Skip to main content

2017 | OriginalPaper | Buchkapitel

4. Ultramafic Lower-Mantle Mineral Association

verfasst von : Felix V. Kaminsky

Erschienen in: The Earth's Lower Mantle

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The juvenile ultramafic lower mantle is composed of the mineral association: bridgmanite + ferropericlase + CaSi-perovskite + free silica. Bridgmanite, with mg = 0.84–0.96 forms two compositional groups: low-Al and high-Al. High-Al bridgmanite is richer in Fe and infers the characteristic of deeper layers in the lower mantle. The crystal structure of bridgmanite is orthorhombic through the entire lower mantle down to the D″ layer. The chemical composition of ferropericlase is different from the predicted one with the magnesium index mg varying from 0.36 to 0.90. Low-Fe ferropericlase has a cubic rocksalt structure, which is stable throughout the entire lower mantle. Iron contents in both ferropericlase and bridgmanite and ferropericlase increase with pressure indicating the increase of Fe concentration in the lower mantle with depth. CaSi-perovskite is remarkably clean in its chemical composition with only minor admixtures of Ti, Al and Fe, but is enriched in trace elements. CaSi-perovskite within the lower mantle has a cubic structure which at low temperatures (in subsolidus conditions) may transfer into a tetragonal or orthorhombic structure. The presence of free silica in the lower mantle was identified in geological samples from all areas. In the upper part of the lower mantle it is represented by stishovite; at a depth of 1600–1800 km stishovite transforms into the CaCl2-structured polymorph; and at the CMB, into a α-PbO2 phase seifertite. In addition to the major minerals, a variety of other mineral phases occurs in the lower mantle: Mg–Cr–Fe, Ca–Cr and other orthorhombic oxides, jeffbenite, ilmenite, native Ni and Fe, moissanite and some others.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adams, D. J., & Oganov, A. R. (2006). Ab initio molecular dynamics study of CaSiO3 perovskite at P–T conditions of Earth’s lower mantle. Physical Review B, 73, 184106.CrossRef Adams, D. J., & Oganov, A. R. (2006). Ab initio molecular dynamics study of CaSiO3 perovskite at P–T conditions of Earth’s lower mantle. Physical Review B, 73, 184106.CrossRef
Zurück zum Zitat Akaogi, M. (2007). Phase transitions of minerals in the transition zone and upper part of the lower mantle. In E. Ohtani (Ed.), Advances in High Pressure Mineralogy (Vol. 421, pp. 1–13). Geological Society of America Memoirs. Akaogi, M. (2007). Phase transitions of minerals in the transition zone and upper part of the lower mantle. In E. Ohtani (Ed.), Advances in High Pressure Mineralogy (Vol. 421, pp. 1–13). Geological Society of America Memoirs.
Zurück zum Zitat Akaogi, M., Hamada, Y., Suzuki, T., Kobayashi, M., & Okada, M. (1999). High pressure transitions in the system MgAl2O4–CaAl2O4: A new hexagonal aluminous phase with implication for the lower mantle. Physics of the Earth and Planetary Interiors, 115, 67–77.CrossRef Akaogi, M., Hamada, Y., Suzuki, T., Kobayashi, M., & Okada, M. (1999). High pressure transitions in the system MgAl2O4–CaAl2O4: A new hexagonal aluminous phase with implication for the lower mantle. Physics of the Earth and Planetary Interiors, 115, 67–77.CrossRef
Zurück zum Zitat Akaogi, M., Tanaka, A., & Ito, E. (2002). Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: Phase equilibria, calorimetry and implications for mantle structure. Physics of the Earth and Planetary Interiors, 132, 303–324.CrossRef Akaogi, M., Tanaka, A., & Ito, E. (2002). Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12–Mg3Al2Si3O12 at high pressures and high temperatures: Phase equilibria, calorimetry and implications for mantle structure. Physics of the Earth and Planetary Interiors, 132, 303–324.CrossRef
Zurück zum Zitat Akber-Knutson, S., & Bukowinski, M. S. T. (2004). The energetics of aluminum solubility into MgSiO3 perovskite at lower mantle conditions. Earth and Planetary Science Letters, 220, 317–330. doi:10.1016/S0012-821X(04)00065-2 CrossRef Akber-Knutson, S., & Bukowinski, M. S. T. (2004). The energetics of aluminum solubility into MgSiO3 perovskite at lower mantle conditions. Earth and Planetary Science Letters, 220, 317–330. doi:10.​1016/​S0012-821X(04)00065-2 CrossRef
Zurück zum Zitat Akber-Knutson, S., Bukowinski, M. S. T., & Matas, J. (2002). On the structure and compressibility of CaSiO3 perovskte. Geophysical Research Letters, 29(3), 1034–1037.CrossRef Akber-Knutson, S., Bukowinski, M. S. T., & Matas, J. (2002). On the structure and compressibility of CaSiO3 perovskte. Geophysical Research Letters, 29(3), 1034–1037.CrossRef
Zurück zum Zitat Anderson, D. L. (2002). The case for irreversible chemical stratification of the mantle. International Geology Review, 44(2), 97–116.CrossRef Anderson, D. L. (2002). The case for irreversible chemical stratification of the mantle. International Geology Review, 44(2), 97–116.CrossRef
Zurück zum Zitat Andrault, D. (2001). Evaluation of (Mg, Fe) partitioning between silicate perovskite and magnesiowüstite up to 120 GPa and 2300 K. Journal of Geophysical Research, 106(B2), 2079–2087.CrossRef Andrault, D. (2001). Evaluation of (Mg, Fe) partitioning between silicate perovskite and magnesiowüstite up to 120 GPa and 2300 K. Journal of Geophysical Research, 106(B2), 2079–2087.CrossRef
Zurück zum Zitat Andrault, D., Angel, R. J., Mosenfelder, J. I., & Le Bihan, T. (2003). Equation of state of stishovite to lower mantle pressures. American Mineralogist, 88, 301–307.CrossRef Andrault, D., Angel, R. J., Mosenfelder, J. I., & Le Bihan, T. (2003). Equation of state of stishovite to lower mantle pressures. American Mineralogist, 88, 301–307.CrossRef
Zurück zum Zitat Andrault, D., Bolfan-Casanova, N., Bouhifd, M. A., Guignot, N., & Kawamoto, T. (2007). The role of Al-defects on the equation of state of Al–(Mg, Fe)SiO3 perovskite. Earth and Planetary Science Letters, 263, 167–179. doi:10.1016/j.epsl.2007.08.012 CrossRef Andrault, D., Bolfan-Casanova, N., Bouhifd, M. A., Guignot, N., & Kawamoto, T. (2007). The role of Al-defects on the equation of state of Al–(Mg, Fe)SiO3 perovskite. Earth and Planetary Science Letters, 263, 167–179. doi:10.​1016/​j.​epsl.​2007.​08.​012 CrossRef
Zurück zum Zitat Andrault, D., Bolfan-Casanova, N., & Guignot, N. (2001). Equation of state of lower mantle (Al, Fe)-MgSiO3 perovskite. Earth and Planetary Science Letters, 193(3–4), 501–508.CrossRef Andrault, D., Bolfan-Casanova, N., & Guignot, N. (2001). Equation of state of lower mantle (Al, Fe)-MgSiO3 perovskite. Earth and Planetary Science Letters, 193(3–4), 501–508.CrossRef
Zurück zum Zitat Andrault, D., Fiquet, G., Guyot, F., & Hanfland, M. (1998a). Pressure-induced Landau-type transition in stishovite. Science, 282(5389), 720–724.CrossRef Andrault, D., Fiquet, G., Guyot, F., & Hanfland, M. (1998a). Pressure-induced Landau-type transition in stishovite. Science, 282(5389), 720–724.CrossRef
Zurück zum Zitat Andrault, D., Neuville, D. R., Flank, A. M., & Wang, Y. (1998b). Cation sites in Al-rich MgSiO3 perovskites. American Mineralogist, 83, 1045–1053.CrossRef Andrault, D., Neuville, D. R., Flank, A. M., & Wang, Y. (1998b). Cation sites in Al-rich MgSiO3 perovskites. American Mineralogist, 83, 1045–1053.CrossRef
Zurück zum Zitat Andrault, D., Pesce, G., Bouhifd, M. A., Bolfan-Casanova, N., Hénot, J.-M., & Mezouar, M. (2014). Melting of subducted basalt at the core-mantle boundary. Science, 344(6186), 892–895.CrossRef Andrault, D., Pesce, G., Bouhifd, M. A., Bolfan-Casanova, N., Hénot, J.-M., & Mezouar, M. (2014). Melting of subducted basalt at the core-mantle boundary. Science, 344(6186), 892–895.CrossRef
Zurück zum Zitat Andrault, D., Petitgirard, S., Lo Nigro, G., Devidal, J.-L., Veronesi, G., Garbarino, G., et al. (2012). Solid-liquid iron partitioning in Earth’s deep mantle. Nature, 487, 354–357.CrossRef Andrault, D., Petitgirard, S., Lo Nigro, G., Devidal, J.-L., Veronesi, G., Garbarino, G., et al. (2012). Solid-liquid iron partitioning in Earth’s deep mantle. Nature, 487, 354–357.CrossRef
Zurück zum Zitat Antonangeli, D., Siebert, J., Aracne, C. M., Farber, D. L., Bosak, A., Hoesch, M., et al. (2011). Spin crossover in ferropericlase at high pressure: A seismologically transparent transition? Science, 331, 64–67.CrossRef Antonangeli, D., Siebert, J., Aracne, C. M., Farber, D. L., Bosak, A., Hoesch, M., et al. (2011). Spin crossover in ferropericlase at high pressure: A seismologically transparent transition? Science, 331, 64–67.CrossRef
Zurück zum Zitat Anzolini, C., Drewitt, J., Lord, O. T., Walter, M. J., & Nestola, F. (2016b). New stability field of jeffbenite (ex-“TAPP”): Possibility of super-deep origin. AGU Fall Meeting Abstract MR33A-2675, 1 p. Anzolini, C., Drewitt, J., Lord, O. T., Walter, M. J., & Nestola, F. (2016b). New stability field of jeffbenite (ex-“TAPP”): Possibility of super-deep origin. AGU Fall Meeting Abstract MR33A-2675, 1 p.
Zurück zum Zitat Armstrong, L. S., & Walter, M. J. (2012). Tetragonal almandine pyrope phase (TAPP): Retrograde Mg-perovskite from subducted oceanic crust? European Journal of Mineralogy, 24(4), 587–597.CrossRef Armstrong, L. S., & Walter, M. J. (2012). Tetragonal almandine pyrope phase (TAPP): Retrograde Mg-perovskite from subducted oceanic crust? European Journal of Mineralogy, 24(4), 587–597.CrossRef
Zurück zum Zitat Armstrong, L. S., Walter, M. J., Tuff, J. R., Lord, O. T., Lennie, A. R., Kleppe, F. R., et al. (2012). Perovskite phase relations in the system CaO–MgO–TiO2–SiO2 and implications for deep mantle lithologies. Journal of Petrology, 53(3), 611–635. doi:10.1093/petrology/egr073 CrossRef Armstrong, L. S., Walter, M. J., Tuff, J. R., Lord, O. T., Lennie, A. R., Kleppe, F. R., et al. (2012). Perovskite phase relations in the system CaO–MgO–TiO2–SiO2 and implications for deep mantle lithologies. Journal of Petrology, 53(3), 611–635. doi:10.​1093/​petrology/​egr073 CrossRef
Zurück zum Zitat Asahara, Y., Hirose, K., Ohishi, Y., Hirao, N., Ozawa, H., & Murakami, M. (2013). Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: Implications for the seismic features of subducting slabs in the mid-mantle. American Mineralogist, 98(11–12), 2053–2062. doi:10.2138/am.2013.4145 CrossRef Asahara, Y., Hirose, K., Ohishi, Y., Hirao, N., Ozawa, H., & Murakami, M. (2013). Acoustic velocity measurements for stishovite across the post-stishovite phase transition under deviatoric stress: Implications for the seismic features of subducting slabs in the mid-mantle. American Mineralogist, 98(11–12), 2053–2062. doi:10.​2138/​am.​2013.​4145 CrossRef
Zurück zum Zitat Auzende, A.-L., Badro, J., Ryerson, F. J., Weber, P. K., Fallon, S. J., Addad, A., et al. (2008). Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry. Earth and Planetary Science Letters, 269, 164–174. doi:10.1016/j.epsl.2008.02.001 CrossRef Auzende, A.-L., Badro, J., Ryerson, F. J., Weber, P. K., Fallon, S. J., Addad, A., et al. (2008). Element partitioning between magnesium silicate perovskite and ferropericlase: New insights into bulk lower-mantle geochemistry. Earth and Planetary Science Letters, 269, 164–174. doi:10.​1016/​j.​epsl.​2008.​02.​001 CrossRef
Zurück zum Zitat Badro, J., Fiquet, G., Guyot, F., Rueff, J.-P., Struzhkin, V. V., Vankó, G., et al. (2003). Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300(5620), 789–791. doi:10.1126/science.1081311 CrossRef Badro, J., Fiquet, G., Guyot, F., Rueff, J.-P., Struzhkin, V. V., Vankó, G., et al. (2003). Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300(5620), 789–791. doi:10.​1126/​science.​1081311 CrossRef
Zurück zum Zitat Barnes, S. J., & Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302.CrossRef Barnes, S. J., & Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 2279–2302.CrossRef
Zurück zum Zitat Bass, J. D. (2008). Recent progress in studies of the elastic properties of earth materials. Physics of the Earth and Planetary Interiors, 170, 207–209.CrossRef Bass, J. D. (2008). Recent progress in studies of the elastic properties of earth materials. Physics of the Earth and Planetary Interiors, 170, 207–209.CrossRef
Zurück zum Zitat Bassett, W. A. (2001). The birth and development of laser heating in DACs. Review of Scientific Instruments, 72, 1270–1272.CrossRef Bassett, W. A. (2001). The birth and development of laser heating in DACs. Review of Scientific Instruments, 72, 1270–1272.CrossRef
Zurück zum Zitat Becerro, A. I., McCammon, C. A., Langenhorst, F., Angel, R. J., & Seifert, F. (1999). Oxygen vacancy ordering in CaTiO3–CaFeO2.5. Phase Transitions, 69, 133–146.CrossRef Becerro, A. I., McCammon, C. A., Langenhorst, F., Angel, R. J., & Seifert, F. (1999). Oxygen vacancy ordering in CaTiO3–CaFeO2.5. Phase Transitions, 69, 133–146.CrossRef
