Skip to main content

2021 | OriginalPaper | Buchkapitel

Typology of Nonlinear Time Series Models

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper attempts to provide a comprehensive review of nonlinear time series models, starting with the rationale for such models, their superiority over their linear counterparts, and issues surrounding their analysis especially in terms of the simultaneous examination of nonlinear and nonstationary properties of the data. The study provides a detailed typology of various univariate nonlinear time series models, the aspects that it helps capture in data and their estimation procedures. The paper then provides an exposition of the concept of nonlinear cointegration in a multivariate context and some of the issues therein. As an illustrative example, the study estimates a SETAR model for the Indian money multiplier and provides a brief analysis. We conclude with the relevance and applicability of these models in further understanding the dynamics in economic data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Disclaimer: The views expressed here do not reflect the views of the Indian Institute of Technology Bombay, Mumbai. The author is extremely grateful to Prof. Gilles Dufrenot and Prof. Takashi Matsuki for accepting this paper as a chapter. This paper was part of my PhD thesis submitted and defended at the Indira Gandhi Institute of Development Research, Mumbai. Responsibility for any remaining shortcomings and errors rests solely with the author.
 
2
Refer to Appendix 1 for definition of a limit cycle.
 
3
It is not necessary that the presence of such a function indicates a nonlinear relationship with certainty. Such relations can also be analyzed under the linear time series modeling framework by transforming the relation into a linear one.
 
4
Deterministic time trend implies the trend in the time series is a deterministic function of time; stochastic time trend implies that the trend is not predictable (Gujarati and Porter 2008, pp. 745).
 
5
The auxiliary regression is (Teräsvirta et al. 1994,Teräsvirta 1994):
\(\hat{\varepsilon }_{t} = \hat{\varvec{z}}_{{1\varvec{t}}}^{{\prime }} \tilde{\beta }_{1} + \hat{z}_{2t} \left(\varvec{\pi}\right)\tilde{\beta }_{2} + u_{t} \left(\varvec{\pi}\right),t = 1, \ldots ,T\) where \(\tilde{\beta }_{1} = \left( {\tilde{\beta }_{11} , \ldots ,\tilde{\beta }_{1,p + 1} } \right)^{{\prime }}\) and \(u_{t} \left(\varvec{\pi}\right)\) is the error term.
 
6
The auxiliary regression is then formulated as:
\(\hat{\upsilon }_{t} = \tilde{\beta }_{1}^{{\prime }} \hat{\varvec{z}}_{1t} + \tilde{\beta }_{2}^{{\prime }} \varvec{w}_{\varvec{t}} y_{t - d} + \tilde{\beta }_{3}^{{\prime }} \varvec{w}_{\varvec{t}} y_{t - d}^{2} + e_{t}^{{\prime }} ,t = 1, \ldots ,T\) where \(\tilde{\beta }_{1} = (\tilde{\beta }_{10} ,\tilde{\beta }_{1}^{{\prime }} )^{{\prime }}\), \(\tilde{\beta }_{10} = \theta_{10} - (c^{*} )^{2} \theta_{20} ,e_{t}^{{\prime }}\) is the error term and \(\beta_{2} = 2c^{*}\varvec{\theta}_{2} - \theta_{20} \varvec{e}_{d}\) and \(\beta_{3} = -\varvec{\theta}_{2}\).
 
7
The power spectrum is defined as:
$$s\left( \omega \right) = \frac{1}{2\pi }\mathop \sum \limits_{k = - \infty }^{\infty } R_{k} e^{{ - ik_{\infty } }}$$
where Rk are the k autocovariances of xt which is a zero mean linear stationary process.
 
8
Mixing processes (Dufrénot and Mignon 2002): Mixing is a concept used to measure the degree of dependence in the memory of a time series. Strong mixing can be understood as short-range dependence. Mixing implies that as the time span between two events increases, the dependence between past and future events becomes negligible.
Refer to Footnote 38 for formal definition of memory in time series.
 
