Skip to main content

2011 | OriginalPaper | Buchkapitel

8. Ultra-Fast Sample Preparation for High-Throughput Proteomics

verfasst von : Daniel Lopez-Ferrer, Kim K. Hixson, Mikhail E. Belov, Richard D. Smith

Erschienen in: Sample Preparation in Biological Mass Spectrometry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sample preparation oftentimes can be the Achilles Heel of any analytical process, and in the field of proteomics, preparing samples for mass spectrometric analysis is no exception. Current goals, concerning proteomic sample preparation on a large scale, include efforts toward improving reproducibility, reducing the time of processing and ultimately the automation of the entire workflow. This chapter reviews an array of recent approaches applied to bottom-up proteomics sample preparation to reduce the processing time down from hours to minutes. The current state-of-the-art approaches in the field use different energy inputs such as microwave, ultrasound or pressure to perform the four basic steps in sample preparation: protein extraction, denaturation, reduction/alkylation, and digestion. No single energy input for enhancement of proteome sample preparation has become the universal gold standard. Instead, a combination of different energy inputs tends to produce the best results. This chapter further describes the future trends in the field such as the hyphenation of sample preparation with downstream detection and analysis systems. Finally, a detailed protocol describing the combined use of both pressure cycling technology and ultrasonic energy inputs to hasten proteomic sample preparation is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198–207.CrossRef Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422, 198–207.CrossRef
Zurück zum Zitat Blonder, J., Chan, K.C., Issaq, H.J., and Veenstra, T.D. (2006). Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat Protoc 1, 2784–2790.CrossRef Blonder, J., Chan, K.C., Issaq, H.J., and Veenstra, T.D. (2006). Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat Protoc 1, 2784–2790.CrossRef
Zurück zum Zitat Boyne, M.T., Garcia, B.A., Li, M., Zamdborg, L., Wenger, C.D., Babai, S., and Kelleher, N.L. (2009). Tandem mass spectrometry with ultrahigh mass accuracy clarifies peptide identification by database retrieval. J Proteome Res 8, 374–379.CrossRef Boyne, M.T., Garcia, B.A., Li, M., Zamdborg, L., Wenger, C.D., Babai, S., and Kelleher, N.L. (2009). Tandem mass spectrometry with ultrahigh mass accuracy clarifies peptide identification by database retrieval. J Proteome Res 8, 374–379.CrossRef
Zurück zum Zitat Cano, M.P., Hernandez, A., and DeAncos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. J Food Sci 62(1), 85–88. Cano, M.P., Hernandez, A., and DeAncos, B. (1997). High pressure and temperature effects on enzyme inactivation in strawberry and orange products. J Food Sci 62(1), 85–88.
Zurück zum Zitat Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159.CrossRef Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159.CrossRef
Zurück zum Zitat Domon, B., and Aebersold, R. (2006). Mass spectrometry and protein analysis. Science 312, 212–217.CrossRef Domon, B., and Aebersold, R. (2006). Mass spectrometry and protein analysis. Science 312, 212–217.CrossRef
Zurück zum Zitat Gross, V., Carlson, G., Kwan, A.T., Smejkal, G., Freeman, E., Ivanov, A.R., and Lazarev, A. (2008). Tissue fractionation by hydrostatic pressure cycling technology: the unified sample preparation technique for systems biology studies. J Biomol Tech 19, 189–199. Gross, V., Carlson, G., Kwan, A.T., Smejkal, G., Freeman, E., Ivanov, A.R., and Lazarev, A. (2008). Tissue fractionation by hydrostatic pressure cycling technology: the unified sample preparation technique for systems biology studies. J Biomol Tech 19, 189–199.