Zurück zum Zitat Belonoshko, A. B., Dubrovinsky, L. S., & Dubrovinsky, N. A. (1996). A new high-pressure silica phase obtained by molecular dynamics. American Mineralogist, 81, 785–788.CrossRef Belonoshko, A. B., Dubrovinsky, L. S., & Dubrovinsky, N. A. (1996). A new high-pressure silica phase obtained by molecular dynamics. American Mineralogist, 81, 785–788.CrossRef
Zurück zum Zitat Bina, C. R. (2010). Scale limits of free-silica seismic scatterers in the lower mantle. Physics of the Earth and Planetary Interiors, 183, 110–114.CrossRef Bina, C. R. (2010). Scale limits of free-silica seismic scatterers in the lower mantle. Physics of the Earth and Planetary Interiors, 183, 110–114.CrossRef
Zurück zum Zitat Bindi, L., Dymshits, A. M., Bobrov, A. V., Litasov, K. D., Shatsky, A. F., Ohtani, E., et al. (2011). Crystal chemistry of sodium in the Earth’s interior: The structure of Na2MgSi5O12 synthesized at 17.5 GPa and 1700 °C. American Mineralogist, 96(2–3), 447–450.CrossRef Bindi, L., Dymshits, A. M., Bobrov, A. V., Litasov, K. D., Shatsky, A. F., Ohtani, E., et al. (2011). Crystal chemistry of sodium in the Earth’s interior: The structure of Na2MgSi5O12 synthesized at 17.5 GPa and 1700 °C. American Mineralogist, 96(2–3), 447–450.CrossRef
Zurück zum Zitat Bindi, L., Tamarova, A., Bobrov, A. V., Sirotkina, E. A., Tschauner, O., Walter, M. J., et al. (2016). Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle. American Mineralogist, 101, 483–486.CrossRef Bindi, L., Tamarova, A., Bobrov, A. V., Sirotkina, E. A., Tschauner, O., Walter, M. J., et al. (2016). Incorporation of high amounts of Na in ringwoodite: Possible implications for transport of alkali into lower mantle. American Mineralogist, 101, 483–486.CrossRef
Zurück zum Zitat Bläß, U. W., Langenhorst, F., Frost, D. J., & Seifert, F. (2007). Oxygen deficient perovskites in the system CaSiO3–CaAlO2.5 and implications for the Earth’s interior. Physics and Chemistry of Minerals, 34, 363–376.CrossRef Bläß, U. W., Langenhorst, F., Frost, D. J., & Seifert, F. (2007). Oxygen deficient perovskites in the system CaSiO3–CaAlO2.5 and implications for the Earth’s interior. Physics and Chemistry of Minerals, 34, 363–376.CrossRef
Zurück zum Zitat Bobrov, A. V., Kojitani, H., Akaogi, M., & Litvin, Yu A. (2008a). Phase relations on the diopside-hedenbergite-jadeite join up to 24 GPa and stability of Na-bearing majorite garnet. Geochimica et Cosmochimica Acta, 72(9), 2392–2408.CrossRef Bobrov, A. V., Kojitani, H., Akaogi, M., & Litvin, Yu A. (2008a). Phase relations on the diopside-hedenbergite-jadeite join up to 24 GPa and stability of Na-bearing majorite garnet. Geochimica et Cosmochimica Acta, 72(9), 2392–2408.CrossRef
Zurück zum Zitat Bobrov, A. V., Litvin, Yu A, Bindi, L., & Dymshits, A. M. (2008b). Phase relations and formation of sodium-rich majorite garnet in the system Mg3Al2Si3O12–Na2MgSi5O12 at 7.0 and 8.5 GPa. Contributions to Mineralogy and Petrology, 156(2), 243–257.CrossRef Bobrov, A. V., Litvin, Yu A, Bindi, L., & Dymshits, A. M. (2008b). Phase relations and formation of sodium-rich majorite garnet in the system Mg3Al2Si3O12–Na2MgSi5O12 at 7.0 and 8.5 GPa. Contributions to Mineralogy and Petrology, 156(2), 243–257.CrossRef
Zurück zum Zitat Bolfan-Casanova, N., Andrault, D., Amiguet, E., & Guignot, N. (2009). Equation of state and post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K. Physics of the Earth and Planetary Interiors, 174, 70–77. doi:10.1016/j.pepi.2008.06.024 CrossRef Bolfan-Casanova, N., Andrault, D., Amiguet, E., & Guignot, N. (2009). Equation of state and post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K. Physics of the Earth and Planetary Interiors, 174, 70–77. doi:10.​1016/​j.​pepi.​2008.​06.​024 CrossRef
Zurück zum Zitat Boujibar, A., Bolfan-Casanova, N., Andrault, D., Bouhifd, M. A., & Trcera, N. (2016). Incorporation of Fe2+ and Fe3+ in bridgmanite during magma ocean crystallization. American Mineralogist, 101, 1560–1570. doi:10.2138/am-2016-5561 CrossRef Boujibar, A., Bolfan-Casanova, N., Andrault, D., Bouhifd, M. A., & Trcera, N. (2016). Incorporation of Fe2+ and Fe3+ in bridgmanite during magma ocean crystallization. American Mineralogist, 101, 1560–1570. doi:10.​2138/​am-2016-5561 CrossRef
Zurück zum Zitat Brenker, F. E., Stachel, T., & Harris, J. W. (2002). Exhumation of lower mantle inclusions in diamond: ATEM investigation of retrograde phase transitions, reactions and exsolution. Earth and Planetary Science Letters, 198, 1–9.CrossRef Brenker, F. E., Stachel, T., & Harris, J. W. (2002). Exhumation of lower mantle inclusions in diamond: ATEM investigation of retrograde phase transitions, reactions and exsolution. Earth and Planetary Science Letters, 198, 1–9.CrossRef
Zurück zum Zitat Brodholt, J. P. (2000). Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth’s mantle. Nature, 407, 620–622.CrossRef Brodholt, J. P. (2000). Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth’s mantle. Nature, 407, 620–622.CrossRef
Zurück zum Zitat Bulanova, G. P., Smith, C. B., Kohn, S. C., Walter, M. J., Gobbo, L., & Kearns, S. (2008). Machado River, Brazil—A newly recognised ultradeep diamond occurrence. In 9th International Kimberlite Conference. Extended Abstract No. 9IKC-A-00233. Bulanova, G. P., Smith, C. B., Kohn, S. C., Walter, M. J., Gobbo, L., & Kearns, S. (2008). Machado River, Brazil—A newly recognised ultradeep diamond occurrence. In 9th International Kimberlite Conference. Extended Abstract No. 9IKC-A-00233.
Zurück zum Zitat Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S., Blundy, J., et al. (2010). Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 159(4), 489–510. doi:10.1007/s00410-010-0490-6 CrossRef Bulanova, G. P., Walter, M. J., Smith, C. B., Kohn, S. C., Armstrong, L. S., Blundy, J., et al. (2010). Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism. Contributions to Mineralogy and Petrology, 159(4), 489–510. doi:10.​1007/​s00410-010-0490-6 CrossRef
Zurück zum Zitat Burnham, A. D., Bulanova, G. P., Smith, C. B., Whitehead, S. C., Kohn, S. C., Gobbo, L., et al. (2016). Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos, 265, 199–213. doi:10.1016/j.lithos.2016.05.022 CrossRef Burnham, A. D., Bulanova, G. P., Smith, C. B., Whitehead, S. C., Kohn, S. C., Gobbo, L., et al. (2016). Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos, 265, 199–213. doi:10.​1016/​j.​lithos.​2016.​05.​022 CrossRef
Zurück zum Zitat Cammarano, F., & Romanowicz, B. (2007). Insights into the nature of the transition zone from physically constrained inversion of long-period seismic data. Proceedings of the National Academy of the U.S.A., 104(22), 9139–9144.CrossRef Cammarano, F., & Romanowicz, B. (2007). Insights into the nature of the transition zone from physically constrained inversion of long-period seismic data. Proceedings of the National Academy of the U.S.A., 104(22), 9139–9144.CrossRef
Zurück zum Zitat Caracas, R., Wentzcovitch, R., Price, G. D., & Brodholt, J. (2005). CaSiO3 perovskite at lower mantle pressures. Geophysical Research Letters, 32, L06306. doi:10.1029/2004GL022144 Caracas, R., Wentzcovitch, R., Price, G. D., & Brodholt, J. (2005). CaSiO3 perovskite at lower mantle pressures. Geophysical Research Letters, 32, L06306. doi:10.​1029/​2004GL022144
Zurück zum Zitat Carpenter, M. A. (2006). Elastic properties of minerals and the influence of phase transitions. American Mineralogist, 91, 229–246.CrossRef Carpenter, M. A. (2006). Elastic properties of minerals and the influence of phase transitions. American Mineralogist, 91, 229–246.CrossRef
Zurück zum Zitat Carpenter, M. A., Hemley, R. J., & Mao, H.-K. (2000). High-pressure elasticity of stishovite and the P4 2 /mnm ↔ Pnnm phase transition. Journal of Geophysical Research, 105, 10807–10816.CrossRef Carpenter, M. A., Hemley, R. J., & Mao, H.-K. (2000). High-pressure elasticity of stishovite and the P4 2 /mnmPnnm phase transition. Journal of Geophysical Research, 105, 10807–10816.CrossRef
Zurück zum Zitat Carpenter, M. A., & Salje, E. K. H. (1998). Elastic anomalies in minerals due to structural phase transitions. European Journal of Mineralogy, 10, 693–812.CrossRef Carpenter, M. A., & Salje, E. K. H. (1998). Elastic anomalies in minerals due to structural phase transitions. European Journal of Mineralogy, 10, 693–812.CrossRef
Zurück zum Zitat Cassidy, K. F., Groves, D. I., & Binns, R. A. (1988). Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks from Western Australia. Canadian Mineralogist, 26(4), 999–1012. Cassidy, K. F., Groves, D. I., & Binns, R. A. (1988). Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks from Western Australia. Canadian Mineralogist, 26(4), 999–1012.
Zurück zum Zitat Chao, E. C. T., Fahey, J. J., Littler, J., & Milton, D. J. (1962). Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Geophysical Research, 67, 419–421.CrossRef Chao, E. C. T., Fahey, J. J., Littler, J., & Milton, D. J. (1962). Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. Geophysical Research, 67, 419–421.CrossRef
Zurück zum Zitat Chen, M., Shu, J., & Mao, H.-K. (2008). Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin, 53, 3341–3345. Chen, M., Shu, J., & Mao, H.-K. (2008). Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin, 53, 3341–3345.
Zurück zum Zitat Chen, M., Shu, J., Mao, H.-K., Xie, X., & Hemley, R. J. (2003a). Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of the U.S.A., 100, 14651–14654.CrossRef Chen, M., Shu, J., Mao, H.-K., Xie, X., & Hemley, R. J. (2003a). Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of the U.S.A., 100, 14651–14654.CrossRef
Zurück zum Zitat Chen, M., Shu, J., Xie, X., & Mao, H.-K. (2003b). Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochimica et Cosmochimica Acta, 67, 3937–3942.CrossRef Chen, M., Shu, J., Xie, X., & Mao, H.-K. (2003b). Natural CaTi2O4-structured FeCr2O4 polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochimica et Cosmochimica Acta, 67, 3937–3942.CrossRef
Zurück zum Zitat Chinn, J. L., Milledge, H. J., & Gurney, J. J. (1998). Diamonds and inclusions from the Jagersfontein kimberlite. In Seventh International Kimberlite Conference Extended Abstracts (pp. 156–157), Cape Town. Chinn, J. L., Milledge, H. J., & Gurney, J. J. (1998). Diamonds and inclusions from the Jagersfontein kimberlite. In Seventh International Kimberlite Conference Extended Abstracts (pp. 156–157), Cape Town.
Zurück zum Zitat Chizmeshya, A. V. G., Wolf, G. H., & McMillan, P. F. (1996). First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite. Geophysical Research Letters, 23(20), 2725–2728.CrossRef Chizmeshya, A. V. G., Wolf, G. H., & McMillan, P. F. (1996). First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite. Geophysical Research Letters, 23(20), 2725–2728.CrossRef
Zurück zum Zitat Chizmeshya, A. V. G., Wolf, G. H., & McMillan, P. F. (1998). Correction to “First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite”. Geophysical Research Letters, 25(5), 711.CrossRef Chizmeshya, A. V. G., Wolf, G. H., & McMillan, P. F. (1998). Correction to “First-principles calculation of the equation-of-state, stability, and polar optic modes of CaSiO3 perovskite”. Geophysical Research Letters, 25(5), 711.CrossRef
Zurück zum Zitat Civet, F., Thëbault, E., Verhoeven, O., Langlais, B., & Saturnino, D. (2015). Electrical conductivity of the Earth’s mantle from the first Swarm magnetic field measurements. Geophysical Research Letters, 42, 3338–3346.CrossRef Civet, F., Thëbault, E., Verhoeven, O., Langlais, B., & Saturnino, D. (2015). Electrical conductivity of the Earth’s mantle from the first Swarm magnetic field measurements. Geophysical Research Letters, 42, 3338–3346.CrossRef
Zurück zum Zitat Cohen, R. E. (1987). Calculation of elasticity and high pressure instabilities in corundum and stishovite with the potential induced breathing model. Geophysical Research Letters, 14(1), 37–40.CrossRef Cohen, R. E. (1987). Calculation of elasticity and high pressure instabilities in corundum and stishovite with the potential induced breathing model. Geophysical Research Letters, 14(1), 37–40.CrossRef
Zurück zum Zitat Cohen, R. E. (1991). Bonding and elasticity of stishovite SiO2 at high pressure: Linearized augmented plane wave calculations. American Mineralogist, 76, 733–742. Cohen, R. E. (1991). Bonding and elasticity of stishovite SiO2 at high pressure: Linearized augmented plane wave calculations. American Mineralogist, 76, 733–742.
Zurück zum Zitat Coppari, F., Smith, R. F., Eggert, J. H., Wang, J., Rygg, J. R., Lazicki, A., et al. (2013). Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geoscience, 6, 926–929.CrossRef Coppari, F., Smith, R. F., Eggert, J. H., Wang, J., Rygg, J. R., Lazicki, A., et al. (2013). Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nature Geoscience, 6, 926–929.CrossRef
Zurück zum Zitat Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C., & Frost, D. J. (2005). Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochimica et Cosmochimica Acta, 146, 249–260. Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C., & Frost, D. J. (2005). Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochimica et Cosmochimica Acta, 146, 249–260.