9
The Box-Cox transformation is given as:
\(\begin{aligned} \varvec{y}_{\varvec{t}} \left(\varvec{\lambda}\right) & = \frac{{\varvec{y}_{\varvec{t}}^{\varvec{\lambda}} - 1}}{\varvec{\lambda}},\varvec{\lambda}\ne 0,\varvec{y}_{\varvec{t}} \ge 0 \\ & = \log \varvec{y}_{\varvec{t}} ,\varvec{\lambda}= 0,\varvec{y}_{\varvec{t}} > 0 \\ \end{aligned}\)
where t represents the inclusion of a time trend and λ denotes the set of parameters that enter in the nonlinear model.
 
10
Proposed by Aparicio et al. (2003, 2006).
 
11
Econometricians refer to conditional variance while dealing with the volatility of the time series and the time varying volatility is referred to as conditional heteroscedasticity (Harris and Sollis 2006).
 
12
The conditional mean (and variance) of a time series are the mean (and variance) conditional on the information set available at time t (Harris and Sollis 2006).
 
13
The AR(p) process can also be replace by series of exogenous variables which include lagged dependent values of the dependent variable as well.
 
14
Ergodicity: It is an attribute of stochastic systems; generally, a system that tends in probability to a limiting form that is independent of the initial conditions.
 
15
Markovian property implies that the current value of the state variable depends on its immediate past value.
 
16
Quasi-maximum likelihood estimators refer to the maximum likelihood estimators obtained when normality is assumed but the true conditional distribution is non-normal (Harris and Solis 2006).
 
17
Hamilton (1996) defines the conditional score statistic as the derivative of the conditional log-likelihood of the tth observation with respect to the parameter vector. This score can be calculated using the procedure for smoothed probabilities; thus, it does not require estimating additional parameters by maximum likelihood.
 
18
Mixing processes (Dufrénot and Mignon 2002): Mixing is a concept used to measure the degree of dependence in the memory of a time series. Mixing implies that as the time span between two events increases, the dependence between past and future events becomes negligible.
 
19
Aparicio and Escribano (1998), pp. 121 suggest the general characterization of mean reversion, long- and short- memory and integrated of order d where \(i_{x} \left( {\tau ,t} \right)\) is considered to be a non-negative measure of serial dependence which captures higher-order dependency structure in the series.
 
20
Hansen and Seo (2002): The notation of Xt-1(β) implies that the variables are evaluated at generic values and not the true values of β. The variables evaluated at the true values are denoted by Xt−1. A similar argument holds for the ECT term.
 
21
The sup-LM value is the maximal value for which the test is most favourably rejected. A supremum statistic is an aggregation possibility in case of an unknown threshold parameter (which would result in a non-standard distribution and the threshold parameter thus being unidentified under the null).
 
22
Residual-based bootstrap: The time series under consideration, yt are nonstationary and cannot be resampled directly. Given the assumption that ut are iid (pp. 72) and unobservable, the least-squares residuals of the TVECM are resampled independently with replacement. This is called the residual-based bootstrap (Seo 2006).
 
23
Transactions costs lead to large (more than proportional) changes in real exchange rates which is captured using an exponential functional form in the STAR model.
 
24
Thus, resulting in a complete peak-trough cycle.
 
25
Data source—Reserve Bank of India (2013): Handbook of Statistics on the Indian Economy, Reserve Bank of India, Mumbai.
 
26
The results of the stationarity and nonlinearity tests are available on request. The augmented Dickey Fuller test for unit roots was also conducted for the sake of completeness.
 