Zurück zum Zitat Hauser, N.J., and Basile, F. (2008). Online microwave D-cleavage LC-ESI-MS/MS of intact proteins: Site-specific cleavages at aspartic acid residues and disulfide bonds. J Proteome Res 7, 1012–1026.CrossRef Hauser, N.J., and Basile, F. (2008). Online microwave D-cleavage LC-ESI-MS/MS of intact proteins: Site-specific cleavages at aspartic acid residues and disulfide bonds. J Proteome Res 7, 1012–1026.CrossRef
Zurück zum Zitat Hauser, N.J., Han, H., McLuckey, S.A., and Basile, F. (2008). Electron transfer dissociation of peptides generated by microwave D-cleavage digestion of proteins. J Proteome Res 7, 1867–1872.CrossRef Hauser, N.J., Han, H., McLuckey, S.A., and Basile, F. (2008). Electron transfer dissociation of peptides generated by microwave D-cleavage digestion of proteins. J Proteome Res 7, 1867–1872.CrossRef
Zurück zum Zitat Havlis, J., Thomas, H., Sebela, M., and Shevchenko, A. (2003). Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem 75, 1300–1306.CrossRef Havlis, J., Thomas, H., Sebela, M., and Shevchenko, A. (2003). Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem 75, 1300–1306.CrossRef
Zurück zum Zitat Hernandez, A., and Cano, M.P. (1998). High-pressure and temperature effects on enzyme inactivation in tomato puree. J Agric Food Chem 46, 266–270.CrossRef Hernandez, A., and Cano, M.P. (1998). High-pressure and temperature effects on enzyme inactivation in tomato puree. J Agric Food Chem 46, 266–270.CrossRef
Zurück zum Zitat Hixson, K.K., Adkins, J.N., Baker, S.E., Moore, R.J., Chromy, B.A., Smith, R.D., McCutchen-Maloney, S.L., and Lipton, M.S. (2006). Biomarker candidate identification in Yersinia pestis using organism-wide semiquantitative proteomics. J Proteome Res 5, 3008–3017.CrossRef Hixson, K.K., Adkins, J.N., Baker, S.E., Moore, R.J., Chromy, B.A., Smith, R.D., McCutchen-Maloney, S.L., and Lipton, M.S. (2006). Biomarker candidate identification in Yersinia pestis using organism-wide semiquantitative proteomics. J Proteome Res 5, 3008–3017.CrossRef
Zurück zum Zitat Isaacson, T., Damasceno, C.M., Saravanan, R.S., He, Y., Catala, C., Saladie, M., and Rose, J.K. (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1, 769–774.CrossRef Isaacson, T., Damasceno, C.M., Saravanan, R.S., He, Y., Catala, C., Saladie, M., and Rose, J.K. (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1, 769–774.CrossRef
Zurück zum Zitat Kim, B.C., Lopez-Ferrer, D., Lee, S.M., Ahn, H.K., Nair, S., Kim, S.H., Kim, B.S., Petritis, K., Camp, D.G., Grate, J.W., et al. (2009). Highly stable trypsin-aggregate coatings on polymer nanofibers for repeated protein digestion. Proteomics 9, 1893–1900.CrossRef Kim, B.C., Lopez-Ferrer, D., Lee, S.M., Ahn, H.K., Nair, S., Kim, S.H., Kim, B.S., Petritis, K., Camp, D.G., Grate, J.W., et al. (2009). Highly stable trypsin-aggregate coatings on polymer nanofibers for repeated protein digestion. Proteomics 9, 1893–1900.CrossRef
Zurück zum Zitat Kiser, J.Z., Post, M., Wang, B., and Miyagi, M. (2009). Streptomyces erythraeus trypsin for proteomics applications. J Proteome Res 8, 1810–1817.CrossRef Kiser, J.Z., Post, M., Wang, B., and Miyagi, M. (2009). Streptomyces erythraeus trypsin for proteomics applications. J Proteome Res 8, 1810–1817.CrossRef
