Skip to main content

2014 | OriginalPaper | Buchkapitel

Ultrafast All-Optical Reversible Peres and Feynman-Double Logic Gates with Silicon Microring Resonators

verfasst von : Purnima Sethi, Sukhdev Roy

Erschienen in: Transactions on Computational Science XXIV

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present designs of reversible Peres logic gate and Feynman-Double logic gate based on all-optical switching by two-photon absorption induced free-carrier injection in silicon add-drop microring resonators. The logic gates have been theoretically analyzed using time-domain coupled-mode theory and all-optical switching has been optimized for low-power (25 mW) ultrafast (25 ps) operation with high modulation depth (85 %) to enable logic operations at 40 Gb/s. The advantages of high Q-factor, tunability, compactness, cascadibility, reversibility and reconfigurability make the designs favorable for practical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Priolo, F., Gregorkiewicz, T., Galli, M., Krauss, T.F.: Silicon nanostructures for photonics and photovoltaics. Nat. Nanotech. 9, 19–32 (2014)CrossRef Priolo, F., Gregorkiewicz, T., Galli, M., Krauss, T.F.: Silicon nanostructures for photonics and photovoltaics. Nat. Nanotech. 9, 19–32 (2014)CrossRef
2.
Zurück zum Zitat Jalali, B., Fathpour, S.: Silicon photonics. IEEE J. Lightwave Technol. 24, 4600–4615 (2006)CrossRef Jalali, B., Fathpour, S.: Silicon photonics. IEEE J. Lightwave Technol. 24, 4600–4615 (2006)CrossRef
3.
Zurück zum Zitat Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon. 4, 518–526 (2010)CrossRef Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photon. 4, 518–526 (2010)CrossRef
4.
Zurück zum Zitat Moss, D.J., Morandotti, R., Gaeta, A.L., Lipson, M.: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013)CrossRef Moss, D.J., Morandotti, R., Gaeta, A.L., Lipson, M.: New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013)CrossRef
5.
Zurück zum Zitat Heck, M.J.R., Bauters, J.F., Davenport, M.L., Doylend, J.K., Jain, S., Kurczveil, G., Srinivasan, S., Tang, Y., Bowers, J.E.: Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quant. Electron. 19, 6100117–6100134 (2012)CrossRef Heck, M.J.R., Bauters, J.F., Davenport, M.L., Doylend, J.K., Jain, S., Kurczveil, G., Srinivasan, S., Tang, Y., Bowers, J.E.: Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quant. Electron. 19, 6100117–6100134 (2012)CrossRef
6.
Zurück zum Zitat Xu, Q., Soref, R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Exp. 19, 5244–5259 (2011)CrossRef Xu, Q., Soref, R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Exp. 19, 5244–5259 (2011)CrossRef
7.
Zurück zum Zitat Zhang, L., Ding, J., Tian, Y., Ji, R., Yang, L., Chen, H., Zhou, P., Lu, Y., Zhu, W., Min, R.: Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations. Opt. Exp. 20, 11605–11614 (2012)CrossRef Zhang, L., Ding, J., Tian, Y., Ji, R., Yang, L., Chen, H., Zhou, P., Lu, Y., Zhu, W., Min, R.: Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations. Opt. Exp. 20, 11605–11614 (2012)CrossRef
8.
Zurück zum Zitat Tian, Y.H., Zhang, L., Ji, R.Q., Yang, L., Zhou, P., Chen, H.T., Ding, J.F., Zhu, W.W., Lu, Y.Y., Jia, L.X., Fang, Q., Yu, M.B.: Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. Opt. Lett. 36, 1650–1652 (2011)CrossRef Tian, Y.H., Zhang, L., Ji, R.Q., Yang, L., Zhou, P., Chen, H.T., Ding, J.F., Zhu, W.W., Lu, Y.Y., Jia, L.X., Fang, Q., Yu, M.B.: Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. Opt. Lett. 36, 1650–1652 (2011)CrossRef
9.