Zurück zum Zitat Corgne, A., & Wood, B. J. (2002). CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophysical Research Letters, 29. doi:10.1029/2001GL014398 Corgne, A., & Wood, B. J. (2002). CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophysical Research Letters, 29. doi:10.​1029/​2001GL014398
Zurück zum Zitat Daniel, I., Bass, J. D., Fiquet, G., Cardon, H., Zhang, J. Z., & Hanfland, M. (2004). Effect of aluminium on the compressibility of silicate perovskite. Geophysical Research Letters, 31, L15608.CrossRef Daniel, I., Bass, J. D., Fiquet, G., Cardon, H., Zhang, J. Z., & Hanfland, M. (2004). Effect of aluminium on the compressibility of silicate perovskite. Geophysical Research Letters, 31, L15608.CrossRef
Zurück zum Zitat Daniel, I., Cardon, H., Fiquet, G., Guyot, F., & Mezouar, M. (2001). Equation of state of Al-bearing perovskite to lower mantle pressure conditions. Geophysical Research Letters, 28(19), 3789–3792.CrossRef Daniel, I., Cardon, H., Fiquet, G., Guyot, F., & Mezouar, M. (2001). Equation of state of Al-bearing perovskite to lower mantle pressure conditions. Geophysical Research Letters, 28(19), 3789–3792.CrossRef
Zurück zum Zitat Davies, R. M., Griffin, W. L., O’Reilly, S. Y., & Doyle, B. J. (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 77(1–4), 39–55. doi:10.1016/j.lithos.2004.04.016 CrossRef Davies, R. M., Griffin, W. L., O’Reilly, S. Y., & Doyle, B. J. (2004). Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada. Lithos, 77(1–4), 39–55. doi:10.​1016/​j.​lithos.​2004.​04.​016 CrossRef
Zurück zum Zitat Dera, P., Prewitt, C. T., Boctor, N. Z., & Hemley, R. J. (2002). Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. American Mineralogist, 87, 1018–1023.CrossRef Dera, P., Prewitt, C. T., Boctor, N. Z., & Hemley, R. J. (2002). Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. American Mineralogist, 87, 1018–1023.CrossRef
Zurück zum Zitat Dorfman, S. M., Meng, Y., Prakapenka, V. B., & Duffy, T. S. (2013). Effects of Fe-enrichment on the equation of state and stability of (Mg, Fe)SiO3 perovskite. Earth and Planetary Science Letters, 361, 249–257. doi:10.2138/am-2015-5190 CrossRef Dorfman, S. M., Meng, Y., Prakapenka, V. B., & Duffy, T. S. (2013). Effects of Fe-enrichment on the equation of state and stability of (Mg, Fe)SiO3 perovskite. Earth and Planetary Science Letters, 361, 249–257. doi:10.​2138/​am-2015-5190 CrossRef
Zurück zum Zitat Dorfman, S. M., Prakapenka, V. B., Meng, Y., & Duffy, T. S. (2012). Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. Journal of Geophysical Research, 117, B08210. Dorfman, S. M., Prakapenka, V. B., Meng, Y., & Duffy, T. S. (2012). Intercomparison of pressure standards (Au, Pt, Mo, MgO, NaCl and Ne) to 2.5 Mbar. Journal of Geophysical Research, 117, B08210.
Zurück zum Zitat Driver, K. P., Cohen, R. E., Wu, Z., Militzer, B., Ríos, P. L., Towler, M. D., et al. (2010). Quantum Monte Carlo for minerals at high pressures: Phase stability, equations of state, and elasticity of silica. Proceedings of the National Academy of the U.S.A., 107, 9519–9524. doi:10.1073/pnas.0912130107 CrossRef Driver, K. P., Cohen, R. E., Wu, Z., Militzer, B., Ríos, P. L., Towler, M. D., et al. (2010). Quantum Monte Carlo for minerals at high pressures: Phase stability, equations of state, and elasticity of silica. Proceedings of the National Academy of the U.S.A., 107, 9519–9524. doi:10.​1073/​pnas.​0912130107 CrossRef
Zurück zum Zitat Dubrovinsky, L. S., Dubrovinskaia, N. A., Annersten, H., Halenius, E., & Harryson, H. (2001a). Stability of (Mg0.5Fe0.5)O and (Mg0.8 Fe0.2)O magnesiowüstites in the lower mantle. European Journal of Mineralogy, 13(5), 857–861.CrossRef Dubrovinsky, L. S., Dubrovinskaia, N. A., Annersten, H., Halenius, E., & Harryson, H. (2001a). Stability of (Mg0.5Fe0.5)O and (Mg0.8 Fe0.2)O magnesiowüstites in the lower mantle. European Journal of Mineralogy, 13(5), 857–861.CrossRef
Zurück zum Zitat Dubrovinsky, L. S., Dubrovinskaia, N. A., Prakapenka, V., Seifert, F., Langenhorst, F., Dmitriev, V., et al. (2003). High-pressure and high-temperature polymorphism in silica. High Pressure Research, 23(1–2), 35–39.CrossRef Dubrovinsky, L. S., Dubrovinskaia, N. A., Prakapenka, V., Seifert, F., Langenhorst, F., Dmitriev, V., et al. (2003). High-pressure and high-temperature polymorphism in silica. High Pressure Research, 23(1–2), 35–39.CrossRef
Zurück zum Zitat Dubrovinsky, L. S., Dubrovinskaia, N. A., Saxena, S. K., Annersten, H., Halenius, E., Harryson, H., et al. (2000). Stability of ferropericlase in the lower mantle. Science, 289(5478), 430–432.CrossRef Dubrovinsky, L. S., Dubrovinskaia, N. A., Saxena, S. K., Annersten, H., Halenius, E., Harryson, H., et al. (2000). Stability of ferropericlase in the lower mantle. Science, 289(5478), 430–432.CrossRef
Zurück zum Zitat Dubrovinsky, L. S., Dubrovinskaia, N. A., Saxena, S. K., Tutti, F., Rekhi, S., Le Bihan, T., et al. (2001b). Pressure-induced transformation of cristobalite. Chemical Physics Letters, 333(3–4), 264–270.CrossRef Dubrovinsky, L. S., Dubrovinskaia, N. A., Saxena, S. K., Tutti, F., Rekhi, S., Le Bihan, T., et al. (2001b). Pressure-induced transformation of cristobalite. Chemical Physics Letters, 333(3–4), 264–270.CrossRef
Zurück zum Zitat Dubrovinsky, L. S., Saxena, S. K., Lazor, P., Ahuja, R., Eriksson, O., Wills, J. M., et al. (1997). Experimental and theoretical identification of a new high-pressure phase of silica. Nature, 388, 362–365.CrossRef Dubrovinsky, L. S., Saxena, S. K., Lazor, P., Ahuja, R., Eriksson, O., Wills, J. M., et al. (1997). Experimental and theoretical identification of a new high-pressure phase of silica. Nature, 388, 362–365.CrossRef
Zurück zum Zitat Duffy, T. S., Hemley, R. J., & Mao, H.-K. (1995). Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. Physical Review Letters, 74, 1371–1375.CrossRef Duffy, T. S., Hemley, R. J., & Mao, H.-K. (1995). Equation of state and shear strength at multimegabar pressures: Magnesium oxide to 227 GPa. Physical Review Letters, 74, 1371–1375.CrossRef
Zurück zum Zitat Dymshits, A. M., Bobrov, A. V., Litasov, K. D., Shatsky, A. F., Ohtani, E., & Litvin, Yu A. (2010). Experimental study of the pyroxene-garnet phase transition in the Na2MgSi5O12 system at pressures of 13–20 GPa: First syntheses of sodium majorite. Doklady Earth Sciences, 434(1), 1263–1266.CrossRef Dymshits, A. M., Bobrov, A. V., Litasov, K. D., Shatsky, A. F., Ohtani, E., & Litvin, Yu A. (2010). Experimental study of the pyroxene-garnet phase transition in the Na2MgSi5O12 system at pressures of 13–20 GPa: First syntheses of sodium majorite. Doklady Earth Sciences, 434(1), 1263–1266.CrossRef
Zurück zum Zitat Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earthmodel. Physics of the Earth and Planetary Interiors, 25, 297–356.CrossRef Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earthmodel. Physics of the Earth and Planetary Interiors, 25, 297–356.CrossRef
Zurück zum Zitat El Goresy, A., Dera, P., Sharp, T. G., Prewitt, C. T., Chen, M., Dubrovinsky, L., et al. (2008). Seifertite, a dense or-thorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy, 20, 523–528.CrossRef El Goresy, A., Dera, P., Sharp, T. G., Prewitt, C. T., Chen, M., Dubrovinsky, L., et al. (2008). Seifertite, a dense or-thorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. European Journal of Mineralogy, 20, 523–528.CrossRef
Zurück zum Zitat El Goresy, A., Dubrovinsky, L., Sharp, T. G., Saxena, S. K., & Chen, M. (2000). A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science, 288(5471), 1632–1634.CrossRef El Goresy, A., Dubrovinsky, L., Sharp, T. G., Saxena, S. K., & Chen, M. (2000). A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science, 288(5471), 1632–1634.CrossRef
Zurück zum Zitat Elsdon, R. (1975). Manganoan ilmenite from the Leinster granite, Ireland. Mineralogical Magazine, 40(312), 419–421.CrossRef Elsdon, R. (1975). Manganoan ilmenite from the Leinster granite, Ireland. Mineralogical Magazine, 40(312), 419–421.CrossRef
Zurück zum Zitat Fei, Y. (1996). Crystal chemistry of FeO at high pressure and temperature (pp. 243–254). Geochemical Society Special Publication 5. Fei, Y. (1996). Crystal chemistry of FeO at high pressure and temperature (pp. 243–254). Geochemical Society Special Publication 5.
Zurück zum Zitat Fei, Y., & Bertka, C. M. (1999). Phase transitions in the Earth’s mantle and mantle mineralogy. In Y. Fei, C. M. Bertka, & B. O. Mysen (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (pp. 189–207). Geochemical Society Special Publication No. 6. Fei, Y., & Bertka, C. M. (1999). Phase transitions in the Earth’s mantle and mantle mineralogy. In Y. Fei, C. M. Bertka, & B. O. Mysen (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (pp. 189–207). Geochemical Society Special Publication No. 6.
Zurück zum Zitat Fei, Y., & Mao, H. K. (1994). In situ determination of the NiAs phase of FeO at high pressure and temperature. Science, 266(5191), 1678–1680.CrossRef Fei, Y., & Mao, H. K. (1994). In situ determination of the NiAs phase of FeO at high pressure and temperature. Science, 266(5191), 1678–1680.CrossRef
Zurück zum Zitat Fei, Y. W., Wang, Y. B., & Finger, L. W. (1996). Maximum solubility of FeO in (Mg, Fe)SiO3 perovskite as a function of temperature at 26 GPa: Implication for FeO content in the lower mantle. Journal of Geophysical Research, 101, 11525–11530.CrossRef Fei, Y. W., Wang, Y. B., & Finger, L. W. (1996). Maximum solubility of FeO in (Mg, Fe)SiO3 perovskite as a function of temperature at 26 GPa: Implication for FeO content in the lower mantle. Journal of Geophysical Research, 101, 11525–11530.CrossRef
Zurück zum Zitat Finger, L. W., & Conrad, P. G. (2000). The crystal structure of “Tetragonal Almandine-Pyrope Phase” (TAPP): A reexamination. American Mineralogist, 85, 1804–1807.CrossRef Finger, L. W., & Conrad, P. G. (2000). The crystal structure of “Tetragonal Almandine-Pyrope Phase” (TAPP): A reexamination. American Mineralogist, 85, 1804–1807.CrossRef
Zurück zum Zitat Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., & Le Bihan, T. (2000). Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophysical Research Letters, 27, 21–24.CrossRef Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., & Le Bihan, T. (2000). Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophysical Research Letters, 27, 21–24.CrossRef
Zurück zum Zitat Fischer, R. A., & Campbell, A. J. (2010). High pressure melting of wüstite. American Mineralogist, 95, 1473–1477.CrossRef Fischer, R. A., & Campbell, A. J. (2010). High pressure melting of wüstite. American Mineralogist, 95, 1473–1477.CrossRef
Zurück zum Zitat Fischer, R. A., Campbell, A. J., Lord, O. T., Shofner, G. A., Dera, P., & Prakapenka, V. B. (2011a). Phase transition and metallization of FeO at high pressures and temperatures. Geophysical Research Letters, 38, L24301. doi:10.1029/2011GL049800 Fischer, R. A., Campbell, A. J., Lord, O. T., Shofner, G. A., Dera, P., & Prakapenka, V. B. (2011a). Phase transition and metallization of FeO at high pressures and temperatures. Geophysical Research Letters, 38, L24301. doi:10.​1029/​2011GL049800
Zurück zum Zitat Fischer, R. A., Campbell, A. J., Shofner, G. A., Lord, O. T., Dera, P., & Prakapenka, V. P. (2011b). Equation of state and phase diagram of FeO. Earth and Planetary Science Letters, 304, 496–502.CrossRef Fischer, R. A., Campbell, A. J., Shofner, G. A., Lord, O. T., Dera, P., & Prakapenka, V. P. (2011b). Equation of state and phase diagram of FeO. Earth and Planetary Science Letters, 304, 496–502.CrossRef
Zurück zum Zitat Flynn, G. J., Nittler, L. R., & Engrand, C. (2016). Composition of cosmic dust: Sources and implications for the early Solar system. Elements, 12(6), 177–183.CrossRef Flynn, G. J., Nittler, L. R., & Engrand, C. (2016). Composition of cosmic dust: Sources and implications for the early Solar system. Elements, 12(6), 177–183.CrossRef
Zurück zum Zitat Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409–412.CrossRef Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., Trønnes, R. G., & Rubie, D. C. (2004). Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature, 428, 409–412.CrossRef
Zurück zum Zitat Frost, D. J., & Myhill, R. (2016). Chemistry of the lower mantle. In H. Terasaki & R. A. Fischer (Eds.), Deep Earth; Physics and Chemistry of the Lower Mantle and Core: Vol. 217. Geophysical monograph (pp. 225–240). Frost, D. J., & Myhill, R. (2016). Chemistry of the lower mantle. In H. Terasaki & R. A. Fischer (Eds.), Deep Earth; Physics and Chemistry of the Lower Mantle and Core: Vol. 217. Geophysical monograph (pp. 225–240).
Zurück zum Zitat Fukui, H., Yoneda, A., Nakatsuka, A., Tsujino, N., Kamada, S., Ohtani, E., et al. (2016). Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle. Scientific Reports, 6, 33337. doi:10.1038/srep33337 CrossRef Fukui, H., Yoneda, A., Nakatsuka, A., Tsujino, N., Kamada, S., Ohtani, E., et al. (2016). Effect of cation substitution on bridgmanite elasticity: A key to interpret seismic anomalies in the lower mantle. Scientific Reports, 6, 33337. doi:10.​1038/​srep33337 CrossRef
Zurück zum Zitat Funamori, N., Jeanloz, R., Miyajima, N., & Fujino, K. (2000). Mineral assemblages of basalt in the lower mantle. Journal of Geophysical Research, 105(B11), 26037–26043.CrossRef Funamori, N., Jeanloz, R., Miyajima, N., & Fujino, K. (2000). Mineral assemblages of basalt in the lower mantle. Journal of Geophysical Research, 105(B11), 26037–26043.CrossRef
Zurück zum Zitat Funamori, N., Jeanloz, R., Nguyen, J. H., Kavner, A., Caldwell, W. A., Fiujino, K., et al. (1998). High-pressure transformations in MgAl2O4. Journal of Geophysical Research, 103(B9), 20813–20818.CrossRef Funamori, N., Jeanloz, R., Nguyen, J. H., Kavner, A., Caldwell, W. A., Fiujino, K., et al. (1998). High-pressure transformations in MgAl2O4. Journal of Geophysical Research, 103(B9), 20813–20818.CrossRef
Zurück zum Zitat Gaspar, J. C., & Wyllie, P. J. (1984). The alleged kimberlite-carbonatite relationship: Evidence from ilmenite and spinel from Premier and Wesselton mines and the Bentfontein sill, South Africa. Contributions Mineralogy and Petrology, 85(2), 133–140.CrossRef Gaspar, J. C., & Wyllie, P. J. (1984). The alleged kimberlite-carbonatite relationship: Evidence from ilmenite and spinel from Premier and Wesselton mines and the Bentfontein sill, South Africa. Contributions Mineralogy and Petrology, 85(2), 133–140.CrossRef
Zurück zum Zitat Gasparik, T., Wolf, K., & Smith, C. M. (1994). Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. American Mineralogist, 79(11–12), 1219–1222. Gasparik, T., Wolf, K., & Smith, C. M. (1994). Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. American Mineralogist, 79(11–12), 1219–1222.