Zurück zum Zitat Lill, J.R., Ingle, E.S., Liu, P.S., Pham, V., and Sandoval, W.N. (2007). Microwave-assisted proteomics. Mass Spectrom Rev 26, 657–671.CrossRef Lill, J.R., Ingle, E.S., Liu, P.S., Pham, V., and Sandoval, W.N. (2007). Microwave-assisted proteomics. Mass Spectrom Rev 26, 657–671.CrossRef
Zurück zum Zitat Lopez-Ferrer, D., Capelo, J.L., and Vazquez, J. (2005). Ultra fast trypsin digestion of proteins by high intensity focused ultrasound. J Proteome Res 4, 1569–1574.CrossRef Lopez-Ferrer, D., Capelo, J.L., and Vazquez, J. (2005). Ultra fast trypsin digestion of proteins by high intensity focused ultrasound. J Proteome Res 4, 1569–1574.CrossRef
Zurück zum Zitat Lopez-Ferrer, D., Heibeck, T.H., Petritis, K., Hixson, K.K., Qian, W., Monroe, M.E., Mayampurath, A., Moore, R.J., Belov, M.E., Camp, D.G., 2nd, et al. (2008a). Rapid sample processing for LC-MS-based quantitative proteomics using high intensity focused ultrasound. J Proteome Res 7, 3860–3867.CrossRef Lopez-Ferrer, D., Heibeck, T.H., Petritis, K., Hixson, K.K., Qian, W., Monroe, M.E., Mayampurath, A., Moore, R.J., Belov, M.E., Camp, D.G., 2nd, et al. (2008a). Rapid sample processing for LC-MS-based quantitative proteomics using high intensity focused ultrasound. J Proteome Res 7, 3860–3867.CrossRef
Zurück zum Zitat Lopez-Ferrer, D., Hixson, K.K., Smallwood, H.S., Squier, T.C., Petritis, K., and Smith, R.D. (2009). Evaluation of a high-intensity focused ultrasound-immobilized trypsin digestion and 18O-labeling method for quantitative proteomics. Anal Chem 81, 6272–6277. Lopez-Ferrer, D., Hixson, K.K., Smallwood, H.S., Squier, T.C., Petritis, K., and Smith, R.D. (2009). Evaluation of a high-intensity focused ultrasound-immobilized trypsin digestion and 18O-labeling method for quantitative proteomics. Anal Chem 81, 6272–6277.
Zurück zum Zitat Lopez-Ferrer, D., Martinez-Bartolome, S., Villar, M., Campillos, M., Martin-Maroto, F., and Vazquez, J. (2004). Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST. Anal Chem 76, 6853–6860.CrossRef Lopez-Ferrer, D., Martinez-Bartolome, S., Villar, M., Campillos, M., Martin-Maroto, F., and Vazquez, J. (2004). Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST. Anal Chem 76, 6853–6860.CrossRef
Zurück zum Zitat Lopez-Ferrer, D., Petritis, K., Hixson, K.K., Heibeck, T.H., Moore, R.J., Belov, M.E., Camp, D.G., 2nd, and Smith, R.D. (2008b). Application of pressurized solvents for ultrafast trypsin hydrolysis in proteomics: Proteomics on the fly. J Proteome Res 7, 3276–3281.CrossRef Lopez-Ferrer, D., Petritis, K., Hixson, K.K., Heibeck, T.H., Moore, R.J., Belov, M.E., Camp, D.G., 2nd, and Smith, R.D. (2008b). Application of pressurized solvents for ultrafast trypsin hydrolysis in proteomics: Proteomics on the fly. J Proteome Res 7, 3276–3281.CrossRef
Zurück zum Zitat Lopez-Ferrer, D., Petritis, K., Lourette, N.M., Clowers, B., Hixson, K.K., Heibeck, T., Prior, D.C., Pasa-Tolic, L., Camp, D.G., 2nd, Belov, M.E., et al. (2008c). On-line digestion system for protein characterization and proteome analysis. Anal Chem 80, 8930–8936. Lopez-Ferrer, D., Petritis, K., Lourette, N.M., Clowers, B., Hixson, K.K., Heibeck, T., Prior, D.C., Pasa-Tolic, L., Camp, D.G., 2nd, Belov, M.E., et al. (2008c). On-line digestion system for protein characterization and proteome analysis. Anal Chem 80, 8930–8936.
