 12, 225–231 (2001) Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T.J., Grill, W.: Titanium-powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J. Mater. Sci. 12, 225–231 (2001)
14.
Zurück zum Zitat Suk, M.J., Choi, S.I., Kim, J.S., Kim, Y.D., Kwon, Y.S.: Fabrication of a porous material with a porosity gradient by a pulsed electric-current sintering process. Met. Mater. Int. 9, 599–603 (2003)CrossRef Suk, M.J., Choi, S.I., Kim, J.S., Kim, Y.D., Kwon, Y.S.: Fabrication of a porous material with a porosity gradient by a pulsed electric-current sintering process. Met. Mater. Int. 9, 599–603 (2003)CrossRef
15.
Zurück zum Zitat Woodfield, T.B.F., van Blitterswijk, C.A., de Wijn, J., Sims, T.J., Hollander, A.P., Riesle, J.: Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng. 11, 1297–1311 (2005)CrossRef Woodfield, T.B.F., van Blitterswijk, C.A., de Wijn, J., Sims, T.J., Hollander, A.P., Riesle, J.: Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng. 11, 1297–1311 (2005)CrossRef
16.
Zurück zum Zitat Oh, S.H., Park, I.K., Kim, J.M., Lee, J.H.: In vitro and in vivo characteristics of PCL scaffolds with pore-size gradients fabricated by a centrifugation method. Biomaterials 28, 1664–1671 (2007)CrossRef Oh, S.H., Park, I.K., Kim, J.M., Lee, J.H.: In vitro and in vivo characteristics of PCL scaffolds with pore-size gradients fabricated by a centrifugation method. Biomaterials 28, 1664–1671 (2007)CrossRef
17.
Zurück zum Zitat Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S.: Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 22, 1365–1370 (2001)CrossRef Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S.: Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 22, 1365–1370 (2001)CrossRef
18.
Zurück zum Zitat Werner, J.P., Linner-Krcmar, B., Friess, W., Greil, P.: Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded-pore structure. Biomaterials 23, 4285–4294 (2002)CrossRef Werner, J.P., Linner-Krcmar, B., Friess, W., Greil, P.: Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded-pore structure. Biomaterials 23, 4285–4294 (2002)CrossRef
19.
Zurück zum Zitat Rodriguez-Lorenzo, L.M., Ferreira, J.M.F.: Development of porous ceramic bodies for applications in tissue engineering and drug-delivery systems. Mater. Res. Bull. 39, 83–91 (2004)CrossRef Rodriguez-Lorenzo, L.M., Ferreira, J.M.F.: Development of porous ceramic bodies for applications in tissue engineering and drug-delivery systems. Mater. Res. Bull. 39, 83–91 (2004)CrossRef
20.
Zurück zum Zitat Lu, W.W., Zhao, F., Luk, K.D.K., Yin, Y.J., Cheung, K.M.C., Cheng, G.X., Yao, K.D., Leong, J.C.Y.: Controllable porosity hydroxyapatite ceramics as a spine cage: fabrication and properties evaluation. J. Mater. Sci. 14, 1039–1046 (2003) Lu, W.W., Zhao, F., Luk, K.D.K., Yin, Y.J., Cheung, K.M.C., Cheng, G.X., Yao, K.D., Leong, J.C.Y.: Controllable porosity hydroxyapatite ceramics as a spine cage: fabrication and properties evaluation. J. Mater. Sci. 14, 1039–1046 (2003)
21.
Zurück zum Zitat Lee, B.T., Kang, I.C., Gain, A.K., Kim, K.H., Song, H.Y.: Fabrication of pore-gradient Al2O3–ZrO2 sintered bodies by fibrous monolithic process. J. Eur. Ceram. Soc. 26, 3525–3530 (2006)CrossRef Lee, B.T., Kang, I.C., Gain, A.K., Kim, K.H., Song, H.Y.: Fabrication of pore-gradient Al2O3–ZrO2 sintered bodies by fibrous monolithic process. J. Eur. Ceram. Soc. 26, 3525–3530 (2006)CrossRef
22.