Zurück zum Zitat Grocholski, B., Shim, S. H., & Prakapenka, V. B. (2013). Stability, metastability, and elastic properties of a dense silica polymorph, seifertite. Journal of Geophysical Research: Solid Earth, 118(9), 4745–4757. doi:10.1002/jgrb.50360 Grocholski, B., Shim, S. H., & Prakapenka, V. B. (2013). Stability, metastability, and elastic properties of a dense silica polymorph, seifertite. Journal of Geophysical Research: Solid Earth, 118(9), 4745–4757. doi:10.​1002/​jgrb.​50360
Zurück zum Zitat Gu, T., Li, M., McCammon, C., & Lee, K. K. M. (2016). Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nature Geoscience, 9, 723–729. doi:10.1038/NGEO2772 CrossRef Gu, T., Li, M., McCammon, C., & Lee, K. K. M. (2016). Redox-induced lower mantle density contrast and effect on mantle structure and primitive oxygen. Nature Geoscience, 9, 723–729. doi:10.​1038/​NGEO2772 CrossRef
Zurück zum Zitat Guyot, F., Madon, M., & Poirier, J.-P. (1988). X-ray microanalysis of high pressure/high temperature phases synthesized from natural olivine in the diamond–anvil cell. Earth and Planetary Science Letters, 90, 52–64.CrossRef Guyot, F., Madon, M., & Poirier, J.-P. (1988). X-ray microanalysis of high pressure/high temperature phases synthesized from natural olivine in the diamond–anvil cell. Earth and Planetary Science Letters, 90, 52–64.CrossRef
Zurück zum Zitat Harris, J. W., Hutchison, M. T., Hursthouse, M., Light, M., & Harte, B. (1997). A new tetragonal silicate mineral occurring as inclusions in lower mantle diamonds. Nature, 387(6632), 486–488.CrossRef Harris, J. W., Hutchison, M. T., Hursthouse, M., Light, M., & Harte, B. (1997). A new tetragonal silicate mineral occurring as inclusions in lower mantle diamonds. Nature, 387(6632), 486–488.CrossRef
Zurück zum Zitat Harte, B. (2010). Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74(2), 189–215.CrossRef Harte, B. (2010). Diamond formation in the deep mantle: The record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74(2), 189–215.CrossRef
Zurück zum Zitat Harte, B., & Cayzer, N. (2007). Decompression and unmixing of crystals included in diamonds from the mantle transition zone. Physics and Chemistry of Minerals, 34, 647–656.CrossRef Harte, B., & Cayzer, N. (2007). Decompression and unmixing of crystals included in diamonds from the mantle transition zone. Physics and Chemistry of Minerals, 34, 647–656.CrossRef
Zurück zum Zitat Harte, B., & Harris, J. W. (1994). Lower mantle mineral association preserved in diamonds. Mineralogical Magazine, 58A, 384–385.CrossRef Harte, B., & Harris, J. W. (1994). Lower mantle mineral association preserved in diamonds. Mineralogical Magazine, 58A, 384–385.CrossRef
Zurück zum Zitat Harte, B., Harris, J. W., Hutchison, M. T., Watt, G. R., & Wilding, M. C. (1999). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In Y. Fei, C. M. Bertka, & B. O. Mysen (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (pp. 125–153). Geochemical Society Special Publication No. 6. Harte, B., Harris, J. W., Hutchison, M. T., Watt, G. R., & Wilding, M. C. (1999). Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In Y. Fei, C. M. Bertka, & B. O. Mysen (Eds.), Mantle petrology: Field observations and high pressure experimentation: A tribute to Francis R. (Joe) Boyd (pp. 125–153). Geochemical Society Special Publication No. 6.
Zurück zum Zitat Harte, B., & Hudson, N. F. C. (2013). Mineral associations in diamonds from the lowermost upper mantle and uppermost lower mantle. In Proceedings of the 10th International Kimberlite Conference (Vol. 1, pp. 235–254). Special Issue of the Journal of the Geological Society of India. Harte, B., & Hudson, N. F. C. (2013). Mineral associations in diamonds from the lowermost upper mantle and uppermost lower mantle. In Proceedings of the 10th International Kimberlite Conference (Vol. 1, pp. 235–254). Special Issue of the Journal of the Geological Society of India.
Zurück zum Zitat Hemley, R. J., Prewitt, C. T., & Kingma, K. J. (1994) High-pressure behavior of silica. In P. J. Heaney & C. T. Prewitt (Eds.), Silica: Physical behavior, geochemistry and materials applications. Reviews in mineralogy (Vol. 29, pp. 41–82). Hemley, R. J., Prewitt, C. T., & Kingma, K. J. (1994) High-pressure behavior of silica. In P. J. Heaney & C. T. Prewitt (Eds.), Silica: Physical behavior, geochemistry and materials applications. Reviews in mineralogy (Vol. 29, pp. 41–82).
Zurück zum Zitat Hemley, R. J., Shu, J., Carpenter, M. A., Hu, J., Mao, H. K., & Kingma, K. J. (2000). Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527–532.CrossRef Hemley, R. J., Shu, J., Carpenter, M. A., Hu, J., Mao, H. K., & Kingma, K. J. (2000). Strain/order parameter coupling in the ferroelastic transition in dense SiO2. Solid State Communications, 114(10), 527–532.CrossRef
Zurück zum Zitat Hirose, K., Fei, Y. W., Ma, Y. Z., & Mao, H. K. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397(6714), 53–56.CrossRef Hirose, K., Fei, Y. W., Ma, Y. Z., & Mao, H. K. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397(6714), 53–56.CrossRef
Zurück zum Zitat Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237, 239–251.CrossRef Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237, 239–251.CrossRef
Zurück zum Zitat Horiuchi, H., Ito, E., & Weidner, D. J. (1987). Perovskite-type MgSiO3: Single-crystal X-ray diffraction. American Mineralogist, 72, 357–360. Horiuchi, H., Ito, E., & Weidner, D. J. (1987). Perovskite-type MgSiO3: Single-crystal X-ray diffraction. American Mineralogist, 72, 357–360.
Zurück zum Zitat Hsu, H., Yu, Y. G., & Wentzcovitch, R. M. (2012). Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite. Earth and Planetary Science Letters, 359–360, 34–39.CrossRef Hsu, H., Yu, Y. G., & Wentzcovitch, R. M. (2012). Spin crossover of iron in aluminous MgSiO3 perovskite and post-perovskite. Earth and Planetary Science Letters, 359–360, 34–39.CrossRef
Zurück zum Zitat Hummer, D. R., & Fei, Y. (2012). Synthesis and crystal chemistry of Fe3+-bearing (Mg, Fe3+)(Si, Fe3+)O3 perovskite. American Mineralogist, 97, 1915–2012.CrossRef Hummer, D. R., & Fei, Y. (2012). Synthesis and crystal chemistry of Fe3+-bearing (Mg, Fe3+)(Si, Fe3+)O3 perovskite. American Mineralogist, 97, 1915–2012.CrossRef
Zurück zum Zitat Hutchison, M. T. (1997). Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions (Unpublished Ph.D. thesis). University of Edinburgh, UK. Vol. 1, 340 pp., Vol. 2 (Tables and Appendices), 306 pp. Hutchison, M. T. (1997). Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions (Unpublished Ph.D. thesis). University of Edinburgh, UK. Vol. 1, 340 pp., Vol. 2 (Tables and Appendices), 306 pp.
Zurück zum Zitat Hutchison, M. T., Hurtshouse, M. B., & Light, M. E. (2001). Mineral inclusions in diamonds: Associations and chemical distinctions around the 670-km discontinuity. Contributions to Mineralogy and Petrology, 142(2), 119–126.CrossRef Hutchison, M. T., Hurtshouse, M. B., & Light, M. E. (2001). Mineral inclusions in diamonds: Associations and chemical distinctions around the 670-km discontinuity. Contributions to Mineralogy and Petrology, 142(2), 119–126.CrossRef
Zurück zum Zitat Irifune, T. (1994). Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature, 370, 131–133.CrossRef Irifune, T. (1994). Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature, 370, 131–133.CrossRef
Zurück zum Zitat Irifune, T., Koizumi, T., & Ando, J. I. (1996). An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Physics of the Earth and Planet Interior, 96(3–4), 147–157.CrossRef Irifune, T., Koizumi, T., & Ando, J. I. (1996). An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Physics of the Earth and Planet Interior, 96(3–4), 147–157.CrossRef
Zurück zum Zitat Irifune, T., & Ringwood, A. E. (1993). Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 117(1–2), 101–110.CrossRef Irifune, T., & Ringwood, A. E. (1993). Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 117(1–2), 101–110.CrossRef
Zurück zum Zitat Irifune, T., Shinmei, T., McCammon, C. A., Miyajima, N., Rubie, D. C., & Frost, D. J. (2010). Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327(5962), 193–195. doi:10.1126/science.1181443 CrossRef Irifune, T., Shinmei, T., McCammon, C. A., Miyajima, N., Rubie, D. C., & Frost, D. J. (2010). Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science, 327(5962), 193–195. doi:10.​1126/​science.​1181443 CrossRef
Zurück zum Zitat Irifune, T., & Tsuchiya, T. (2007). Mineralogy of the Earth—Phase transitions and mineralogy of the lower mantle. In G. D. Price & G. Schubert (Eds.), Treatise on geophysics. Mineral physicas (pp. 33–62). Elsevier. Irifune, T., & Tsuchiya, T. (2007). Mineralogy of the Earth—Phase transitions and mineralogy of the lower mantle. In G. D. Price & G. Schubert (Eds.), Treatise on geophysics. Mineral physicas (pp. 33–62). Elsevier.
Zurück zum Zitat Ishii, T., Hiroshi Kojitani, H., Tsukamoto, S., Fujino, K., Mori, D., Inaguma, Y., et al. (2014). High-pressure phase transitions in FeCr2O4 and structure analysis of new postspinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. American Mineralogist, 99, 1788–1797.CrossRef Ishii, T., Hiroshi Kojitani, H., Tsukamoto, S., Fujino, K., Mori, D., Inaguma, Y., et al. (2014). High-pressure phase transitions in FeCr2O4 and structure analysis of new postspinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. American Mineralogist, 99, 1788–1797.CrossRef
Zurück zum Zitat Ito, E., Akaogi, M., Topor, L., & Navrotsky, A. (1990). Negative pressure-temperature slopes for reactions forming MgSiO3 from calorimetry. Science, 249, 1275–1278.CrossRef Ito, E., Akaogi, M., Topor, L., & Navrotsky, A. (1990). Negative pressure-temperature slopes for reactions forming MgSiO3 from calorimetry. Science, 249, 1275–1278.CrossRef
Zurück zum Zitat Ito, E., & Matsui, Y. (1978). Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth and Planetary Science Letters, 38, 443–450.CrossRef Ito, E., & Matsui, Y. (1978). Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth and Planetary Science Letters, 38, 443–450.CrossRef
Zurück zum Zitat Ito, E., & Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94(B8), 10637–10646.CrossRef Ito, E., & Takahashi, E. (1989). Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94(B8), 10637–10646.CrossRef
Zurück zum Zitat Jackson, I., Khanna, S. K., Revcolevschi, A., & Berthon, J. (1990). Elasticity, shear-mode softening and high-pressure polymorphism of wüstite (Fe1−xO). Journal of Geophysical Research, 95, 21671–21685.CrossRef Jackson, I., Khanna, S. K., Revcolevschi, A., & Berthon, J. (1990). Elasticity, shear-mode softening and high-pressure polymorphism of wüstite (Fe1−xO). Journal of Geophysical Research, 95, 21671–21685.CrossRef
Zurück zum Zitat Jackson, J. M., Sinogeikin, S. V., Jacobsen, S. D., Reichmann, H. J., Mackwell, S. J., & Bass, J. D. (2006). Single-crystal elasticity and sound velocities of (Mg0.94Fe0.06)O ferropericlase to 20 GPa. Journal of Geophysical Research, 111, B09203.CrossRef Jackson, J. M., Sinogeikin, S. V., Jacobsen, S. D., Reichmann, H. J., Mackwell, S. J., & Bass, J. D. (2006). Single-crystal elasticity and sound velocities of (Mg0.94Fe0.06)O ferropericlase to 20 GPa. Journal of Geophysical Research, 111, B09203.CrossRef
Zurück zum Zitat Jackson, J. M., Zhang, J., & Bass, J. D. (2004). Sound velocities and elasticity of aluminous MgSiO3 perovskite: Implications for aluminum heterogeneity in Earth’s lower mantle. Geophysical Research Letters, 31(10), L10614.CrossRef Jackson, J. M., Zhang, J., & Bass, J. D. (2004). Sound velocities and elasticity of aluminous MgSiO3 perovskite: Implications for aluminum heterogeneity in Earth’s lower mantle. Geophysical Research Letters, 31(10), L10614.CrossRef
Zurück zum Zitat Jacobsen, S. D., Reichmann, H. J., Spetzler, H., Mackwell, S. J., Smyth, J. R., Angel, R. J., et al. (2002). Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. Journal of Geophysical Research, 107, 5867–5871.CrossRef Jacobsen, S. D., Reichmann, H. J., Spetzler, H., Mackwell, S. J., Smyth, J. R., Angel, R. J., et al. (2002). Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. Journal of Geophysical Research, 107, 5867–5871.CrossRef
Zurück zum Zitat Javoy, M. (1995). The integral enstatite chondrite model of the Earth. Geophysical Research Letters, 22, 2219–2222.CrossRef Javoy, M. (1995). The integral enstatite chondrite model of the Earth. Geophysical Research Letters, 22, 2219–2222.CrossRef
Zurück zum Zitat Javoy, M., Kaminski, E., Guyot, F., Andrault, D., Sanloup, C., Moreira, M., et al. (2010). The chemical composition of the Earth: Enstatite chondrite models. Earth and Planetary Science Letters, 293(3–4), 259–268.CrossRef Javoy, M., Kaminski, E., Guyot, F., Andrault, D., Sanloup, C., Moreira, M., et al. (2010). The chemical composition of the Earth: Enstatite chondrite models. Earth and Planetary Science Letters, 293(3–4), 259–268.CrossRef
Zurück zum Zitat Jeanloz, R., & Ahrens, T. J. (1980). Equations of state of FeO and CaO. Geophysical Journal of the Royal Astronomical Society, 62, 505–528.CrossRef Jeanloz, R., & Ahrens, T. J. (1980). Equations of state of FeO and CaO. Geophysical Journal of the Royal Astronomical Society, 62, 505–528.CrossRef
Zurück zum Zitat Jiang, F., Gwanmesia, G. D., Dyuzheva, T. I., & Duffy, T. S. (2009). Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Physics of the Earth and Planetary Interiors, 172(3–4), 235–240. doi:10.1016/j.pepi.2008.09.017 CrossRef Jiang, F., Gwanmesia, G. D., Dyuzheva, T. I., & Duffy, T. S. (2009). Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Physics of the Earth and Planetary Interiors, 172(3–4), 235–240. doi:10.​1016/​j.​pepi.​2008.​09.​017 CrossRef
Zurück zum Zitat Joswig, W., Stachel, T., Harris, J. W., Baur, W. H., & Brey, G. P. (1999). New Ca-silicate inclusions in diamonds—Tracers from the lower mantle. Earth and Planetary Science Letters, 173(1–2), 1–6.CrossRef Joswig, W., Stachel, T., Harris, J. W., Baur, W. H., & Brey, G. P. (1999). New Ca-silicate inclusions in diamonds—Tracers from the lower mantle. Earth and Planetary Science Letters, 173(1–2), 1–6.CrossRef
Zurück zum Zitat Kaercher, P., Speziale, S., Miyagi, L., Kanitpanyacharoen, W., & Wenk, H.-R. (2012). Crystallographic preferred orientation in wüstite (FeO) through the cubic-to-rhombohedral phase transition. Physical Chemistry Minerals, 39, 613–626. doi:10.1007/s00269-012-0516-x CrossRef Kaercher, P., Speziale, S., Miyagi, L., Kanitpanyacharoen, W., & Wenk, H.-R. (2012). Crystallographic preferred orientation in wüstite (FeO) through the cubic-to-rhombohedral phase transition. Physical Chemistry Minerals, 39, 613–626. doi:10.​1007/​s00269-012-0516-x CrossRef
Zurück zum Zitat Kaminski, E., & Javoy, M. (2013). A two-stage scenario for the formation of the Earth’s mantle and core. Earth and Planetary Science Letters, 365, 97–107.CrossRef Kaminski, E., & Javoy, M. (2013). A two-stage scenario for the formation of the Earth’s mantle and core. Earth and Planetary Science Letters, 365, 97–107.CrossRef
Zurück zum Zitat Kaminski, E., & Javoy, M. (2015). The composition of the Deep Earth. In A. Khan & F. Deschamps (Eds.), The Earth’s heterogeneous mantle (pp. 303–328). Berlin: Springer. Kaminski, E., & Javoy, M. (2015). The composition of the Deep Earth. In A. Khan & F. Deschamps (Eds.), The Earth’s heterogeneous mantle (pp. 303–328). Berlin: Springer.