Zurück zum Zitat Manza, L.L., Stamer, S.L., Ham, A.J., Codreanu, S.G., and Liebler, D.C. (2005). Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5, 1742–1745.CrossRef Manza, L.L., Stamer, S.L., Ham, A.J., Codreanu, S.G., and Liebler, D.C. (2005). Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5, 1742–1745.CrossRef
Zurück zum Zitat Pramanik, B.N., Mirza, U.A., Ing, Y.H., Liu, Y.H., Bartner, P.L., Weber, P.C., and Bose, A.K. (2002). Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Sci 11, 2676–2687.CrossRef Pramanik, B.N., Mirza, U.A., Ing, Y.H., Liu, Y.H., Bartner, P.L., Weber, P.C., and Bose, A.K. (2002). Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Sci 11, 2676–2687.CrossRef
Zurück zum Zitat Qian, W.J., Liu, T., Petyuk, V.A., Gritsenko, M.A., Petritis, B.O., Polpitiya, A.D., Kaushal, A., Xiao, W., Finnerty, C.C., Jeschke, M.G., et al. (2009). Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled “universal” reference sample. J Proteome Res 8, 290–299.CrossRef Qian, W.J., Liu, T., Petyuk, V.A., Gritsenko, M.A., Petritis, B.O., Polpitiya, A.D., Kaushal, A., Xiao, W., Finnerty, C.C., Jeschke, M.G., et al. (2009). Large-scale multiplexed quantitative discovery proteomics enabled by the use of an (18)O-labeled “universal” reference sample. J Proteome Res 8, 290–299.CrossRef
Zurück zum Zitat Rial-Otero, R., Carreira, R.J., Cordeiro, F.M., Moro, A.J., Fernandes, L., Moura, I., and Capelo, J.L. (2007). Sonoreactor-based technology for fast high-throughput proteolytic digestion of proteins. J Proteome Res 6, 909–912.CrossRef Rial-Otero, R., Carreira, R.J., Cordeiro, F.M., Moro, A.J., Fernandes, L., Moura, I., and Capelo, J.L. (2007). Sonoreactor-based technology for fast high-throughput proteolytic digestion of proteins. J Proteome Res 6, 909–912.CrossRef
Zurück zum Zitat Russell, W.K., Park, Z.Y., and Russell, D.H. (2001). Proteolysis in mixed organic-aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry. Anal Chem 73, 2682–2685.CrossRef Russell, W.K., Park, Z.Y., and Russell, D.H. (2001). Proteolysis in mixed organic-aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry. Anal Chem 73, 2682–2685.CrossRef
Zurück zum Zitat Sapan, C.V., Lundblad, R.L., and Price, N.C. (1999). Colorimetric protein assay techniques. Biotechnol Appl Biochem 29(Pt 2), 99–108. Sapan, C.V., Lundblad, R.L., and Price, N.C. (1999). Colorimetric protein assay techniques. Biotechnol Appl Biochem 29(Pt 2), 99–108.
Zurück zum Zitat Smejkal, G.B., Robinson, M.H., Lawrence, N.P., Tao, F., Saravis, C.A., and Schumacher, R.T. (2006). Increased protein yields from Escherichia coli using pressure-cycling technology. J Biomol Tech 17, 173–175. Smejkal, G.B., Robinson, M.H., Lawrence, N.P., Tao, F., Saravis, C.A., and Schumacher, R.T. (2006). Increased protein yields from Escherichia coli using pressure-cycling technology. J Biomol Tech 17, 173–175.
Zurück zum Zitat Smejkal, G.B., Witzmann, F.A., Ringham, H., Small, D., Chase, S.F., Behnke, J., and Ting, E. (2007). Sample preparation for two-dimensional gel electrophoresis using pressure cycling technology. Anal Biochem 363, 309–311.CrossRef Smejkal, G.B., Witzmann, F.A., Ringham, H., Small, D., Chase, S.F., Behnke, J., and Ting, E. (2007). Sample preparation for two-dimensional gel electrophoresis using pressure cycling technology. Anal Biochem 363, 309–311.CrossRef
Zurück zum Zitat Swatkoski, S., Gutierrez, P., Ginter, J., Petrov, A., Dinman, J.D., Edwards, N., and Fenselau, C. (2007a). Integration of residue-specific acid cleavage into proteomic workflows. J Proteome Res 6, 4525–4527.CrossRef Swatkoski, S., Gutierrez, P., Ginter, J., Petrov, A., Dinman, J.D., Edwards, N., and Fenselau, C. (2007a). Integration of residue-specific acid cleavage into proteomic workflows. J Proteome Res 6, 4525–4527.CrossRef