Zurück zum Zitat Sherwood, J.K., Riley, S.L., Palazzolo, R., Brown, S.C., Monkhouse, D.C., Coates, M., Griffith, L.G., Landeen, L.K., Ratcliffe, A.: A three-dimensional osteo-chondral composite scaffold for articular cartilage repair. Biomaterials 23, 4739–4751 (2002)CrossRef Sherwood, J.K., Riley, S.L., Palazzolo, R., Brown, S.C., Monkhouse, D.C., Coates, M., Griffith, L.G., Landeen, L.K., Ratcliffe, A.: A three-dimensional osteo-chondral composite scaffold for articular cartilage repair. Biomaterials 23, 4739–4751 (2002)CrossRef
23.
Zurück zum Zitat Chen, G., Sato, T., Tanaka, J., Tateishi, T.: Preparation of a biphasic scaffold for osteo-chondral tissue engineering. Mater. Sci. Eng. 26, 118–123 (2006)CrossRef Chen, G., Sato, T., Tanaka, J., Tateishi, T.: Preparation of a biphasic scaffold for osteo-chondral tissue engineering. Mater. Sci. Eng. 26, 118–123 (2006)CrossRef
24.
Zurück zum Zitat Rowe, J.R., Russell, H., Lare, P.J., Hahn, H.: Surgical implants having a graded porous coating. U.S. Patent No. 4542539 (1985) Rowe, J.R., Russell, H., Lare, P.J., Hahn, H.: Surgical implants having a graded porous coating. U.S. Patent No. 4542539 (1985)
25.
Zurück zum Zitat Miao, X., Hu, Y., Liu, J., Tio, B., Cheang, P., Khor, K.A.: Highly interconnected and functionally graded porous bioceramics. Key Eng. Mater. 240–242, 595–598 (2003)CrossRef Miao, X., Hu, Y., Liu, J., Tio, B., Cheang, P., Khor, K.A.: Highly interconnected and functionally graded porous bioceramics. Key Eng. Mater. 240–242, 595–598 (2003)CrossRef
26.
Zurück zum Zitat Droschel, M., Hoffmann, M.J., Oberacker, R., Both, H.V., Schaller, W., Yang, Y.Y., Munz, D.: SiC-ceramics with tailored porosity gradients for combustion chambers. Key Eng. Mater. 175–176, 149–162 (2000)CrossRef Droschel, M., Hoffmann, M.J., Oberacker, R., Both, H.V., Schaller, W., Yang, Y.Y., Munz, D.: SiC-ceramics with tailored porosity gradients for combustion chambers. Key Eng. Mater. 175–176, 149–162 (2000)CrossRef
27.
Zurück zum Zitat Cichocki Jr., F.R., Trumble, K.P., Rodel, J.: Tailored porosity gradients via colloidal infiltration of compression-moulded sponges. J. Amer. Ceram. Soc. 81, 1661–1664 (1998)CrossRef Cichocki Jr., F.R., Trumble, K.P., Rodel, J.: Tailored porosity gradients via colloidal infiltration of compression-moulded sponges. J. Amer. Ceram. Soc. 81, 1661–1664 (1998)CrossRef
28.
Zurück zum Zitat Harley, B.A., Hastings, A.Z., Yannas, I.V., Sannino, A.: Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials 27, 866–874 (2006)CrossRef Harley, B.A., Hastings, A.Z., Yannas, I.V., Sannino, A.: Fabricating tubular scaffolds with a radial pore size gradient by a spinning technique. Biomaterials 27, 866–874 (2006)CrossRef
29.
Zurück zum Zitat Bretcanu, O., Samaille, C., Boccaccini, A.R.: Simple methods to fabricate bioglass-derived glass-ceramic scaffolds exhibiting a porosity gradient. J. Mater. Sci. 43, 4127–4134 (2008)CrossRef Bretcanu, O., Samaille, C., Boccaccini, A.R.: Simple methods to fabricate bioglass-derived glass-ceramic scaffolds exhibiting a porosity gradient. J. Mater. Sci. 43, 4127–4134 (2008)CrossRef
30.