Zurück zum Zitat Kaminsky, F. V. (2012). Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 110(1–4), 127–147.CrossRef Kaminsky, F. V. (2012). Mineralogy of the lower mantle: A review of ‘super-deep’ mineral inclusions in diamond. Earth-Science Reviews, 110(1–4), 127–147.CrossRef
Zurück zum Zitat Kaminsky, F. V., & Belousova, E. A. (2009). Manganoan ilmenite as kimberlite/diamond indicator mineral. Russian Geology and Geophysics, 50(10), 1212–1220.CrossRef Kaminsky, F. V., & Belousova, E. A. (2009). Manganoan ilmenite as kimberlite/diamond indicator mineral. Russian Geology and Geophysics, 50(10), 1212–1220.CrossRef
Zurück zum Zitat Kaminsky, F. V., Khachatryan, G. K., Andreazza, P., Araujo, D., & Griffin, W. L. (2009a). Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112S(2), 833–842.CrossRef Kaminsky, F. V., Khachatryan, G. K., Andreazza, P., Araujo, D., & Griffin, W. L. (2009a). Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112S(2), 833–842.CrossRef
Zurück zum Zitat Kaminsky, F. V., & Lin, J.-F. (2017). Iron partitioning in natural lower-mantle minerals: Toward a chemically heterogeneous lower mantle. American Mineralogist, 102(4), 824–832. doi:10.2138/am-2017-5949. Kaminsky, F. V., & Lin, J.-F. (2017). Iron partitioning in natural lower-mantle minerals: Toward a chemically heterogeneous lower mantle. American Mineralogist, 102(4), 824–832. doi:10.​2138/​am-2017-5949.
Zurück zum Zitat Kaminsky, F. V., Ryabchikov, I. D., McCammon, C., Longo, M., Abakumov, A. M., Turner, S., et al. (2015a). Oxidation potential in the Earth’s lower mantle as recorded from ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 417, 49–56.CrossRef Kaminsky, F. V., Ryabchikov, I. D., McCammon, C., Longo, M., Abakumov, A. M., Turner, S., et al. (2015a). Oxidation potential in the Earth’s lower mantle as recorded from ferropericlase inclusions in diamond. Earth and Planetary Science Letters, 417, 49–56.CrossRef
Zurück zum Zitat Kaminsky, F., & Wirth, R. (2017). Nitride, carbonitride and nitrocarbide inclusions in lower-mantle diamonds: A key to the balance of nitrogen in the Earth. European Geosciences Union General Assembly Abstract No. EGU2017-1751, Vienna, Austria. Kaminsky, F., & Wirth, R. (2017). Nitride, carbonitride and nitrocarbide inclusions in lower-mantle diamonds: A key to the balance of nitrogen in the Earth. European Geosciences Union General Assembly Abstract No. EGU2017-1751, Vienna, Austria.
Zurück zum Zitat Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., & Thomas, R. (2009b). Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816.CrossRef Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., & Thomas, R. (2009b). Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816.CrossRef
Zurück zum Zitat Kaminsky, F. V., Wirth, R., & Schreiber, A. (2015b). A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104. doi:10.3749/canmin.1400070 CrossRef Kaminsky, F. V., Wirth, R., & Schreiber, A. (2015b). A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104. doi:10.​3749/​canmin.​1400070 CrossRef
Zurück zum Zitat Kaminsky, F. V., Zakharchenko, O. D., Channer, D. M. D., Blinova, G. K., & Bulanova, G. P. (1997). Diamonds from the Guaniamo area, Bolivar state, Venezuela. In Memorias del VIII Congreso Geologico Venezolana, Soc Venezolana de Geologia (pp. 427–430). Kaminsky, F. V., Zakharchenko, O. D., Channer, D. M. D., Blinova, G. K., & Bulanova, G. P. (1997). Diamonds from the Guaniamo area, Bolivar state, Venezuela. In Memorias del VIII Congreso Geologico Venezolana, Soc Venezolana de Geologia (pp. 427–430).
Zurück zum Zitat Kaminsky, F. V., Zakharchenko, O. D., Davies, R., Griffin, W. L., Khachatryan-Blinova, G. K., & Shiryaev, A. A. (2001). Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140(6), 734–753.CrossRef Kaminsky, F. V., Zakharchenko, O. D., Davies, R., Griffin, W. L., Khachatryan-Blinova, G. K., & Shiryaev, A. A. (2001). Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140(6), 734–753.CrossRef
Zurück zum Zitat Kaminsky, F. V., Zakharchenko, O. D., Griffin, W. L., Channer, D. M. D., & Khachatryan-Blinova, G. K. (2000). Diamond from the Guaniamo area, Venezuela. Canadian Mineralogist, 38(6), 1347–1370.CrossRef Kaminsky, F. V., Zakharchenko, O. D., Griffin, W. L., Channer, D. M. D., & Khachatryan-Blinova, G. K. (2000). Diamond from the Guaniamo area, Venezuela. Canadian Mineralogist, 38(6), 1347–1370.CrossRef
Zurück zum Zitat Kantor, A. P., Jacobsen, S. D., Kantor, I Yu., Dubrovinsky, L. S., McCammon, C. A., Reichmann, H. J., et al. (2004). Pressure-induced magnetization in FeO: Evidence from elasticity and Mössbauer spectroscopy. Physical Review Letters, 93, 215502.CrossRef Kantor, A. P., Jacobsen, S. D., Kantor, I Yu., Dubrovinsky, L. S., McCammon, C. A., Reichmann, H. J., et al. (2004). Pressure-induced magnetization in FeO: Evidence from elasticity and Mössbauer spectroscopy. Physical Review Letters, 93, 215502.CrossRef
Zurück zum Zitat Karki, B., Stixrude, L., & Crain, J. (1997a). Ab initio elasticity of three high-pressure polymorphs of silica. Geophysical Research Letters, 24(24), 3269–3272.CrossRef Karki, B., Stixrude, L., & Crain, J. (1997a). Ab initio elasticity of three high-pressure polymorphs of silica. Geophysical Research Letters, 24(24), 3269–3272.CrossRef
Zurück zum Zitat Karki, B. B., Warren, M. C., Stixrude, L., Ackland, C. J., & Crain, J. (1997b). Ab initio studies of high-pressure structural transformations in silica. Physical Review B, 55, 3465–3471.CrossRef Karki, B. B., Warren, M. C., Stixrude, L., Ackland, C. J., & Crain, J. (1997b). Ab initio studies of high-pressure structural transformations in silica. Physical Review B, 55, 3465–3471.CrossRef
Zurück zum Zitat Karki, B. B., Wentzcovitch, R. M., de Gironcoli, S., & Baroni, S. (2001). First principles thermoelasticity of MgSiO3-perovskite; consequences for the inferred properties of the lower mantle. Geophysical Research Letters, 28(14), 2699–2702.CrossRef Karki, B. B., Wentzcovitch, R. M., de Gironcoli, S., & Baroni, S. (2001). First principles thermoelasticity of MgSiO3-perovskite; consequences for the inferred properties of the lower mantle. Geophysical Research Letters, 28(14), 2699–2702.CrossRef
Zurück zum Zitat Katsura, T., & Ito, E. (1996). Determination of Fe–Mg partitioning between perovskite and magnesiowüstite. Geophysical Research Letters, 23(16), 2005–2008.CrossRef Katsura, T., & Ito, E. (1996). Determination of Fe–Mg partitioning between perovskite and magnesiowüstite. Geophysical Research Letters, 23(16), 2005–2008.CrossRef
Zurück zum Zitat Kesson, S. E., & Fitz Gerald, J. D. (1991). Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowustite: Implications for the origin of inclusions in diamond and the composition of the lower mantle. Earth and Planetary Science Letters, 111, 229–240.CrossRef Kesson, S. E., & Fitz Gerald, J. D. (1991). Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowustite: Implications for the origin of inclusions in diamond and the composition of the lower mantle. Earth and Planetary Science Letters, 111, 229–240.CrossRef
Zurück zum Zitat Kesson, S. E., Fitz Gerald, J. D., O’Neill, H., St, C., & Shelley, J. M. G. (2002). Partitioning of iron between magnesian silicate perovskite and magnesiowüstite at about 1 Mbar. Physics of the Earth and Planetary Interiors, 131, 295–310.CrossRef Kesson, S. E., Fitz Gerald, J. D., O’Neill, H., St, C., & Shelley, J. M. G. (2002). Partitioning of iron between magnesian silicate perovskite and magnesiowüstite at about 1 Mbar. Physics of the Earth and Planetary Interiors, 131, 295–310.CrossRef
Zurück zum Zitat Kesson, S. E., Fitz Gerald, J. D., & Shelley, J. M. (1998). Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393(6682), 252–255.CrossRef Kesson, S. E., Fitz Gerald, J. D., & Shelley, J. M. (1998). Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393(6682), 252–255.CrossRef
Zurück zum Zitat Kesson, S. E., Fitz Gerald, J. D., Shelley, J. M. G., & Withers, R. L. (1995). Phase relations, structure and crystal chemistry of some aluminous silicate perovskite. Earth and Planetary Science Letters, 134, 187–201.CrossRef Kesson, S. E., Fitz Gerald, J. D., Shelley, J. M. G., & Withers, R. L. (1995). Phase relations, structure and crystal chemistry of some aluminous silicate perovskite. Earth and Planetary Science Letters, 134, 187–201.CrossRef
Zurück zum Zitat Kind, R., & Li, X. (2007). Deep Earth structure—Transition zone and mantle discontinuities. In G. Schubert, B. Romanowicz, & A. Dziewonski (Eds.), Treatise on Geophysics: Vol. 1. Seismology and the structure of the Earth (pp. 591–612). Amsterdam: Elsevier. Kind, R., & Li, X. (2007). Deep Earth structure—Transition zone and mantle discontinuities. In G. Schubert, B. Romanowicz, & A. Dziewonski (Eds.), Treatise on Geophysics: Vol. 1. Seismology and the structure of the Earth (pp. 591–612). Amsterdam: Elsevier.