Zurück zum Zitat Lin, S., Ishikawa, Y., Wada, K.: Demonstration of optical computing logics based on binary decision diagram. Opt. Exp. 20, 1378–1384 (2012)CrossRef Lin, S., Ishikawa, Y., Wada, K.: Demonstration of optical computing logics based on binary decision diagram. Opt. Exp. 20, 1378–1384 (2012)CrossRef
11.
Zurück zum Zitat Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)CrossRefMATH Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)CrossRefMATH
12.
15.
Zurück zum Zitat Huang, Y.-P., Kumar, P.: Interaction-free quantum optical Fredkin gates in χ2 microdisks. IEEE J. Quantum Electron. 18, 600–611 (2012)CrossRef Huang, Y.-P., Kumar, P.: Interaction-free quantum optical Fredkin gates in χ2 microdisks. IEEE J. Quantum Electron. 18, 600–611 (2012)CrossRef
16.
Zurück zum Zitat Fedorov, A., Steffen, L., Baur, M., Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2011)CrossRef Fedorov, A., Steffen, L., Baur, M., Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2011)CrossRef
17.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6, 14–31 (2010) Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6, 14–31 (2010)
18.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular qca. IEEE Trans. Nanotechnol. 9, 62–69 (2010)CrossRef Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular qca. IEEE Trans. Nanotechnol. 9, 62–69 (2010)CrossRef
19.
Zurück zum Zitat Lipson, M.: Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005)CrossRef Lipson, M.: Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005)CrossRef
20.
Zurück zum Zitat Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012)CrossRef Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Selvaraja, S.K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photon. Rev. 6, 47–73 (2012)CrossRef
21.
Zurück zum Zitat Almeida, V.R., Barrios, C.A., Panepucci, R.R., Lipson, M.: All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)CrossRef Almeida, V.R., Barrios, C.A., Panepucci, R.R., Lipson, M.: All-optical control of light on a silicon chip. Nature 431, 1081–1084 (2004)CrossRef
22.
Zurück zum Zitat Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)CrossRef Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)CrossRef
23.
Zurück zum Zitat Xu, Q., Lipson, M.: All-optical logic based on silicon micro-ring resonators. Opt. Exp. 15, 924–929 (2007)CrossRef Xu, Q., Lipson, M.: All-optical logic based on silicon micro-ring resonators. Opt. Exp. 15, 924–929 (2007)CrossRef
24.
Zurück zum Zitat Preble, S.F., Xu, Q., Lipson, M.: Changing the color of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007)CrossRef Preble, S.F., Xu, Q., Lipson, M.: Changing the color of light in a silicon resonator. Nat. Photon. 1, 293–296 (2007)CrossRef
25.
Zurück zum Zitat Dong, P., Preble, S.F., Lipson, M.: All-optical compact silicon comb switch. Opt. Exp. 15, 9600–9605 (2007)CrossRef Dong, P., Preble, S.F., Lipson, M.: All-optical compact silicon comb switch. Opt. Exp. 15, 9600–9605 (2007)CrossRef
26.
Zurück zum Zitat Caulfield, H.J., Soref, R.A.: Universal reconfigurable optical logic with silicon-on-insulator resonant structures. Photonics Nanostruct. 5, 14–20 (2007)CrossRef Caulfield, H.J., Soref, R.A.: Universal reconfigurable optical logic with silicon-on-insulator resonant structures. Photonics Nanostruct. 5, 14–20 (2007)CrossRef
27.
Zurück zum Zitat Sethi, P., Roy, S.: All-optical ultrafast adder/subtractor and MUX/DEMUX circuits with silicon microring resonators. In: Dolev, S., Oltean, M. (eds.) OSC 2012. LNCS, vol. 7715, pp. 42–53. Springer, Heidelberg (2013)CrossRef Sethi, P., Roy, S.: All-optical ultrafast adder/subtractor and MUX/DEMUX circuits with silicon microring resonators. In: Dolev, S., Oltean, M. (eds.) OSC 2012. LNCS, vol. 7715, pp. 42–53. Springer, Heidelberg (2013)CrossRef
28.