27
The results, code are available on request from the author.
 
Literatur
Zurück zum Zitat Ahmad, Y., & Glosser, S. (2007). Searching for nonlinearities in real exchange rates, Manuscript. Whitewater, WI: University of Wisconsin. Ahmad, Y., & Glosser, S. (2007). Searching for nonlinearities in real exchange rates, Manuscript. Whitewater, WI: University of Wisconsin.
Zurück zum Zitat Aparicio, F., & Escribano, A. (1998). Information-theoretic analysis of serial dependence and cointegration. Studies in Nonlinear Dynamics and Econometrics, 3(3), 119–140. Aparicio, F., & Escribano, A. (1998). Information-theoretic analysis of serial dependence and cointegration. Studies in Nonlinear Dynamics and Econometrics, 3(3), 119–140.
Zurück zum Zitat Aparicio, F., Escribano, A., & García, A. (2003). Range unit root (RUR) tests. Working paper 03–11 Statistics and Econometrics Series 26, Universidad Carlos III de Madrid. Aparicio, F., Escribano, A., & García, A. (2003). Range unit root (RUR) tests. Working paper 03–11 Statistics and Econometrics Series 26, Universidad Carlos III de Madrid.
Zurück zum Zitat Aparicio, F., Escribano, A., & Siplos, A. (2006). Range unit root (RUR) tests: robust against nonlinearities, error distributions, structural breaks and outliers. Journal of Time Series Analysis, 27, 545–576.CrossRef Aparicio, F., Escribano, A., & Siplos, A. (2006). Range unit root (RUR) tests: robust against nonlinearities, error distributions, structural breaks and outliers. Journal of Time Series Analysis, 27, 545–576.CrossRef
Zurück zum Zitat Ashley, R., Patterson, D. M., & Hinich, M. J. (1986). A diagnostic test for nonlinear serial dependence in time series fitting errors. Journal of Time Series Analysis, 7, 165–178. Ashley, R., Patterson, D. M., & Hinich, M. J. (1986). A diagnostic test for nonlinear serial dependence in time series fitting errors. Journal of Time Series Analysis, 7, 165–178.
Zurück zum Zitat Balke, N. S., & Fomby, T. B. (1997). Threshold cointegration. International Economic Review, 38(3), 627–645.CrossRef Balke, N. S., & Fomby, T. B. (1997). Threshold cointegration. International Economic Review, 38(3), 627–645.CrossRef
Zurück zum Zitat Basu, D. (2008). Essays on dynamic nonlinear time series models and on gender inequality. PhD Dissertation. The Ohio State University. Basu, D. (2008). Essays on dynamic nonlinear time series models and on gender inequality. PhD Dissertation. The Ohio State University.
Zurück zum Zitat Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.CrossRef Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.CrossRef
Zurück zum Zitat Box, G., & Jenkins, GM. (1970). Time series analysis: forecasting and control. San Francisco: Wiley. Box, G., & Jenkins, GM. (1970). Time series analysis: forecasting and control. San Francisco: Wiley.
Zurück zum Zitat Brillinger, D. (1965). An Introduction to polyspectra. Annals of Mathematical Statistics, 36(5), 1351–1374. Brillinger, D. (1965). An Introduction to polyspectra. Annals of Mathematical Statistics, 36(5), 1351–1374.
Zurück zum Zitat Brock , W., Dechert, W., & Scheinkman, J. (1987). A test for independence based on the correlation dimension. Madison, Mimeo: Department of Economics, University of Wisconsin. Brock , W., Dechert, W., & Scheinkman, J. (1987). A test for independence based on the correlation dimension. Madison, Mimeo: Department of Economics, University of Wisconsin.
Zurück zum Zitat Carnero, M., Peña, D., & Ruiz, E. (2004). Persistence and kurtosis in GARCH and stochastic volatility models. Journal of Financial Econometrics, 2(2), 319–342.CrossRef Carnero, M., Peña, D., & Ruiz, E. (2004). Persistence and kurtosis in GARCH and stochastic volatility models. Journal of Financial Econometrics, 2(2), 319–342.CrossRef