Zurück zum Zitat Kingma, K. J., Cohen, R. E., Hemley, R. J., & Mao, H.-K. (1995). Transformation of stishovite to a denser phase at lower mantle pressures. Nature, 374, 243–245.CrossRef Kingma, K. J., Cohen, R. E., Hemley, R. J., & Mao, H.-K. (1995). Transformation of stishovite to a denser phase at lower mantle pressures. Nature, 374, 243–245.CrossRef
Zurück zum Zitat Kingma, J. K., Mao, H. K., & Hemley, R. J. (1996). Synchrotron XRD of SiO2 to multimegabar pressures. High Pressure Research, 14, 363.CrossRef Kingma, J. K., Mao, H. K., & Hemley, R. J. (1996). Synchrotron XRD of SiO2 to multimegabar pressures. High Pressure Research, 14, 363.CrossRef
Zurück zum Zitat Klug, D. D., Rousseau, R., Uehara, K., Bernasconi, M., Le Page, Y., & Tse, J. S. (2001). Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Physical Review B, 63, 104106.CrossRef Klug, D. D., Rousseau, R., Uehara, K., Bernasconi, M., Le Page, Y., & Tse, J. S. (2001). Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Physical Review B, 63, 104106.CrossRef
Zurück zum Zitat Knittle, E., & Jeanloz, R. (1987). Synthesis and equation of state of (Mg, Fe)SiO3 perovskite to over 100 gigapascals. Science, 235, 668–670.CrossRef Knittle, E., & Jeanloz, R. (1987). Synthesis and equation of state of (Mg, Fe)SiO3 perovskite to over 100 gigapascals. Science, 235, 668–670.CrossRef
Zurück zum Zitat Knittle, E., & Jeanloz, R. (1991). Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures. Science, 251, 1438–1443.CrossRef Knittle, E., & Jeanloz, R. (1991). Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures. Science, 251, 1438–1443.CrossRef
Zurück zum Zitat Kobayashi, Y., Kondo, T., Ohtani, E., Hirao, N., Miyajima, N., Yagi, T., et al. (2005). Fe–Mg partitioning between (Mg, Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophysical Research Letters, 32, L19301. doi:10.1029/2005GL023257 Kobayashi, Y., Kondo, T., Ohtani, E., Hirao, N., Miyajima, N., Yagi, T., et al. (2005). Fe–Mg partitioning between (Mg, Fe)SiO3 post-perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophysical Research Letters, 32, L19301. doi:10.​1029/​2005GL023257
Zurück zum Zitat Kojitani, H., Katsura, T., & Akaogi, M. (2007). Aluminum substitution mechanisms in perovskite-type MgSiO3: An investigation by Rietveld analysis. Physics and Chemistry of Minerals, 34(4), 257–267. doi:10.1007/s00269-007-0144-z CrossRef Kojitani, H., Katsura, T., & Akaogi, M. (2007). Aluminum substitution mechanisms in perovskite-type MgSiO3: An investigation by Rietveld analysis. Physics and Chemistry of Minerals, 34(4), 257–267. doi:10.​1007/​s00269-007-0144-z CrossRef
Zurück zum Zitat Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y., & Dubrovinsky, L. S. (2007). Phase transition in CaSiO3 perovskite. Earth and Planetary Science Letters, 260, 564–569.CrossRef Komabayashi, T., Hirose, K., Sata, N., Ohishi, Y., & Dubrovinsky, L. S. (2007). Phase transition in CaSiO3 perovskite. Earth and Planetary Science Letters, 260, 564–569.CrossRef
Zurück zum Zitat Kondo, T., Ohtani, E., Hirao, N., Yagi, T., & Kikegawa, T. (2004). Phase transitions of (Mg, Fe)O at megabar pressures. Physics of the Earth and Planetary Interiors, 143–144, 201–213.CrossRef Kondo, T., Ohtani, E., Hirao, N., Yagi, T., & Kikegawa, T. (2004). Phase transitions of (Mg, Fe)O at megabar pressures. Physics of the Earth and Planetary Interiors, 143–144, 201–213.CrossRef
Zurück zum Zitat Kubo, T., Suzuki, T., & Akaogi, M. (1997). High pressure phase equilibria in the system CaTiO3–CaSiO3: Stability of perovskite solid solutions. Physics and Chemistry of Minerals, 24, 488–494.CrossRef Kubo, T., Suzuki, T., & Akaogi, M. (1997). High pressure phase equilibria in the system CaTiO3–CaSiO3: Stability of perovskite solid solutions. Physics and Chemistry of Minerals, 24, 488–494.CrossRef
Zurück zum Zitat Kubo, A., Yagi, T., Ono, S., & Akaogi, M. (2000). Compressibility of Mg0.9Al0.2Si0.9O3 perovskite. Proceedings of the Japan Academy Series B, 76(8), 103–107.CrossRef Kubo, A., Yagi, T., Ono, S., & Akaogi, M. (2000). Compressibility of Mg0.9Al0.2Si0.9O3 perovskite. Proceedings of the Japan Academy Series B, 76(8), 103–107.CrossRef
Zurück zum Zitat Kudoh, Y., Prewitt, C. T., Finger, L. W., Darovskikh, A., & Ito, E. (1990). Effect of iron on the crystal structure of (Mg, Fe)SiO3 perovskite. Geophysical Research Letters, 17(10), 1481–1484. doi:10.1029/GL017i010p01481 CrossRef Kudoh, Y., Prewitt, C. T., Finger, L. W., Darovskikh, A., & Ito, E. (1990). Effect of iron on the crystal structure of (Mg, Fe)SiO3 perovskite. Geophysical Research Letters, 17(10), 1481–1484. doi:10.​1029/​GL017i010p01481 CrossRef
Zurück zum Zitat Kurashina, T., Hirose, K., Ono, S., Sata, N., & Ohishi, Y. (2004). Phase transition in Albearing CaSiO3 perovskite: Implications for seismic discontinuities in the lower mantle. Physics of the Earth and Planetary Interiors, 145, 67–74.CrossRef Kurashina, T., Hirose, K., Ono, S., Sata, N., & Ohishi, Y. (2004). Phase transition in Albearing CaSiO3 perovskite: Implications for seismic discontinuities in the lower mantle. Physics of the Earth and Planetary Interiors, 145, 67–74.CrossRef
Zurück zum Zitat Kuwayama, Y., Hirose, K., Satam, N., & Ohishi, Y. (2005). The pyrite-type high-pressure form of silica. Science, 309, 923–925.CrossRef Kuwayama, Y., Hirose, K., Satam, N., & Ohishi, Y. (2005). The pyrite-type high-pressure form of silica. Science, 309, 923–925.CrossRef
Zurück zum Zitat Lakshtanov, D. L., Sinogeikin, S. V., Konstantin, D., Litasov, K. D., Vitali, B., Prakapenka, V. B., et al. (2007). The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the Earth. Proceedings of the National Academy of Sciences of the U.S.A., 104, 13588–13590.CrossRef Lakshtanov, D. L., Sinogeikin, S. V., Konstantin, D., Litasov, K. D., Vitali, B., Prakapenka, V. B., et al. (2007). The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the Earth. Proceedings of the National Academy of Sciences of the U.S.A., 104, 13588–13590.CrossRef
Zurück zum Zitat Lauterbach, S., McCammon, C. A., Aken, P. V., Langenhorst, F., & Seifert, F. (2000). Mossbauer and ELNES spectroscopy of (Mg, Fe)(Si, Al)O3 perovskite: A highly oxidized component of the lower mantle. Contributions to Mineralogy and Petrology, 138, 17–26.CrossRef Lauterbach, S., McCammon, C. A., Aken, P. V., Langenhorst, F., & Seifert, F. (2000). Mossbauer and ELNES spectroscopy of (Mg, Fe)(Si, Al)O3 perovskite: A highly oxidized component of the lower mantle. Contributions to Mineralogy and Petrology, 138, 17–26.CrossRef
Zurück zum Zitat Lee, Y. M., & Nassaralla, C. L. (1997). Minimization of hexavalent chromium in magnesite-chrome refractory. Metallurgical and Materials Transactions B, 28, 855–859.CrossRef Lee, Y. M., & Nassaralla, C. L. (1997). Minimization of hexavalent chromium in magnesite-chrome refractory. Metallurgical and Materials Transactions B, 28, 855–859.CrossRef
Zurück zum Zitat Lee, K. K. M., O’Neill, B., Panero, W. R., Shim, S. H., Benedetti, L. R., & Jeanloz, R. (2004). Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 223(3–4), 381–393. doi:10.1016/j.epsl.2004.04.033 CrossRef Lee, K. K. M., O’Neill, B., Panero, W. R., Shim, S. H., Benedetti, L. R., & Jeanloz, R. (2004). Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 223(3–4), 381–393. doi:10.​1016/​j.​epsl.​2004.​04.​033 CrossRef
Zurück zum Zitat Li, L., Nagai, T., Seto, Y., Fujino, K., Kawano, J., & Itoh, S. (2015). Superior solid solubility of MnSiO3 in CaSiO3 perovskite. Physics and Chemistry of Minerals 42(2), 123–129. Li, L., Nagai, T., Seto, Y., Fujino, K., Kawano, J., & Itoh, S. (2015). Superior solid solubility of MnSiO3 in CaSiO3 perovskite. Physics and Chemistry of Minerals 42(2), 123–129.  
Zurück zum Zitat Li, L., Weidner, D. J., Brodholt, J., Alfe, D., Price, G. D., Caracas, R., et al. (2006). Phase stability of CaSiO3 perovskite at high pressure and temperature: Insights from ab initio molecular dynamics. Physics of the Earth and Planetary Interiors, 155, 260–268.CrossRef Li, L., Weidner, D. J., Brodholt, J., Alfe, D., Price, G. D., Caracas, R., et al. (2006). Phase stability of CaSiO3 perovskite at high pressure and temperature: Insights from ab initio molecular dynamics. Physics of the Earth and Planetary Interiors, 155, 260–268.CrossRef
Zurück zum Zitat Lin, J.-F., Alp, E. E., Mao, Z., Inoue, T., McCammon, C., Xiao, Y., et al. (2012). Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite. American Mineralogist, 97, 592–597.CrossRef Lin, J.-F., Alp, E. E., Mao, Z., Inoue, T., McCammon, C., Xiao, Y., et al. (2012). Electronic spin states of ferric and ferrous iron in the lower-mantle silicate perovskite. American Mineralogist, 97, 592–597.CrossRef
Zurück zum Zitat Lin, J.-F., Heinz, D. L., Mao, H.-K., Hemley, R. J., Devine, J. M., Li, J., et al. (2003). Stability of magnesiowüstite in Earth’s lower mantle. Proceedings of the National Academy of Sciences of the U.S.A., 100(8), 4405–4408.CrossRef Lin, J.-F., Heinz, D. L., Mao, H.-K., Hemley, R. J., Devine, J. M., Li, J., et al. (2003). Stability of magnesiowüstite in Earth’s lower mantle. Proceedings of the National Academy of Sciences of the U.S.A., 100(8), 4405–4408.CrossRef
Zurück zum Zitat Lin, J.-F., Speziale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower-mantle minerals: Implications to deep-mantle geophysics and geochemistry. Reviews of Geophysics, 51, 244–275. doi:10.1002/rog.20010 CrossRef Lin, J.-F., Speziale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower-mantle minerals: Implications to deep-mantle geophysics and geochemistry. Reviews of Geophysics, 51, 244–275. doi:10.​1002/​rog.​20010 CrossRef
Zurück zum Zitat Lin, J.-F., Struzhkin, V. V., Jacobsen, S. D., Hu, M. Y., Chow, P., King, J., et al. (2005). Spin transition of iron in magnesiowüstite in Earth’s lower mantle. Nature, 436, 377–380.CrossRef Lin, J.-F., Struzhkin, V. V., Jacobsen, S. D., Hu, M. Y., Chow, P., King, J., et al. (2005). Spin transition of iron in magnesiowüstite in Earth’s lower mantle. Nature, 436, 377–380.CrossRef
Zurück zum Zitat Litasov, K. D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D. L., Bass, J. D., et al. (2007). High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth and Planetary Science Letters, 262, 620–634. doi:10.1016/j.epsl.2007.08.015 CrossRef Litasov, K. D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D. L., Bass, J. D., et al. (2007). High hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth and Planetary Science Letters, 262, 620–634. doi:10.​1016/​j.​epsl.​2007.​08.​015 CrossRef
Zurück zum Zitat Litasov, K., Ohtani, E., Langenhorst, F., Yurimoto, H., Kubo, H., & Kondo, T. (2003). Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth and Planetary Science Letters, 211, 189–203.CrossRef Litasov, K., Ohtani, E., Langenhorst, F., Yurimoto, H., Kubo, H., & Kondo, T. (2003). Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth and Planetary Science Letters, 211, 189–203.CrossRef
Zurück zum Zitat Litvin, Y. A. (2014). The stishovite paradox in the genesis of superdeep diamonds. Doklady Earth Sciences, 455(1), 274–278.CrossRef Litvin, Y. A. (2014). The stishovite paradox in the genesis of superdeep diamonds. Doklady Earth Sciences, 455(1), 274–278.CrossRef
Zurück zum Zitat Litvin, Y. A., Spivak, A. V., & Dubrovinsky, L. S. (2016). Magmatic evolution of the material of the Earth’s lower mantle: Stishovite paradox and origin of superdeep diamonds (experiments at 24–26 GPa). Geochemistry International, 54(11), 936–947. doi:10.1134/S0016702916090032 CrossRef Litvin, Y. A., Spivak, A. V., & Dubrovinsky, L. S. (2016). Magmatic evolution of the material of the Earth’s lower mantle: Stishovite paradox and origin of superdeep diamonds (experiments at 24–26 GPa). Geochemistry International, 54(11), 936–947. doi:10.​1134/​S001670291609003​2 CrossRef
Zurück zum Zitat Liu, L.-G. (1974). Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophysical Research Letters, 1, 277–280.CrossRef Liu, L.-G. (1974). Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophysical Research Letters, 1, 277–280.CrossRef
Zurück zum Zitat Liu, L.-G. (1975). Post oxide phases of forsterite and enstatite. Geophysical Research Letters, 2, 417–419.CrossRef Liu, L.-G. (1975). Post oxide phases of forsterite and enstatite. Geophysical Research Letters, 2, 417–419.CrossRef
Zurück zum Zitat Liu, L. (1977). Ilmenite-type solid solutions between MgSiO3 and Al2O3 and some structural systematics among ilmenite compounds. Geochimica et Cosmochimica Acta, 41, 1355–1361.CrossRef Liu, L. (1977). Ilmenite-type solid solutions between MgSiO3 and Al2O3 and some structural systematics among ilmenite compounds. Geochimica et Cosmochimica Acta, 41, 1355–1361.CrossRef
Zurück zum Zitat Liu, L.-G. (2002). An alternative interpretation of lower mantle mineral associations in diamonds. Contributions to Mineralogy and Petrology, 144(1), 16–21.CrossRef Liu, L.-G. (2002). An alternative interpretation of lower mantle mineral associations in diamonds. Contributions to Mineralogy and Petrology, 144(1), 16–21.CrossRef
Zurück zum Zitat Liu, Z., Irifune, T., Nishi, M., Tange, Y., Arimoto, T., & Shinmei, T. (2016). Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Physics of the Earth and Planetary Interiors, 257, 18–27. doi:10.1016/j.pepi.2016.05.006 CrossRef Liu, Z., Irifune, T., Nishi, M., Tange, Y., Arimoto, T., & Shinmei, T. (2016). Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Physics of the Earth and Planetary Interiors, 257, 18–27. doi:10.​1016/​j.​pepi.​2016.​05.​006 CrossRef
Zurück zum Zitat Liu, L.-G., & Ringwood, A. E. (1975). Synthesis of a perovskite-type polymorph of CaSiO3. Earth and Planetary Science Letters, 28, 209–211.CrossRef Liu, L.-G., & Ringwood, A. E. (1975). Synthesis of a perovskite-type polymorph of CaSiO3. Earth and Planetary Science Letters, 28, 209–211.CrossRef
Zurück zum Zitat Lobanov, S. S., Zhu, Q., Holtgrewe, N., Prescher, C., Prakapenka, V. B., Oganov, A. R., et al. (2015). Stable magnesium peroxide at high pressure. Scientific Review, 5, 13582. doi:10.1038/srep13582 Lobanov, S. S., Zhu, Q., Holtgrewe, N., Prescher, C., Prakapenka, V. B., Oganov, A. R., et al. (2015). Stable magnesium peroxide at high pressure. Scientific Review, 5, 13582. doi:10.​1038/​srep13582
Zurück zum Zitat Longo, M., McCammon, C. A., & Jacobsen, S. D. (2011). Microanalysis of the iron oxidation state in (Mg, Fe)O and application to the study of microscale processes. Contributions to Mineralogy and Petrology, 162, 1249–1257.CrossRef Longo, M., McCammon, C. A., & Jacobsen, S. D. (2011). Microanalysis of the iron oxidation state in (Mg, Fe)O and application to the study of microscale processes. Contributions to Mineralogy and Petrology, 162, 1249–1257.CrossRef
Zurück zum Zitat Magyari-Köpe, B., Vitos, L., Grimvall, G., Johansson, B., & Kollar, J. (2002a). Low-temperature crystal structure of CaSiO3 perovskite: An ab initio total energy study. Physical Review B, 65, 193107. doi:10.1103/PhysRevB.65.193107 CrossRef Magyari-Köpe, B., Vitos, L., Grimvall, G., Johansson, B., & Kollar, J. (2002a). Low-temperature crystal structure of CaSiO3 perovskite: An ab initio total energy study. Physical Review B, 65, 193107. doi:10.​1103/​PhysRevB.​65.​193107 CrossRef
Zurück zum Zitat Magyari-Köpe, B., Vitos, L., Johansson, B., & Kollar, J. (2002b). Model structure of perovskites: Cubic-orthorhombic phase transition. Computational Material Science, 25(4), 615–621.CrossRef Magyari-Köpe, B., Vitos, L., Johansson, B., & Kollar, J. (2002b). Model structure of perovskites: Cubic-orthorhombic phase transition. Computational Material Science, 25(4), 615–621.CrossRef
Zurück zum Zitat Mao, H. K., Chen, L. C., Hemley, R. J., Jephcoat, A. P., Wu, Y., & Bassett, W. A. (1989). Stability and equation of state of CaSiO3-perovskite to 134 GPa. Journal of Geophysical Research, 94, 17889–17894.CrossRef Mao, H. K., Chen, L. C., Hemley, R. J., Jephcoat, A. P., Wu, Y., & Bassett, W. A. (1989). Stability and equation of state of CaSiO3-perovskite to 134 GPa. Journal of Geophysical Research, 94, 17889–17894.CrossRef
Zurück zum Zitat Mao, Z., Lin, J.-F., Yang, J., Inoue, T., & Prakapenka, V. B. (2015). Effects of the Fe3+ spin transition on the equation of state of bridgmanite. Geophysical Research Letters, 42, 4335–4342. doi:10.1002/2015GL064400 CrossRef Mao, Z., Lin, J.-F., Yang, J., Inoue, T., & Prakapenka, V. B. (2015). Effects of the Fe3+ spin transition on the equation of state of bridgmanite. Geophysical Research Letters, 42, 4335–4342. doi:10.​1002/​2015GL064400 CrossRef
Zurück zum Zitat Mao, H.-K., Shu, J., Fei, Y., Hu, J., & Hemley, R. J. (1996). The wüstite enigma. Physics of the Earth and Planetary Interiors, 96, 135–145.CrossRef Mao, H.-K., Shu, J., Fei, Y., Hu, J., & Hemley, R. J. (1996). The wüstite enigma. Physics of the Earth and Planetary Interiors, 96, 135–145.CrossRef
Zurück zum Zitat Mao, W., Shu, J., Hu, J., Hemley, R., & Mao, H.-K. (2002). Displacive transition in magnesiowüstite. Journal of Physics: Condensed Matter, 14, 11349–11354. Mao, W., Shu, J., Hu, J., Hemley, R., & Mao, H.-K. (2002). Displacive transition in magnesiowüstite. Journal of Physics: Condensed Matter, 14, 11349–11354.
