Skip to main content
Erschienen in:

20.02.2023

UAVs and Mobile Sensors Trajectories Optimization with Deep Learning Trained by Genetic Algorithm Towards Data Collection Scenario

verfasst von: Yuwen Pan, Yuanwang Yang, Hantao Liu, Wenzao Li

Erschienen in: Mobile Networks and Applications | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel diskutiert die Herausforderungen der Datenerfassung in anspruchsvollen Umgebungen wie Wüsten und Wäldern, in denen unbemannte Luftfahrzeuge (Unmanned Aerial Vehicles, UAVs) eingesetzt werden. Es stellt eine neue Strategie vor, die neben Drohnen auch mobile Sensoren und stationäre Sensoren umfasst, um die Belastung für Drohnen zu verringern und die Effizienz der Datenerfassung zu steigern. Die Kerninnovation liegt in der Verwendung von Deep Learning, das durch Genetic Algorithm (DL-GA) trainiert wird, um Flugbahnen zu optimieren und die Beschränkungen traditioneller heuristischer Algorithmen und Deep Reinforcement Learning zu überwinden. Die vorgeschlagene Methode verringert nachweislich den Energieverbrauch erheblich und verbessert die Gesamtleistung des Systems, was sie zu einer vielversprechenden Lösung für Szenarien mit hoher Datendichte macht.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Pan Y, Yang Y, Li W (2021) A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV. In: IEEE Access, vol 9, pp 7994–8005 Pan Y, Yang Y, Li W (2021) A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV. In: IEEE Access, vol 9, pp 7994–8005
3.
Zurück zum Zitat Pan M, Chen C, Yin X, Huang Z (2022) UAV-Aided emergency environmental monitoring in infrastructure-less areas: LoRa mesh networking approach. IEEE Internet Things J 9(4):2918–2932CrossRef Pan M, Chen C, Yin X, Huang Z (2022) UAV-Aided emergency environmental monitoring in infrastructure-less areas: LoRa mesh networking approach. IEEE Internet Things J 9(4):2918–2932CrossRef
4.
Zurück zum Zitat Joshi A, Dhongdi S, Dharmadhikari M, et al. (2022) Enclosing and monitoring of disaster area boundary using multi-UAV network. J Ambient Intell Human Comput Joshi A, Dhongdi S, Dharmadhikari M, et al. (2022) Enclosing and monitoring of disaster area boundary using multi-UAV network. J Ambient Intell Human Comput
5.
Zurück zum Zitat Bushnaq OM, Chaaban A, Al-Naffouri TY (2021) The role of UAV-iot networks in future wildfire detection. IEEE Internet Things J 8(23):16984–16999CrossRef Bushnaq OM, Chaaban A, Al-Naffouri TY (2021) The role of UAV-iot networks in future wildfire detection. IEEE Internet Things J 8(23):16984–16999CrossRef
6.
Zurück zum Zitat Lee J-S, Yu K-H (2017) Optimal path planning of Solar-Powered UAV using gravitational potential energy. IEEE Trans Aerosp Electron Syst 53(3):1442–1451CrossRef Lee J-S, Yu K-H (2017) Optimal path planning of Solar-Powered UAV using gravitational potential energy. IEEE Trans Aerosp Electron Syst 53(3):1442–1451CrossRef
7.
Zurück zum Zitat Lin X, Yazıcıoğlu Y, Aksaray D (2022) Robust planning for persistent surveillance with energy-constrained UAVs and mobile charging stations. IEEE Robot Autom Lett 7(2):4157–4164CrossRef Lin X, Yazıcıoğlu Y, Aksaray D (2022) Robust planning for persistent surveillance with energy-constrained UAVs and mobile charging stations. IEEE Robot Autom Lett 7(2):4157–4164CrossRef
9.
Zurück zum Zitat Wan Y, Hu X, Zhong Y, Ma A, Wei L, Zhang L (2019) Tailings Reservoir Disaster and Environmental Monitoring Using the UAV-ground Hyperspectral Joint Observation and Processing: A Case of Study in Xinjiang, the Belt and Road, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, pp 9713–9716 Wan Y, Hu X, Zhong Y, Ma A, Wei L, Zhang L (2019) Tailings Reservoir Disaster and Environmental Monitoring Using the UAV-ground Hyperspectral Joint Observation and Processing: A Case of Study in Xinjiang, the Belt and Road, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, pp 9713–9716
10.
Zurück zum Zitat Li L, Gu Q, Liu L (2020) Research on path planning algorithm for multi-UAV maritime targets search based on genetic algorithm. In: 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, pp 840–843 Li L, Gu Q, Liu L (2020) Research on path planning algorithm for multi-UAV maritime targets search based on genetic algorithm. In: 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, pp 840–843
11.