Zurück zum Zitat Chan, K., & Tong, H. (1986). A note on certain integral equations associated with nonlinear time series analysis. Probability Theory and Related Fields, 73, 153–158.CrossRef Chan, K., & Tong, H. (1986). A note on certain integral equations associated with nonlinear time series analysis. Probability Theory and Related Fields, 73, 153–158.CrossRef
Zurück zum Zitat Chan, K. S. (1990), Testing for Threshold Autoregression, The Annals of Statistics, Vol. 18, No. 4, pp. 1886-1894. Chan, K. S. (1990), Testing for Threshold Autoregression, The Annals of Statistics, Vol. 18, No. 4, pp. 1886-1894.
Zurück zum Zitat Chen, R., & Tsay, R. S. (1991). On the ergodicity of TAR(1) processes. The Annals of Applied Probability, 1(4), 613–634.CrossRef Chen, R., & Tsay, R. S. (1991). On the ergodicity of TAR(1) processes. The Annals of Applied Probability, 1(4), 613–634.CrossRef
Zurück zum Zitat Chitre, V. (1986). Quarterly predictions of reserve money multiplier and money stock in India. Arthavijnana, 28, 1–119.CrossRef Chitre, V. (1986). Quarterly predictions of reserve money multiplier and money stock in India. Arthavijnana, 28, 1–119.CrossRef
Zurück zum Zitat Darbha, G. (2002). Testing for long-run stability—an application to money multiplier in India. Applied Economics Letters, 9, 33–37.CrossRef Darbha, G. (2002). Testing for long-run stability—an application to money multiplier in India. Applied Economics Letters, 9, 33–37.CrossRef
Zurück zum Zitat Gersovitz, M., & MacKinnon, J. M. (1978). Seasonality in regression: An application of smoothness priors, Journal of the American Statistical Association, 73(362), 264–73. Gersovitz, M., & MacKinnon, J. M. (1978). Seasonality in regression: An application of smoothness priors, Journal of the American Statistical Association, 73(362), 264–73.
Zurück zum Zitat Dufrénot, G., & Mignon, V. (2002). Recent developments in nonlinear cointegration with applications to macroeconomics and finance. Dordrecht, Netherlands: Kluwer Academic Press.CrossRef Dufrénot, G., & Mignon, V. (2002). Recent developments in nonlinear cointegration with applications to macroeconomics and finance. Dordrecht, Netherlands: Kluwer Academic Press.CrossRef
Zurück zum Zitat Dua, P., & Kumawat, L. (2005). Modelling and forecasting seasonality in Indian macroeconomic time series, Centre for Development Economics, Working Paper 136. Dua, P., & Kumawat, L. (2005). Modelling and forecasting seasonality in Indian macroeconomic time series, Centre for Development Economics, Working Paper 136.
Zurück zum Zitat Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.CrossRef Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.CrossRef
Zurück zum Zitat Engle, R. (1984). Wald, likelihood ratio, and lagrange multiplier tests in econometrics. In Z. Griliches, & M. Intriligator (Eds.), Chapter 13: Handbook of Econometrics, (Vol. 2, pp. 775–826). Amsterdam: Elsevier. Engle, R. (1984). Wald, likelihood ratio, and lagrange multiplier tests in econometrics. In Z. Griliches, & M. Intriligator (Eds.), Chapter 13: Handbook of Econometrics, (Vol. 2, pp. 775–826). Amsterdam: Elsevier.
Zurück zum Zitat Escribano and Mira. (2002). Nonlinear error correction models. Journal of Time Series Analysis, 23(5), 509–522.CrossRef Escribano and Mira. (2002). Nonlinear error correction models. Journal of Time Series Analysis, 23(5), 509–522.CrossRef
Zurück zum Zitat Franses, P. H., & McAleer, M. (1998). Testing for unit roots and nonlinear transformations. Journal of Time Series Analysis, 19(2), 147–164.CrossRef Franses, P. H., & McAleer, M. (1998). Testing for unit roots and nonlinear transformations. Journal of Time Series Analysis, 19(2), 147–164.CrossRef