Zurück zum Zitat Sethi, P., Roy, S.: All-optical ultrafast switching in 2 × 2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates. IEEE J. Lightw. Technol. 32, 2173–2180 (2014)CrossRef Sethi, P., Roy, S.: All-optical ultrafast switching in 2 × 2 silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates. IEEE J. Lightw. Technol. 32, 2173–2180 (2014)CrossRef
29.
Zurück zum Zitat Sethi, P., Roy, S.: Ultrafast all-optical flip-flops, simultaneous comparator-decoder and reconfigurable logic unit with silicon microring resonator switches. IEEE J. Sel. Top. Quantum. Electron. 20, 118–125 (2014)CrossRef Sethi, P., Roy, S.: Ultrafast all-optical flip-flops, simultaneous comparator-decoder and reconfigurable logic unit with silicon microring resonator switches. IEEE J. Sel. Top. Quantum. Electron. 20, 118–125 (2014)CrossRef
30.
Zurück zum Zitat Manolatou, C., Lipson, M.: All-optical silicon modulators based on carrier injection by two-photon absorption. IEEE J. Lightwave Technol. 24, 1433–1439 (2006)CrossRef Manolatou, C., Lipson, M.: All-optical silicon modulators based on carrier injection by two-photon absorption. IEEE J. Lightwave Technol. 24, 1433–1439 (2006)CrossRef
31.
Zurück zum Zitat Waldow, M., Plötzing, T., Gottheil, M., Först, M., Bolten, J., Wahlbrink, T., Kurz, H.: 25 ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. Opt. Exp. 16, 7693–7702 (2008)CrossRef Waldow, M., Plötzing, T., Gottheil, M., Först, M., Bolten, J., Wahlbrink, T., Kurz, H.: 25 ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. Opt. Exp. 16, 7693–7702 (2008)CrossRef
32.
Zurück zum Zitat Chin, A., Lee, K.Y., Lin, B.C., Horng, S.: Picosecond photoresponse of carriers in Si ion-implanted Si. Appl. Phys. Lett. 69, 653–655 (1996)CrossRef Chin, A., Lee, K.Y., Lin, B.C., Horng, S.: Picosecond photoresponse of carriers in Si ion-implanted Si. Appl. Phys. Lett. 69, 653–655 (1996)CrossRef
33.
Zurück zum Zitat Guha, B., Kyotoku, B.B.C., Lipson, M.: CMOS-compatible athermal silicon microring resonators. Opt. Exp. 18, 3487–3493 (2010)CrossRef Guha, B., Kyotoku, B.B.C., Lipson, M.: CMOS-compatible athermal silicon microring resonators. Opt. Exp. 18, 3487–3493 (2010)CrossRef
34.
Zurück zum Zitat Padmaraju, K., Chan, J., Chen, L., Lipson, M., Bergman, K.: Thermal stabilization of a microring modulator using feedback control. Opt. Exp. 20, 27999–28008 (2012)CrossRef Padmaraju, K., Chan, J., Chen, L., Lipson, M., Bergman, K.: Thermal stabilization of a microring modulator using feedback control. Opt. Exp. 20, 27999–28008 (2012)CrossRef
35.
Zurück zum Zitat Turner, A.C., Foster, M.A., Gaeta, A.L., Lipson, M.: Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Exp. 16, 4881–4887 (2008)CrossRef Turner, A.C., Foster, M.A., Gaeta, A.L., Lipson, M.: Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Exp. 16, 4881–4887 (2008)CrossRef
36.
Zurück zum Zitat Soref, R.A., Bennett, B.R.: Electrooptical effects in silicon. IEEE J. Quant. Electron. 23, 123–129 (1987)CrossRef Soref, R.A., Bennett, B.R.: Electrooptical effects in silicon. IEEE J. Quant. Electron. 23, 123–129 (1987)CrossRef
37.