Zurück zum Zitat Li, R., Liu, J., Shi, Y., Du, M., Xie, Z.: 316L Stainless steel with gradient porosity fabricated by selective laser melting. J. Mater. Eng. Perform. 19(5), 666–671 (2010)CrossRef Li, R., Liu, J., Shi, Y., Du, M., Xie, Z.: 316L Stainless steel with gradient porosity fabricated by selective laser melting. J. Mater. Eng. Perform. 19(5), 666–671 (2010)CrossRef
31.
Zurück zum Zitat Muthutantri, A., Huang, J., Edirisinghe, M.: Novel preparation of graded porous structures for medical engineering. J. R. Soc. Interface 5, 1459–1467 (2008)CrossRef Muthutantri, A., Huang, J., Edirisinghe, M.: Novel preparation of graded porous structures for medical engineering. J. R. Soc. Interface 5, 1459–1467 (2008)CrossRef
32.
Zurück zum Zitat Macchetta, A., Turner, I.G., Bowen, C.R.: Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 5, 1319–1327 (2009)CrossRef Macchetta, A., Turner, I.G., Bowen, C.R.: Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomater. 5, 1319–1327 (2009)CrossRef
33.
Zurück zum Zitat Hsu, Y.H., Turner, I.G., Miles, A.W.: Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J. Mater. Sci. Mater. Med. 18, 2251–2256 (2007)CrossRef Hsu, Y.H., Turner, I.G., Miles, A.W.: Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J. Mater. Sci. Mater. Med. 18, 2251–2256 (2007)CrossRef
34.
Zurück zum Zitat Schneider, M.J.: The Timken Company, and Madhu S. Chatterjee, bodycote introduction to surface hardening of steels. In: Dossett, J., Totten, G.E. (eds) ASM Handbook, Steel Heat-Treating Fundamentals and Processes, vol. 4 (2013) Schneider, M.J.: The Timken Company, and Madhu S. Chatterjee, bodycote introduction to surface hardening of steels. In: Dossett, J., Totten, G.E. (eds) ASM Handbook, Steel Heat-Treating Fundamentals and Processes, vol. 4 (2013)
35.
Zurück zum Zitat Lu, L., Chekroun, M., Abraham, O., Maupin, V., Villain, G.: Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer. NDT and E Int. 44(2), 169–177 (2011)CrossRef Lu, L., Chekroun, M., Abraham, O., Maupin, V., Villain, G.: Mechanical properties estimation of functionally graded materials using surface waves recorded with a laser interferometer. NDT and E Int. 44(2), 169–177 (2011)CrossRef
36.
Zurück zum Zitat Shumiya, H., Kato, K., Okubo, H.: Feasibility studies on FGMs (functionally graded materials) application for gas insulated equipment. In: IEEE Conference on Electrical Insulation and dielectric Phenomena, pp. 360–363 (2004) Shumiya, H., Kato, K., Okubo, H.: Feasibility studies on FGMs (functionally graded materials) application for gas insulated equipment. In: IEEE Conference on Electrical Insulation and dielectric Phenomena, pp. 360–363 (2004)
37.
Zurück zum Zitat Kato, K., Kurimoto, M., Shumiya, H., Adachi, H., Sakuma, S., Okubo, H.: Application of functionally graded material for solid insulator in gaseous-insulation systems. IEEE Trans. Dielectr. Electr. Insul. 13(2), 362–372 (2006)CrossRef Kato, K., Kurimoto, M., Shumiya, H., Adachi, H., Sakuma, S., Okubo, H.: Application of functionally graded material for solid insulator in gaseous-insulation systems. IEEE Trans. Dielectr. Electr. Insul. 13(2), 362–372 (2006)CrossRef
38.
Zurück zum Zitat Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials: Design, Processing and Applications. Kluwer Academic, Boston (1999)CrossRef Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials: Design, Processing and Applications. Kluwer Academic, Boston (1999)CrossRef
39.
Zurück zum Zitat Miyamoto, Y.: The applications of functionally graded materials in Japan. Mater. Technol. 11(6), 230–236 (1996) Miyamoto, Y.: The applications of functionally graded materials in Japan. Mater. Technol. 11(6), 230–236 (1996)
Metadaten
Titel
Types of Functionally Graded Materials and Their Areas of Application
verfasst von
Rasheedat Modupe Mahamood
Esther Titilayo Akinlabi
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-53756-6_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.