Zurück zum Zitat Goldfeld, S. M., & Quandt, R. (1973). A Markov model for switching regressions. Journal of Econometrics, 1(1), 3–16.CrossRef Goldfeld, S. M., & Quandt, R. (1973). A Markov model for switching regressions. Journal of Econometrics, 1(1), 3–16.CrossRef
Zurück zum Zitat Granger, C. W., & Teräsvirta, T. (1993). Modelling nonlinear economic relationships. Oxford: Oxford University Press. Granger, C. W., & Teräsvirta, T. (1993). Modelling nonlinear economic relationships. Oxford: Oxford University Press.
Zurück zum Zitat Granger, C. W. J., & Hallman, J. (1991). Nonlinear transformations of integrated time series. Journal of Time Series Analysis, 12(3), 207–218.CrossRef Granger, C. W. J., & Hallman, J. (1991). Nonlinear transformations of integrated time series. Journal of Time Series Analysis, 12(3), 207–218.CrossRef
Zurück zum Zitat Gujarati, D., & Porter, D. C. (2008). Basic econometrics (5th ed.). New York: McGraw-Hill. Gujarati, D., & Porter, D. C. (2008). Basic econometrics (5th ed.). New York: McGraw-Hill.
Zurück zum Zitat Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.CrossRef Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.CrossRef
Zurück zum Zitat Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.CrossRef Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.CrossRef
Zurück zum Zitat Hamilton, J. D. (1996). Specification testing in Markov-switching time series models. Journal of Econometrics, 70(1), 127–157.CrossRef Hamilton, J. D. (1996). Specification testing in Markov-switching time series models. Journal of Econometrics, 70(1), 127–157.CrossRef
Zurück zum Zitat Hamilton, J. D. (2005). Regime-switching models. In S. Durlauf, & L. Blume (Eds.), New palgrave dictionary of economics (2nd ed) London: Palgrave McMillan. Hamilton, J. D. (2005). Regime-switching models. In S. Durlauf, & L. Blume (Eds.), New palgrave dictionary of economics (2nd ed) London: Palgrave McMillan.
Zurück zum Zitat Hansen, B. E. (1992). The likelihood ratio test under nonstandard conditions: testing the Markov switching model of GNP. Journal of Applied Econometrics, 7(S1), S61–S82.CrossRef Hansen, B. E. (1992). The likelihood ratio test under nonstandard conditions: testing the Markov switching model of GNP. Journal of Applied Econometrics, 7(S1), S61–S82.CrossRef
Zurück zum Zitat Hansen, B. (1997). Inference in TAR models. Studies in Nonlinear Dynamics and Econometrics, 2(1), 1–14. Hansen, B. (1997). Inference in TAR models. Studies in Nonlinear Dynamics and Econometrics, 2(1), 1–14.
Zurück zum Zitat Hansen, B. (2011). Threshold autoregression in economics. Statistics and Its Interface, 4, 123–127.CrossRef Hansen, B. (2011). Threshold autoregression in economics. Statistics and Its Interface, 4, 123–127.CrossRef
Zurück zum Zitat Hansen, B., & Seo, B. (2002). Testing for two-regime threshold cointegration in vector error-correction models. Journal of Econometrics, 110(2), 293–318.CrossRef Hansen, B., & Seo, B. (2002). Testing for two-regime threshold cointegration in vector error-correction models. Journal of Econometrics, 110(2), 293–318.CrossRef
Zurück zum Zitat Harris, R., & Sollis, R. (2006). Applied time series modelling and forecasting. Singapore: Wiley. Harris, R., & Sollis, R. (2006). Applied time series modelling and forecasting. Singapore: Wiley.
Zurück zum Zitat Hinich, M. J. (1982). Testing for gaussianity and linearity of a stationarv time series. Journal of Time Series Analysis, 3, 169–176. Hinich, M. J. (1982). Testing for gaussianity and linearity of a stationarv time series. Journal of Time Series Analysis, 3, 169–176.
Zurück zum Zitat Hinich, M. J. (1996). Testing for dependence in the input to a linear time series model. Nonparametric Statistics, 6, 205–221. Hinich, M. J. (1996). Testing for dependence in the input to a linear time series model. Nonparametric Statistics, 6, 205–221.