Zurück zum Zitat Daryanavard H, Harifi A (2019) UAV path planning for data gathering of IoT Nodes: ant colony or simulated annealing optimization, 2019 3rd International Conference on Internet of Things and Applications (IoT), Isfahan, Iran, pp 1–4 Daryanavard H, Harifi A (2019) UAV path planning for data gathering of IoT Nodes: ant colony or simulated annealing optimization, 2019 3rd International Conference on Internet of Things and Applications (IoT), Isfahan, Iran, pp 1–4
12.
Zurück zum Zitat Challita U, Saad W, Bettstetter C (2019) Interference Management for Cellular-Connected UAVs: A deep reinforcement learning approach. IEEE Trans Wireless Commun 18(4):2125–2140CrossRef Challita U, Saad W, Bettstetter C (2019) Interference Management for Cellular-Connected UAVs: A deep reinforcement learning approach. IEEE Trans Wireless Commun 18(4):2125–2140CrossRef
13.
Zurück zum Zitat Samir M, Sharafeddine S, Assi CM, Nguyen TM, Ghrayeb A (2020) UAV trajectory planning for data collection from time-constrained IoT devices. IEEE Trans Wireless Commun 19(1):34–46CrossRef Samir M, Sharafeddine S, Assi CM, Nguyen TM, Ghrayeb A (2020) UAV trajectory planning for data collection from time-constrained IoT devices. IEEE Trans Wireless Commun 19(1):34–46CrossRef
14.
Zurück zum Zitat Huang Z, Chen C, Pan M (2020) Multiobjective UAV path planning for emergency information collection and transmission. IEEE Internet Things J 7(8):6993–7009CrossRef Huang Z, Chen C, Pan M (2020) Multiobjective UAV path planning for emergency information collection and transmission. IEEE Internet Things J 7(8):6993–7009CrossRef
15.
Zurück zum Zitat Zhu Y, Wang S (2022) Efficient aerial data collection with cooperative trajectory planning for Large-Scale wireless sensor networks. IEEE Trans Commun 70(1):433–444CrossRef Zhu Y, Wang S (2022) Efficient aerial data collection with cooperative trajectory planning for Large-Scale wireless sensor networks. IEEE Trans Commun 70(1):433–444CrossRef
16.
Zurück zum Zitat Zhang H, Dou L, Xin B, Chen J, Gan M, Ding Y (2021) Data collection task planning of a Fixed-Wing unmanned aerial vehicle in forest fire monitoring. IEEE Access 9:109847–109864CrossRef Zhang H, Dou L, Xin B, Chen J, Gan M, Ding Y (2021) Data collection task planning of a Fixed-Wing unmanned aerial vehicle in forest fire monitoring. IEEE Access 9:109847–109864CrossRef
17.
Zurück zum Zitat Wani A, Revathi S, Khaliq R (2021) SDN-Based intrusion detection system for IoT using deep learning classifier (IDSIot-SDL)[j]. CAAI Transactions on Intelligence Technology 6(11) Wani A, Revathi S, Khaliq R (2021) SDN-Based intrusion detection system for IoT using deep learning classifier (IDSIot-SDL)[j]. CAAI Transactions on Intelligence Technology 6(11)
19.
Zurück zum Zitat Wang X, Gursoy MC, Erpek T, Sagduyu YE (2022) Learning-Based UAV Path planning for data collection with integrated collision avoidance. IEEE Internet Things J 9(17):16663– 16676CrossRef Wang X, Gursoy MC, Erpek T, Sagduyu YE (2022) Learning-Based UAV Path planning for data collection with integrated collision avoidance. IEEE Internet Things J 9(17):16663– 16676CrossRef
20.
Zurück zum Zitat Hu H, Xiong K, Qu G, Ni Q, Fan P, Letaief KB (2021) Aoi-minimal trajectory planning and data collection in UAV-assisted wireless powered IoT networks. IEEE Internet Things J 8(2):1211–1223CrossRef Hu H, Xiong K, Qu G, Ni Q, Fan P, Letaief KB (2021) Aoi-minimal trajectory planning and data collection in UAV-assisted wireless powered IoT networks. IEEE Internet Things J 8(2):1211–1223CrossRef
21.
Zurück zum Zitat Sun M, Xu X, Qin X, Zhang P (2021) Aoi-energy-aware UAV-assisted Data Collection for IoT Networks: A Deep Reinforcement Learning Method. IEEE Internet Things J 8(24):17275–17289CrossRef Sun M, Xu X, Qin X, Zhang P (2021) Aoi-energy-aware UAV-assisted Data Collection for IoT Networks: A Deep Reinforcement Learning Method. IEEE Internet Things J 8(24):17275–17289CrossRef
22.