Zurück zum Zitat Mao, Z., Wang, F., Lin, J.-F., Fu, S., Yang, J., Wu, X., et al. (2017). Equation of state of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy. American Mineralogist, 102(2), 357–368. doi:10.2138/am-2017-5770 CrossRef Mao, Z., Wang, F., Lin, J.-F., Fu, S., Yang, J., Wu, X., et al. (2017). Equation of state of high-spin bridgmanite in the Earth’s lower mantle by synchrotron X-ray diffraction and Mössbauer spectroscopy. American Mineralogist, 102(2), 357–368. doi:10.​2138/​am-2017-5770 CrossRef
Zurück zum Zitat Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., & Schilling, F. R. (2009a). Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth and Planetary Science Letters, 287, 345–352.CrossRef Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., & Schilling, F. R. (2009a). Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth and Planetary Science Letters, 287, 345–352.CrossRef
Zurück zum Zitat Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., & Garnero, E. J. (2009b). Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science, 324(6289), 224–226.CrossRef Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., & Garnero, E. J. (2009b). Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science, 324(6289), 224–226.CrossRef
Zurück zum Zitat Martirosyan, N.S., Yoshino, T., Shatskiy, A., Chanyshev, A.D., & Litasov, K.D. (2016). The CaCO3–Fe interaction: Kinetic approach for carbonate subduction to the deep Earth’s mantle. Physics of the Earth and Planetary Interiors, 259, 1–9. Martirosyan, N.S., Yoshino, T., Shatskiy, A., Chanyshev, A.D., & Litasov, K.D. (2016). The CaCO3–Fe interaction: Kinetic approach for carbonate subduction to the deep Earth’s mantle. Physics of the Earth and Planetary Interiors, 259, 1–9.
Zurück zum Zitat Matas, J., Bass, J. D., Ricard, Y., Mattern, E., & Bukowinsky, M. S. (2007). On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophysical Journal International, 170, 764–780.CrossRef Matas, J., Bass, J. D., Ricard, Y., Mattern, E., & Bukowinsky, M. S. (2007). On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophysical Journal International, 170, 764–780.CrossRef
Zurück zum Zitat McCammon, C. A. (1993). Effect of pressure on the composition of the Lower Mantle End Member FexO. Science, 259, 66–68.CrossRef McCammon, C. A. (1993). Effect of pressure on the composition of the Lower Mantle End Member FexO. Science, 259, 66–68.CrossRef
Zurück zum Zitat McCammon, C. A. (1997). Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387, 694–696.CrossRef McCammon, C. A. (1997). Perovskite as a possible sink for ferric iron in the lower mantle. Nature, 387, 694–696.CrossRef
Zurück zum Zitat McCammon, C. A. (2005). Mantle oxidation state and oxygen fugacity: Constraints on mantle chemistry, structure, and dynamics. In Earth’s Deep Mantle: Structure, Composition, and Evolution: Vol. 160. Geophysical monograph (pp. 219–240). McCammon, C. A. (2005). Mantle oxidation state and oxygen fugacity: Constraints on mantle chemistry, structure, and dynamics. In Earth’s Deep Mantle: Structure, Composition, and Evolution: Vol. 160. Geophysical monograph (pp. 219–240).
Zurück zum Zitat McCammon, C., Hutchison, M. T., & Harris, J. W. (1997). Ferric iron content of mineral inclusions in diamonds from São Luiz: A view into the lower mantle. Science, 278(5337), 434–436.CrossRef McCammon, C., Hutchison, M. T., & Harris, J. W. (1997). Ferric iron content of mineral inclusions in diamonds from São Luiz: A view into the lower mantle. Science, 278(5337), 434–436.CrossRef
Zurück zum Zitat McCammon, C. A., Ringwood, A. E., & Jackson, I. (1983). Thermodynamics of the system Fe-FeO-MgO at high pressure and temperature and a model for formation of the Earth’s core. Geophysical Journal of the Royal Astronomical Society, 72, 577–595.CrossRef McCammon, C. A., Ringwood, A. E., & Jackson, I. (1983). Thermodynamics of the system Fe-FeO-MgO at high pressure and temperature and a model for formation of the Earth’s core. Geophysical Journal of the Royal Astronomical Society, 72, 577–595.CrossRef
Zurück zum Zitat McDonough, W. F., & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253.CrossRef McDonough, W. F., & Sun, S.-S. (1995). The composition of the Earth. Chemical Geology, 120(3–4), 223–253.CrossRef
Zurück zum Zitat McWilliams, R. S., Spaulding, D. K., Eggert, J. H., Celliers, P. M., Hicks, D. G., Smith, R. F., et al. (2012). Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science, 338, 1330–1333.CrossRef McWilliams, R. S., Spaulding, D. K., Eggert, J. H., Celliers, P. M., Hicks, D. G., Smith, R. F., et al. (2012). Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science, 338, 1330–1333.CrossRef
Zurück zum Zitat Meade, C., Mao, H. K., & Hu, J. (1995). High-temperature phase transition and dissociation of (Mg, Fe)SiO3 perovskite at lower mantle pressures. Science, 268(5218), 1743–1745.CrossRef Meade, C., Mao, H. K., & Hu, J. (1995). High-temperature phase transition and dissociation of (Mg, Fe)SiO3 perovskite at lower mantle pressures. Science, 268(5218), 1743–1745.CrossRef
Zurück zum Zitat Merli, M., Bonadiman, C., Diella, V., & Pavese, A. (2016). Lower mantle hydrogen partitioning between periclase and perovskite: A quantum chemical modelling. Geochimica et Cosmochimica Acta, 173, 304–318.CrossRef Merli, M., Bonadiman, C., Diella, V., & Pavese, A. (2016). Lower mantle hydrogen partitioning between periclase and perovskite: A quantum chemical modelling. Geochimica et Cosmochimica Acta, 173, 304–318.CrossRef
Zurück zum Zitat Metsue, A., & Tsuchiya, T. (2011). Lattice dynamics and thermodynamic properties of (Mg, Fe2+)SiO3 postperovskite. Journal of Geophysical Research, 116, JB008018. doi:10.1029/2010JB008018 CrossRef Metsue, A., & Tsuchiya, T. (2011). Lattice dynamics and thermodynamic properties of (Mg, Fe2+)SiO3 postperovskite. Journal of Geophysical Research, 116, JB008018. doi:10.​1029/​2010JB008018 CrossRef
Zurück zum Zitat Meyer, H. O. A., & Svisero, D. P. (1975). Mineral inclusions in Brazilian diamonds. Physics and Chemistry of the Earth, 9, 785–795.CrossRef Meyer, H. O. A., & Svisero, D. P. (1975). Mineral inclusions in Brazilian diamonds. Physics and Chemistry of the Earth, 9, 785–795.CrossRef
Zurück zum Zitat Mitchell, R. H. (1978). Manganoan magnesian ilmenite and titanian clinohumite from the Jacupiranga carbonatite, Sao Paulo, Brazil. American Mineralogist, 63(5–6), 544–547. Mitchell, R. H. (1978). Manganoan magnesian ilmenite and titanian clinohumite from the Jacupiranga carbonatite, Sao Paulo, Brazil. American Mineralogist, 63(5–6), 544–547.
Zurück zum Zitat Miyahara, M., Kaneko, S., Ohtani, E., Sakai, T., Nagase, T., Kayama, M., et al. (2013). Discovery of seifertite in a shocked lunar meteorite. Nature Communications, 4, 1737. doi:10.1038/ncomms2733 CrossRef Miyahara, M., Kaneko, S., Ohtani, E., Sakai, T., Nagase, T., Kayama, M., et al. (2013). Discovery of seifertite in a shocked lunar meteorite. Nature Communications, 4, 1737. doi:10.​1038/​ncomms2733 CrossRef
Zurück zum Zitat Moore, R. O., & Gurney, J. J. (1985). Pyroxene solid solution in garnets included in diamonds. Nature, 318(6046), 553–555.CrossRef Moore, R. O., & Gurney, J. J. (1985). Pyroxene solid solution in garnets included in diamonds. Nature, 318(6046), 553–555.CrossRef
Zurück zum Zitat Moore, R. O., Otter, M. L., Rickard, R. S., Harris, J. W., & Gurney, J. J. (1986). The occurrence of moissanite and ferro-periclase as inclusions in diamond. In 4th International Kimberlite Conference Extended Abstracts, Perth (Vol. 16, pp. 409–411). Geological Society of Australia Abstracts. Moore, R. O., Otter, M. L., Rickard, R. S., Harris, J. W., & Gurney, J. J. (1986). The occurrence of moissanite and ferro-periclase as inclusions in diamond. In 4th International Kimberlite Conference Extended Abstracts, Perth (Vol. 16, pp. 409–411). Geological Society of Australia Abstracts.
Zurück zum Zitat Moran, E., Blesa, M. C., Medina, M.-E., Tornero, J.-D., Menendez, N., & Amador, U. (2002). Nonstoichiometric spinel ferrites obtained from α-NaFeO2 via molten media reactions. Inorganic Chemistry, 41(23), 5961–5967.CrossRef Moran, E., Blesa, M. C., Medina, M.-E., Tornero, J.-D., Menendez, N., & Amador, U. (2002). Nonstoichiometric spinel ferrites obtained from α-NaFeO2 via molten media reactions. Inorganic Chemistry, 41(23), 5961–5967.CrossRef
Zurück zum Zitat Muir, J. M. R., & Brodholt, J. P. (2015). Elastic properties of ferrous bearing MgSiO3 and their relevance to ULVZs. Geophysical Journal International, 201(1), 496–504. doi:10.1093/gji/ggv045 Muir, J. M. R., & Brodholt, J. P. (2015). Elastic properties of ferrous bearing MgSiO3 and their relevance to ULVZs. Geophysical Journal International, 201(1), 496–504. doi:10.​1093/​gji/​ggv045
Zurück zum Zitat Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004a). Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRef Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. (2004a). Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.CrossRef
Zurück zum Zitat Murakami, M., Hirose, K., Ono, S., & Ohishi, Y. (2003). Stability of CaCl2-type and α-PbO2-type SiO2 at high pressure and temperature determined by in situ X-ray measurements. Geophysical Research Letters, 30, 1207. doi:10.1029/2002GL016722 CrossRef Murakami, M., Hirose, K., Ono, S., & Ohishi, Y. (2003). Stability of CaCl2-type and α-PbO2-type SiO2 at high pressure and temperature determined by in situ X-ray measurements. Geophysical Research Letters, 30, 1207. doi:10.​1029/​2002GL016722 CrossRef
Zurück zum Zitat Murakami, M., Hirose, K., Ono, S., Tsuchiya, T., Isshiki, M., & Watanuki, T. (2004b). High pressure and high temperature phase transitions of FeO. Physics of the Earth and Planetary Interiors, 146, 273–282.CrossRef Murakami, M., Hirose, K., Ono, S., Tsuchiya, T., Isshiki, M., & Watanuki, T. (2004b). High pressure and high temperature phase transitions of FeO. Physics of the Earth and Planetary Interiors, 146, 273–282.CrossRef
Zurück zum Zitat Murakami, M., Hirose, K., Sata, N., & Ohishi, Y. (2005). Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophysical Research Letters, 32, L03304. doi:10.1029/2004GL021956 CrossRef Murakami, M., Hirose, K., Sata, N., & Ohishi, Y. (2005). Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophysical Research Letters, 32, L03304. doi:10.​1029/​2004GL021956 CrossRef
Zurück zum Zitat Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S., & Takafuji, N. (2002). Water in Earth’s Lower Mantle. Science, 295, 1885–1887.CrossRef Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S., & Takafuji, N. (2002). Water in Earth’s Lower Mantle. Science, 295, 1885–1887.CrossRef
Zurück zum Zitat Murakami, M., Ohishi, Y., Hirao, N., & Hirose, K. (2012). A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485(7396), 90–94. doi:10.1038/nature11004 CrossRef Murakami, M., Ohishi, Y., Hirao, N., & Hirose, K. (2012). A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature, 485(7396), 90–94. doi:10.​1038/​nature11004 CrossRef
Zurück zum Zitat Nakajima, Y., Frost, D. J., & Rubie, D. C. (2012). Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth’s lower mantle. Journal of Geophysical Research, 117, B08201. doi:10.1029/2012JB009151 Nakajima, Y., Frost, D. J., & Rubie, D. C. (2012). Ferrous iron partitioning between magnesium silicate perovskite and ferropericlase and the composition of perovskite in the Earth’s lower mantle. Journal of Geophysical Research, 117, B08201. doi:10.​1029/​2012JB009151
Zurück zum Zitat Navrotsky, A., Schoenitz, M., Kojitani, H., Xu, H., Zhang, J., Weidner, D. J., et al. (2003). Aluminum in magnesium silicate perovskite: Formation, structure, and energetics of magnesium-rich defect solid solutions. Journal of Geophysical Research, 108(B7). doi:10.1029/2002JB002055 Navrotsky, A., Schoenitz, M., Kojitani, H., Xu, H., Zhang, J., Weidner, D. J., et al. (2003). Aluminum in magnesium silicate perovskite: Formation, structure, and energetics of magnesium-rich defect solid solutions. Journal of Geophysical Research, 108(B7). doi:10.​1029/​2002JB002055
Zurück zum Zitat Nestola, F., Burnham, A. D., Peruzza, L., Tauro, L., Alvaro, M., Walter, M. J., et al. (2016a). Tetragonal almandine-pyrope phase, TAPP: Finally a name for it, the new mineral jeffbenite. Mineralogical Magazine, 80(7), 1219–1232. doi:10.1180/minmag.2016.080.059 CrossRef Nestola, F., Burnham, A. D., Peruzza, L., Tauro, L., Alvaro, M., Walter, M. J., et al. (2016a). Tetragonal almandine-pyrope phase, TAPP: Finally a name for it, the new mineral jeffbenite. Mineralogical Magazine, 80(7), 1219–1232. doi:10.​1180/​minmag.​2016.​080.​059 CrossRef
Zurück zum Zitat Nestola, F., Burnham, A., Peruzzo, L., Tauro, L., Alvaro, M., Walter, M. J., et al. (2015) Jeffbenite, IMA 2014-097. CNMNC Newsletter No. 24, April 2015, page 250. Mineralogical Magazine, 79, 247–251. Nestola, F., Burnham, A., Peruzzo, L., Tauro, L., Alvaro, M., Walter, M. J., et al. (2015) Jeffbenite, IMA 2014-097. CNMNC Newsletter No. 24, April 2015, page 250. Mineralogical Magazine, 79, 247–251.