Zurück zum Zitat Jha, R., & Rath, D. P. (2001). On the endogeneity of the money multiplier in India, ASARC Working Papers 2001-12, Australia South Asia Research Centre, The Australian National University, available at: https://taxpolicy.crawford.anu.edu.au/acde/asarc/pdf/papers/conference/CONF2001_06.pdf. Jha, R., & Rath, D. P. (2001). On the endogeneity of the money multiplier in India, ASARC Working Papers 2001-12, Australia South Asia Research Centre, The Australian National University, available at: https://​taxpolicy.​crawford.​anu.​edu.​au/​acde/​asarc/​pdf/​papers/​conference/​CONF2001_​06.​pdf.
Zurück zum Zitat Kar, S. (2010). A periodic autoregressive model of Indian WPI inflation, Margin—The Journal of Applied Economic Research, 4(3), 279–292. Kar, S. (2010). A periodic autoregressive model of Indian WPI inflation, Margin—The Journal of Applied Economic Research, 4(3), 279–292.
Zurück zum Zitat Keenan, D. M. (1985). A Tukey nonadditivity-type test for time series nonlinearity. Biometrika, 72(1), 39–44.CrossRef Keenan, D. M. (1985). A Tukey nonadditivity-type test for time series nonlinearity. Biometrika, 72(1), 39–44.CrossRef
Zurück zum Zitat Kilian, L., & Taylor, M. (2003). Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International Economics, 60(1), 85–107.CrossRef Kilian, L., & Taylor, M. (2003). Why is it so difficult to beat the random walk forecast of exchange rates? Journal of International Economics, 60(1), 85–107.CrossRef
Zurück zum Zitat Kirchler, M., & Huber, J. (2007). Fat tails and volatility clustering in experimental asset markets. Journal of Economic Dynamics and Control, 31(6), 1844–1874.CrossRef Kirchler, M., & Huber, J. (2007). Fat tails and volatility clustering in experimental asset markets. Journal of Economic Dynamics and Control, 31(6), 1844–1874.CrossRef
Zurück zum Zitat Krishnan, R. (2007). Seasonal characteristics of Indian time series. Indian Economic Review, 42(2) (July-December), 191–210. Krishnan, R. (2007). Seasonal characteristics of Indian time series. Indian Economic Review, 42(2) (July-December), 191–210.
Zurück zum Zitat Kuan, Chung-Ming. (2002). Lecture on the Markov switching model. Academia Sinica, Taipei: Institute of Economics. Kuan, Chung-Ming. (2002). Lecture on the Markov switching model. Academia Sinica, Taipei: Institute of Economics.
Zurück zum Zitat Lahtinen, M. (2006). The purchasing power parity puzzle: a sudden nonlinear perspective. Applied Financial Economics, 16(1), 119–125.CrossRef Lahtinen, M. (2006). The purchasing power parity puzzle: a sudden nonlinear perspective. Applied Financial Economics, 16(1), 119–125.CrossRef
Zurück zum Zitat Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, XXXVI, 392–417. Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, XXXVI, 392–417.
Zurück zum Zitat Miller, J. (2006). A random coefficients autoregressive model with exogenously-driven stochastic unit roots. In 2006 International Symposium on Econometric Theory and Applications, Xiamen, China. Miller, J. (2006). A random coefficients autoregressive model with exogenously-driven stochastic unit roots. In 2006 International Symposium on Econometric Theory and Applications, Xiamen, China.
Zurück zum Zitat Mizrach, B., & Watkins, J. (1999). A Markov switching cookbook. In P. Rothman (Ed.), Nonlinear time series analysis of economic and financial data. New York: Springer. Mizrach, B., & Watkins, J. (1999). A Markov switching cookbook. In P. Rothman (Ed.), Nonlinear time series analysis of economic and financial data. New York: Springer.
Zurück zum Zitat Montgomery, A., Zarnowitz, V., Tsay, R., & Tiao, G. (1998, June). Forecasting the US unemployment rate. Journal of the American Statistical Association, 93(442), 478–493. Montgomery, A., Zarnowitz, V., Tsay, R., & Tiao, G. (1998, June). Forecasting the US unemployment rate. Journal of the American Statistical Association, 93(442), 478–493.