Zurück zum Zitat Shao X-X, Gong Y-J, Zhan Z-H, Zhang J (2022) Bipartite cooperative coevolution for energy-aware coverage path planning of UAVs. IEEE Transactions on Artificial Intelligence 3(1):29–42CrossRef Shao X-X, Gong Y-J, Zhan Z-H, Zhang J (2022) Bipartite cooperative coevolution for energy-aware coverage path planning of UAVs. IEEE Transactions on Artificial Intelligence 3(1):29–42CrossRef
24.
Zurück zum Zitat Haliem M, Mani G, Aggarwal V, Bhargava B (2021) A distributed Model-Free Ride-Sharing approach for joint matching, pricing, and dispatching using deep reinforcement learning. IEEE Trans Intell Transp Syst 22(12):7931–7942CrossRef Haliem M, Mani G, Aggarwal V, Bhargava B (2021) A distributed Model-Free Ride-Sharing approach for joint matching, pricing, and dispatching using deep reinforcement learning. IEEE Trans Intell Transp Syst 22(12):7931–7942CrossRef
25.
Zurück zum Zitat Tao Y, Qiu J, Lai S (2022) A hybrid cloud and edge control strategy for demand responses using deep reinforcement learning and transfer learning. IEEE Trans Cloud Comput 10(1): 56–71CrossRef Tao Y, Qiu J, Lai S (2022) A hybrid cloud and edge control strategy for demand responses using deep reinforcement learning and transfer learning. IEEE Trans Cloud Comput 10(1): 56–71CrossRef
26.
Zurück zum Zitat Chu Y, Fei J, Hou S (2020) Adaptive global Sliding-Mode control for dynamic systems using double hidden layer recurrent neural network structure. IEEE Trans Neural Netw Learn Syst 31(4):1297–1309MathSciNetCrossRef Chu Y, Fei J, Hou S (2020) Adaptive global Sliding-Mode control for dynamic systems using double hidden layer recurrent neural network structure. IEEE Trans Neural Netw Learn Syst 31(4):1297–1309MathSciNetCrossRef
27.
Zurück zum Zitat Fetanat M, Stevens M, Jain P, Hayward C, Meijering E, Lovell NH (2022) Fully elman neural network: a novel deep recurrent neural network optimized by an improved harris hawks algorithm for classification of pulmonary arterial wedge pressure. IEEE Trans Biomed Eng 69(5):1733–1744CrossRef Fetanat M, Stevens M, Jain P, Hayward C, Meijering E, Lovell NH (2022) Fully elman neural network: a novel deep recurrent neural network optimized by an improved harris hawks algorithm for classification of pulmonary arterial wedge pressure. IEEE Trans Biomed Eng 69(5):1733–1744CrossRef
28.
Zurück zum Zitat Shi C, Zhang Z, Zhang W, Zhang C, Xu Q (2022) Learning multiscale Temporal–Spatial–Spectral features via a multipath convolutional LSTM neural network for change detection with hyperspectral images. IEEE Trans Geosci Remote Sens 60:1–16. Art No. 5529816 Shi C, Zhang Z, Zhang W, Zhang C, Xu Q (2022) Learning multiscale Temporal–Spatial–Spectral features via a multipath convolutional LSTM neural network for change detection with hyperspectral images. IEEE Trans Geosci Remote Sens 60:1–16. Art No. 5529816
29.
Zurück zum Zitat Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1–9 Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1–9
30.
Zurück zum Zitat Pang Y, Sun M, Jiang X, et al. (2017) Convolution in convolution for network in network[J]. IEEE Trans Neural Netw Learn Syst 29(5):1587–1597MathSciNetCrossRef Pang Y, Sun M, Jiang X, et al. (2017) Convolution in convolution for network in network[J]. IEEE Trans Neural Netw Learn Syst 29(5):1587–1597MathSciNetCrossRef
31.
Zurück zum Zitat Li Y, Liang W, Xu W, et al. (2021) Data collection maximization in IoT-sensor networks via an energy-constrained UAV[J]. IEEE Transactions on Mobile Computing Li Y, Liang W, Xu W, et al. (2021) Data collection maximization in IoT-sensor networks via an energy-constrained UAV[J]. IEEE Transactions on Mobile Computing
Metadaten
Titel
UAVs and Mobile Sensors Trajectories Optimization with Deep Learning Trained by Genetic Algorithm Towards Data Collection Scenario
verfasst von
Yuwen Pan
Yuanwang Yang
Hantao Liu
Wenzao Li
Publikationsdatum
20.02.2023
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 2/2023
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02106-w