Zurück zum Zitat Swatkoski, S., Gutierrez, P., Wynne, C., Petrov, A., Dinman, J.D., Edwards, N., and Fenselau, C. (2008). Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications. J Proteome Res 7, 579–586.CrossRef Swatkoski, S., Gutierrez, P., Wynne, C., Petrov, A., Dinman, J.D., Edwards, N., and Fenselau, C. (2008). Evaluation of microwave-accelerated residue-specific acid cleavage for proteomic applications. J Proteome Res 7, 579–586.CrossRef
Zurück zum Zitat Swatkoski, S., Russell, S., Edwards, N., and Fenselau, C. (2007b). Analysis of a model virus using residue-specific chemical cleavage and MALDI-TOF mass spectrometry. Anal Chem 79, 654–658.CrossRef Swatkoski, S., Russell, S., Edwards, N., and Fenselau, C. (2007b). Analysis of a model virus using residue-specific chemical cleavage and MALDI-TOF mass spectrometry. Anal Chem 79, 654–658.CrossRef
Zurück zum Zitat van Montfort, B.A., Doeven, M.K., Canas, B., Veenhoff, L.M., Poolman, B., and Robillard, G.T. (2002). Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochim Biophys Acta 1555, 111–115.CrossRef van Montfort, B.A., Doeven, M.K., Canas, B., Veenhoff, L.M., Poolman, B., and Robillard, G.T. (2002). Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochim Biophys Acta 1555, 111–115.CrossRef
Zurück zum Zitat Wang, H., Qian, W.J., Mottaz, H.M., Clauss, T.R., Anderson, D.J., Moore, R.J., Camp, D.G., 2nd, Khan, A.H., Sforza, D.M., Pallavicini, M., et al. (2005). Development and evaluation of a micro- and nanoscale proteomic sample preparation method. J Proteome Res 4, 2397–2403.CrossRef Wang, H., Qian, W.J., Mottaz, H.M., Clauss, T.R., Anderson, D.J., Moore, R.J., Camp, D.G., 2nd, Khan, A.H., Sforza, D.M., Pallavicini, M., et al. (2005). Development and evaluation of a micro- and nanoscale proteomic sample preparation method. J Proteome Res 4, 2397–2403.CrossRef
Zurück zum Zitat Washburn, M.P., Wolters, D., and Yates, J.R., 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.CrossRef Washburn, M.P., Wolters, D., and Yates, J.R., 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.CrossRef
Zurück zum Zitat Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat Methods 6, 359–362.CrossRef Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat Methods 6, 359–362.CrossRef
Zurück zum Zitat Wolters, D.A., Washburn, M.P., and Yates, J.R., 3rd (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73, 5683–5690.CrossRef Wolters, D.A., Washburn, M.P., and Yates, J.R., 3rd (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73, 5683–5690.CrossRef
Zurück zum Zitat Wu, C.C., MacCoss, M.J., Howell, K.E., and Yates, J.R., 3rd (2003). A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21, 532–538.CrossRef Wu, C.C., MacCoss, M.J., Howell, K.E., and Yates, J.R., 3rd (2003). A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21, 532–538.CrossRef
Zurück zum Zitat Wu, C.C., and Yates, J.R., 3rd (2003). The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21, 262–267.CrossRef Wu, C.C., and Yates, J.R., 3rd (2003). The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21, 262–267.CrossRef
Zurück zum Zitat Xiang, R., Shi, Y., Dillon, D.A., Negin, B., Horvath, C., and Wilkins, J.A. (2004). 2D LC/MS analysis of membrane proteins from breast cancer cell lines MCF7 and BT474. J Proteome Res 3, 1278–1283.CrossRef Xiang, R., Shi, Y., Dillon, D.A., Negin, B., Horvath, C., and Wilkins, J.A. (2004). 2D LC/MS analysis of membrane proteins from breast cancer cell lines MCF7 and BT474. J Proteome Res 3, 1278–1283.CrossRef
Zurück zum Zitat Zhong, H., Zhang, Y., Wen, Z., and Li, L. (2004). Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis. Nat Biotechnol 22, 1291–1296.CrossRef Zhong, H., Zhang, Y., Wen, Z., and Li, L. (2004). Protein sequencing by mass analysis of polypeptide ladders after controlled protein hydrolysis. Nat Biotechnol 22, 1291–1296.CrossRef
Metadaten
Titel
Ultra-Fast Sample Preparation for High-Throughput Proteomics
verfasst von
Daniel Lopez-Ferrer
Kim K. Hixson
Mikhail E. Belov
Richard D. Smith
Copyright-Jahr
2011
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0828-0_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.