Zurück zum Zitat Nachane, D. (1992). The money multiplier in India: short-run and long-run aspects. Journal of Quantitative Economics, 8(1), 51–66. Nachane, D. (1992). The money multiplier in India: short-run and long-run aspects. Journal of Quantitative Economics, 8(1), 51–66.
Zurück zum Zitat Nachane, D., & Ray, D. (1997). Non-linear dynamics of the money multiplier—selected case studies. Indian Economic Journal, 45(1), 36–53.CrossRef Nachane, D., & Ray, D. (1997). Non-linear dynamics of the money multiplier—selected case studies. Indian Economic Journal, 45(1), 36–53.CrossRef
Zurück zum Zitat Nachane, D. (2006). Econometrics: theoretical foundations and empirical perspective. New Delhi: Oxford University Press. Nachane, D. (2006). Econometrics: theoretical foundations and empirical perspective. New Delhi: Oxford University Press.
Zurück zum Zitat Nachane, D. (2011). Selected problems in the analysis of nonstationary and nonlinear time series. Journal of Quantitative Economics, 9(1), 1–17. Nachane, D. (2011). Selected problems in the analysis of nonstationary and nonlinear time series. Journal of Quantitative Economics, 9(1), 1–17.
Zurück zum Zitat Nachane, D., & Clavel, J. (2008). Forecasting interest rates: a comparative assessment of some second generation nonlinear models. Journal of Applied Statistics, 35(5), 493–514.CrossRef Nachane, D., & Clavel, J. (2008). Forecasting interest rates: a comparative assessment of some second generation nonlinear models. Journal of Applied Statistics, 35(5), 493–514.CrossRef
Zurück zum Zitat Nicholls, D. & Quinn, B. (1980). Random coefficient autoregressive models: an introduction. Berlin: Springer. Nicholls, D. & Quinn, B. (1980). Random coefficient autoregressive models: an introduction. Berlin: Springer.
Zurück zum Zitat Petruccelli, J. D., & Woolford, S. W. (1984). A threshold AR(1) model. Journal of Applied Probability, 21(2), 270–286.CrossRef Petruccelli, J. D., & Woolford, S. W. (1984). A threshold AR(1) model. Journal of Applied Probability, 21(2), 270–286.CrossRef
Zurück zum Zitat Priestley, M. B. (1988). Nonlinear and nonstationary time series analysis. New York, NY: Academic Press. Priestley, M. B. (1988). Nonlinear and nonstationary time series analysis. New York, NY: Academic Press.
Zurück zum Zitat Ramsey, J. (1969). Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society Series B (Methodological), 31(2), 350–371.CrossRef Ramsey, J. (1969). Tests for specification errors in classical linear least-squares regression analysis. Journal of the Royal Statistical Society Series B (Methodological), 31(2), 350–371.CrossRef
Zurück zum Zitat Rangarajan, C., & Singh, A.. (1984, June). Reserve money: Concepts and Implications for India. Reserve Bank of India Occasional Papers. Rangarajan, C., & Singh, A.. (1984, June). Reserve money: Concepts and Implications for India. Reserve Bank of India Occasional Papers.
Zurück zum Zitat Reserve Bank of India. (2004). Report on currency and finance. Mumbai: Reserve Bank of India. Reserve Bank of India. (2004). Report on currency and finance. Mumbai: Reserve Bank of India.
Zurück zum Zitat Reserve Bank of India. (2013). Handbook of statistics of the Indian economy. Mumbai: Reserve Bank of India. Reserve Bank of India. (2013). Handbook of statistics of the Indian economy. Mumbai: Reserve Bank of India.
Zurück zum Zitat Saaty, T., & Bram, J. (1960). Nonlinear mathematics. Mineola: Courier Dover Publications. Saaty, T., & Bram, J. (1960). Nonlinear mathematics. Mineola: Courier Dover Publications.
Zurück zum Zitat Sarno, L. (2003). Nonlinear exchange rate models: a selective overview. IMF Working Paper WP/03/111. Sarno, L. (2003). Nonlinear exchange rate models: a selective overview. IMF Working Paper WP/03/111.