Zurück zum Zitat Roy, S., Prasad, M.: Novel proposal for all-optical Fredkin logic gate with bacteriorhodopsin-coated microcavity and its applications. Opt. Eng. 49, 065201–065210 (2010)CrossRef Roy, S., Prasad, M.: Novel proposal for all-optical Fredkin logic gate with bacteriorhodopsin-coated microcavity and its applications. Opt. Eng. 49, 065201–065210 (2010)CrossRef
38.
Zurück zum Zitat Roy, S., Sethi, P., Topolancik, J., Vollmer, F.: All-optical reversible logic gates with optically controlled bacteriorhodopsin protein-coated microresonators. Adv. Opt. Technol. 2012, 727206–727212 (2012)CrossRef Roy, S., Sethi, P., Topolancik, J., Vollmer, F.: All-optical reversible logic gates with optically controlled bacteriorhodopsin protein-coated microresonators. Adv. Opt. Technol. 2012, 727206–727212 (2012)CrossRef
39.
Zurück zum Zitat Roy, S., Prasad, M., Topolancik, T., Vollmer, F.: All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. J. Appl. Phys. 107, 053115–053124 (2010)CrossRef Roy, S., Prasad, M., Topolancik, T., Vollmer, F.: All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. J. Appl. Phys. 107, 053115–053124 (2010)CrossRef
40.
Zurück zum Zitat Roy, S., Prasad, M.: Design of all-optical reconfigurable logic unit with bacteriorhodopsin protein coated microcavity switches. IEEE Trans. Nanobiosci. 10, 160–171 (2011)CrossRef Roy, S., Prasad, M.: Design of all-optical reconfigurable logic unit with bacteriorhodopsin protein coated microcavity switches. IEEE Trans. Nanobiosci. 10, 160–171 (2011)CrossRef
41.
Zurück zum Zitat Simos, H., Mesaritakis, C., Alexandropoulos, D., Syvridis, D.: Dynamic analysis of crosstalk performance in microring-based add/drop filters. IEEE J. Lightw. Technol. 27, 2027–2034 (2009)CrossRef Simos, H., Mesaritakis, C., Alexandropoulos, D., Syvridis, D.: Dynamic analysis of crosstalk performance in microring-based add/drop filters. IEEE J. Lightw. Technol. 27, 2027–2034 (2009)CrossRef
42.
Zurück zum Zitat Lee, B.G., Biberman, A., Dong, P., Lipson, M., Bergman, K.: All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photon. Technol. Lett. 20, 767–769 (2008)CrossRef Lee, B.G., Biberman, A., Dong, P., Lipson, M., Bergman, K.: All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photon. Technol. Lett. 20, 767–769 (2008)CrossRef
43.
Zurück zum Zitat Nozaki, K., Tanabe, T., Shinya, A., Matsuo, S., Sato, T., Taniyama, H., Notomi, M.: Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010)CrossRef Nozaki, K., Tanabe, T., Shinya, A., Matsuo, S., Sato, T., Taniyama, H., Notomi, M.: Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010)CrossRef
44.
Zurück zum Zitat Sederberg, S., Driedger, D., Nielsen, M., Elezzabi, A.Y.: Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. Opt. Exp. 19, 23494–23503 (2011)CrossRef Sederberg, S., Driedger, D., Nielsen, M., Elezzabi, A.Y.: Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator. Opt. Exp. 19, 23494–23503 (2011)CrossRef
45.
Zurück zum Zitat Midrio, M., Boscolo, S., Moresco, M., Romagnoli, M., Angelis, C.D., Locatelli, A., Capobianco, A.D.: Graphene–assisted critically–coupled optical ring modulator. Opt. Exp. 20, 23144–23155 (2012)CrossRef Midrio, M., Boscolo, S., Moresco, M., Romagnoli, M., Angelis, C.D., Locatelli, A., Capobianco, A.D.: Graphene–assisted critically–coupled optical ring modulator. Opt. Exp. 20, 23144–23155 (2012)CrossRef
Metadaten
Titel
Ultrafast All-Optical Reversible Peres and Feynman-Double Logic Gates with Silicon Microring Resonators
verfasst von
Purnima Sethi
Sukhdev Roy
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45711-5_2