Zurück zum Zitat Seo, M. (2006). Bootstrap testing for the null of no cointegration in a threshold vector error correction model. Journal of Econometrics, 127(1), 129–150.CrossRef Seo, M. (2006). Bootstrap testing for the null of no cointegration in a threshold vector error correction model. Journal of Econometrics, 127(1), 129–150.CrossRef
Zurück zum Zitat Subba Rao, T., & Gabr, M. M. (1984). An introduction to bispectral analysis and bilinear time series models, Vol. 24 of lecture notes in statistics. New York: Springer. Subba Rao, T., & Gabr, M. M. (1984). An introduction to bispectral analysis and bilinear time series models, Vol. 24 of lecture notes in statistics. New York: Springer.
Zurück zum Zitat Subba Rao, T., & Gabr, M. M. (1980). A test for linearity of stationary time series. Journal of Time Series Analysis, 1(2), 145–158.CrossRef Subba Rao, T., & Gabr, M. M. (1980). A test for linearity of stationary time series. Journal of Time Series Analysis, 1(2), 145–158.CrossRef
Zurück zum Zitat Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89(425), 208–218. Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89(425), 208–218.
Zurück zum Zitat Teräsvirta, T., Tjøstheim, D., & Granger, C. W. J. (1994). Aspects of modelling nonlinear time series. In R. F. Engle & D. McFadden (Eds.), Handbook of Econometrics (Vol. 4). Amsterdam: Elsevier. Teräsvirta, T., Tjøstheim, D., & Granger, C. W. J. (1994). Aspects of modelling nonlinear time series. In R. F. Engle & D. McFadden (Eds.), Handbook of Econometrics (Vol. 4). Amsterdam: Elsevier.
Zurück zum Zitat Ters, K., & Urban, J. (2018). Estimating unknown arbitrage costs: Evidence from a 3-regime threshold vector error correction model, BIS Working Papers No. 689, Monetary and Economic Department, Bank for International Settlements. Ters, K., & Urban, J. (2018). Estimating unknown arbitrage costs: Evidence from a 3-regime threshold vector error correction model, BIS Working Papers No. 689, Monetary and Economic Department, Bank for International Settlements.
Zurück zum Zitat Thurner, S., Farmer, J., & Geanakoplos, J. (2012). Leverage causes fat tails and clustered volatility. Quantitative Finance, 12(5), 695–707.CrossRef Thurner, S., Farmer, J., & Geanakoplos, J. (2012). Leverage causes fat tails and clustered volatility. Quantitative Finance, 12(5), 695–707.CrossRef
Zurück zum Zitat Tong, H. (1983). Threshold models in nonlinear time series analysis. Berlin: Springer. Tong, H. (1983). Threshold models in nonlinear time series analysis. Berlin: Springer.
Zurück zum Zitat Tsay, R. (1986). Nonlinearity tests for time series. Biometrika, 73(2), 461–466.CrossRef Tsay, R. (1986). Nonlinearity tests for time series. Biometrika, 73(2), 461–466.CrossRef
Zurück zum Zitat Tsay, R. (1987). Conditional heteroscedastic time series models. Journal of the American Statistical Association, 82, 590–604.CrossRef Tsay, R. (1987). Conditional heteroscedastic time series models. Journal of the American Statistical Association, 82, 590–604.CrossRef
Zurück zum Zitat Tsay, R. (2002). Analysis of financial time series (1st ed.). New York: Wiley.CrossRef Tsay, R. (2002). Analysis of financial time series (1st ed.). New York: Wiley.CrossRef
Zurück zum Zitat Zhang, W.-B. (1988). Limit cycles in van der ploeg’s model of economic growth and conflict over the distribution of Income. Journal of Economics, 48(2), 159–173 Zhang, W.-B. (1988). Limit cycles in van der ploeg’s model of economic growth and conflict over the distribution of Income. Journal of Economics, 48(2), 159–173
Metadaten
Titel
Typology of Nonlinear Time Series Models
verfasst von
Aditi Chaubal
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-54252-8_13

Premium Partner