Zurück zum Zitat Nestola, F., Cerantola, V., Milani, S., Anzolini, C., McCammon, C., Novella, D., et al. (2016b). Synchrotron Mössbauer Source technique for in situ measurement of iron-bearing inclusions in natural diamonds. Lithos, 265, 328–333. doi:10.1016/j.lithos.2016.06.016 CrossRef Nestola, F., Cerantola, V., Milani, S., Anzolini, C., McCammon, C., Novella, D., et al. (2016b). Synchrotron Mössbauer Source technique for in situ measurement of iron-bearing inclusions in natural diamonds. Lithos, 265, 328–333. doi:10.​1016/​j.​lithos.​2016.​06.​016 CrossRef
Zurück zum Zitat Nomura, R., Hirose, K., Sata, N., & Ohishi, Y. (2010). Precise determination of post-stishovite phase transition boundary and implications for seismic heterogeneities in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 183, 104–109. doi:10.1016/j.pepi.2010.08.004 CrossRef Nomura, R., Hirose, K., Sata, N., & Ohishi, Y. (2010). Precise determination of post-stishovite phase transition boundary and implications for seismic heterogeneities in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 183, 104–109. doi:10.​1016/​j.​pepi.​2010.​08.​004 CrossRef
Zurück zum Zitat Nomura, R., Ozawa, H., Tateno, S., Hirose, K., Hernlund, H., Muto, S., et al. (2011). Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature, 473, 199–203.CrossRef Nomura, R., Ozawa, H., Tateno, S., Hirose, K., Hernlund, H., Muto, S., et al. (2011). Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature, 473, 199–203.CrossRef
Zurück zum Zitat Oganov, A. R., Brodholt, J. P., & Price, G. D. (2001). Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth and Planetary Science Letters, 184(3–4), 555–560.CrossRef Oganov, A. R., Brodholt, J. P., & Price, G. D. (2001). Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth and Planetary Science Letters, 184(3–4), 555–560.CrossRef
Zurück zum Zitat Oganov, A. R., Gillan, M. J., & Price, G. D. (2005). Structural stability of silica at high pressures and temperatures. Physical Review B, 71, 64104.CrossRef Oganov, A. R., Gillan, M. J., & Price, G. D. (2005). Structural stability of silica at high pressures and temperatures. Physical Review B, 71, 64104.CrossRef
Zurück zum Zitat Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430, 445–448.CrossRef Oganov, A. R., & Ono, S. (2004). Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature, 430, 445–448.CrossRef
Zurück zum Zitat Ohta, K., Cohen, R. E., Hirose, K., Haule, K., Shimizu, K., & Ohishi, Y. (2012). Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Physical Review Letters, 108, 026403. doi:10.1103/PhysRevLett.108.026403 CrossRef Ohta, K., Cohen, R. E., Hirose, K., Haule, K., Shimizu, K., & Ohishi, Y. (2012). Experimental and theoretical evidence for pressure-induced metallization in FeO with rocksalt-type structure. Physical Review Letters, 108, 026403. doi:10.​1103/​PhysRevLett.​108.​026403 CrossRef
Zurück zum Zitat Ohta, K., Fujino, K., Kuwayama, Y., Kondo, T., Shimizu, K., & Ohishi, Y. (2014). Highly conductive iron rich (Mg, Fe)O magnesiowustite and its stability in the Earth’s lower mantle. Journal of Geophysical Research: Solid Earth, 119(6), 4656–4665. Ohta, K., Fujino, K., Kuwayama, Y., Kondo, T., Shimizu, K., & Ohishi, Y. (2014). Highly conductive iron rich (Mg, Fe)O magnesiowustite and its stability in the Earth’s lower mantle. Journal of Geophysical Research: Solid Earth, 119(6), 4656–4665.
Zurück zum Zitat Ohta, K., Hirose, K., Shimizu, K., & Ohishi, Y. (2010). High-pressure experimental evidence for metal FeO with normal NiAs-type structure. Physical Review B, 82(174), 120. doi:10.1103/PhysRevB.82.174120 Ohta, K., Hirose, K., Shimizu, K., & Ohishi, Y. (2010). High-pressure experimental evidence for metal FeO with normal NiAs-type structure. Physical Review B, 82(174), 120. doi:10.​1103/​PhysRevB.​82.​174120
Zurück zum Zitat Ohta. K., Yagi, T., Hirose, K., & OhishI, Y. (2017). Thermal conductivity of ferropericlase in the Earth's lower mantle. Earth and Planetary Science Letters, 465, 29–37. doi: 10.1016/j.epsi.2017.02.030 Ohta. K., Yagi, T., Hirose, K., & OhishI, Y. (2017). Thermal conductivity of ferropericlase in the Earth's lower mantle. Earth and Planetary Science Letters, 465, 29–37. doi: 10.​1016/​j.​epsi.​2017.​02.​030
Zurück zum Zitat Omori, K., & Hasegawa, S. (1955). Chemical composition of perthite, ilmenite, allanite and pyroxmangite occurred in pegmatites of vicinity of Iwaizami Town, Iwate Prefecture. Journal of Japanese Association of Mineralogy, Petrography, and Economic Geology, 39, 89–98. Omori, K., & Hasegawa, S. (1955). Chemical composition of perthite, ilmenite, allanite and pyroxmangite occurred in pegmatites of vicinity of Iwaizami Town, Iwate Prefecture. Journal of Japanese Association of Mineralogy, Petrography, and Economic Geology, 39, 89–98.
Zurück zum Zitat Ono, S., Hirose, K., Murakami, M., & Isshiki, M. (2002). Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations. Earth and Planetary Science Letters, 197, 187–192.CrossRef Ono, S., Hirose, K., Murakami, M., & Isshiki, M. (2002). Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations. Earth and Planetary Science Letters, 197, 187–192.CrossRef
Zurück zum Zitat Ono, S., Ohishi, Y., Isshiki, M., & Watanuki, T. (2005). In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. Journal of Geophysical Research, 110, B02208.CrossRef Ono, S., Ohishi, Y., Isshiki, M., & Watanuki, T. (2005). In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. Journal of Geophysical Research, 110, B02208.CrossRef
Zurück zum Zitat Ono, S., Ohishi, Y., & Mibe, K. (2004). Phase transition in CaSi-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle. American Mineralogist, 89, 1480–1485.CrossRef Ono, S., Ohishi, Y., & Mibe, K. (2004). Phase transition in CaSi-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle. American Mineralogist, 89, 1480–1485.CrossRef
Zurück zum Zitat Ozawa, H., Hirose, K., Ohta, K., Ishii, H., Hiraoka, N., Ohishi, Y., et al. (2011). Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure. Physical Review B, 84, 134417.CrossRef Ozawa, H., Hirose, K., Ohta, K., Ishii, H., Hiraoka, N., Ohishi, Y., et al. (2011). Spin crossover, structural change, and metallization in NiAs-type FeO at high pressure. Physical Review B, 84, 134417.CrossRef
Zurück zum Zitat Ozawa, H., Hirose, K., Tateno, S., Sata, N., & Ohishi, Y. (2010). Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa. Physics of the Earth and Planetary Interiors, 179, 157–163.CrossRef Ozawa, H., Hirose, K., Tateno, S., Sata, N., & Ohishi, Y. (2010). Phase transition boundary between B1 and B8 structures of FeO up to 210 GPa. Physics of the Earth and Planetary Interiors, 179, 157–163.CrossRef
Zurück zum Zitat Ozawa, H., Hirose, K., Yonemitsu, K., & Ohishi, Y. (2016). High-pressure melting experiments on Fe–Si alloys and implications for silicon as a light element in the core. Earth and Planetary Science Letters, 456, 47–54. doi:10.1016/j.epsl.2016.08.042 CrossRef Ozawa, H., Hirose, K., Yonemitsu, K., & Ohishi, Y. (2016). High-pressure melting experiments on Fe–Si alloys and implications for silicon as a light element in the core. Earth and Planetary Science Letters, 456, 47–54. doi:10.​1016/​j.​epsl.​2016.​08.​042 CrossRef
Zurück zum Zitat Panero, W. R., & Stixrude, L. P. (2004). Hydrogen incorporation in stishovite at high pressure and symmetric bonding in δ-AlOOH. Earth and Planetary Science Letters, 221, 421–431.CrossRef Panero, W. R., & Stixrude, L. P. (2004). Hydrogen incorporation in stishovite at high pressure and symmetric bonding in δ-AlOOH. Earth and Planetary Science Letters, 221, 421–431.CrossRef
Zurück zum Zitat Perrillat, J. P., Ricolleau, A., Daniel, I., Fiquet, G., Mezouar, M., Guignot, N., et al. (2006). Phase transformations of subducted basaltic crust in the upmost lower mantle. Physics of the Earth and Planetary Interiors, 157(1–2), 139–149.CrossRef Perrillat, J. P., Ricolleau, A., Daniel, I., Fiquet, G., Mezouar, M., Guignot, N., et al. (2006). Phase transformations of subducted basaltic crust in the upmost lower mantle. Physics of the Earth and Planetary Interiors, 157(1–2), 139–149.CrossRef
Zurück zum Zitat Perry, S.N., Pigott, J.S., & Panero, W.R. (2017). Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle. American Mineralogist, 102, 321–326. doi: 10.2138/am-2017-5816 Perry, S.N., Pigott, J.S., & Panero, W.R. (2017). Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle.  American Mineralogist, 102, 321–326. doi:  10.​2138/​am-2017-5816
Zurück zum Zitat Reid, A. F., & Ringwood, A. E. (1969). Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4. Earth and Planetary Science Letters, 6, 205–208.CrossRef Reid, A. F., & Ringwood, A. E. (1969). Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4. Earth and Planetary Science Letters, 6, 205–208.CrossRef
Zurück zum Zitat Reid, A.F., & Ringwood, A.E. (1970). The crystal chemistry of dense M3O4 polymorphs: High pressure Ca2GeO4 of K2NiF4 structure type. Journal of Solid State Chemistry, 1, 557–565. Reid, A.F., & Ringwood, A.E. (1970). The crystal chemistry of dense M3O4 polymorphs: High pressure Ca2GeO4 of K2NiF4 structure type. Journal of Solid State Chemistry, 1, 557–565.
Zurück zum Zitat Reid, A. F., & Ringwood, A. E. (1975). High pressure modification of ScAlO3 and some geophysical implications. Journal of Geophysical Research, 80, 3363–3369.CrossRef Reid, A. F., & Ringwood, A. E. (1975). High pressure modification of ScAlO3 and some geophysical implications. Journal of Geophysical Research, 80, 3363–3369.CrossRef
Zurück zum Zitat Richet, P., Mao, H.-K., & Bell, P. M. (1989). Bulk moduli of magnesiowiistites from static compression measurements. Journal of Geophysical Research, 94(B3), 3037–3045.CrossRef Richet, P., Mao, H.-K., & Bell, P. M. (1989). Bulk moduli of magnesiowiistites from static compression measurements. Journal of Geophysical Research, 94(B3), 3037–3045.CrossRef
Zurück zum Zitat Richmond, N. C., & Brodholt, J. P. (1998). Calculated role of aluminum in the incorporation of ferric iron into magnesium silicate perovskite. American Mineralogist, 83, 947–951.CrossRef Richmond, N. C., & Brodholt, J. P. (1998). Calculated role of aluminum in the incorporation of ferric iron into magnesium silicate perovskite. American Mineralogist, 83, 947–951.CrossRef
Zurück zum Zitat Ricolleau, A., Fiquet, G., Addad, A., Menguy, N., Vanni, C., Perrillat, J.-P., et al. (2008). Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. American Mineralogist, 93, 144–153. doi:10.2138/am.2008.2532 CrossRef Ricolleau, A., Fiquet, G., Addad, A., Menguy, N., Vanni, C., Perrillat, J.-P., et al. (2008). Analytical transmission electron microscopy study of a natural MORB sample assemblage transformed at high pressure and high temperature. American Mineralogist, 93, 144–153. doi:10.​2138/​am.​2008.​2532 CrossRef
Zurück zum Zitat Righter, K., Danielson, L., Drake, M. J., & Domanik, K. (2014). Partition coefficients at high pressure and temperature. In R. W. Carlson (Ed.), Treatise on geochemistry (2nd ed., Vol. 3, pp. 449–477). Elsevier. Righter, K., Danielson, L., Drake, M. J., & Domanik, K. (2014). Partition coefficients at high pressure and temperature. In R. W. Carlson (Ed.), Treatise on geochemistry (2nd ed., Vol. 3, pp. 449–477). Elsevier.
Zurück zum Zitat Ringwood, A. E. (1962). Mineralogical constitution of the deep mantle. Journal of Geophysical Research, 67(10), 4005–4010.CrossRef Ringwood, A. E. (1962). Mineralogical constitution of the deep mantle. Journal of Geophysical Research, 67(10), 4005–4010.CrossRef
Zurück zum Zitat Ringwood, A. E. (1975). Composition and petrology of the Earth’s mantle (p. 618). New York: McGraw-Hill. Ringwood, A. E. (1975). Composition and petrology of the Earth’s mantle (p. 618). New York: McGraw-Hill.
Zurück zum Zitat Ringwood, A. E. (1977). Composition of core and implications for origin of Earth. Geochemical Journal, 11(3), 111–135.CrossRef Ringwood, A. E. (1977). Composition of core and implications for origin of Earth. Geochemical Journal, 11(3), 111–135.CrossRef
Zurück zum Zitat Róg, G., Kozlowska-Róg, A., & Dudek, M. (2007). The standard Gibbs free energy of formation of calcium chromium (III) oxide in the temperature range (1073 to 1273 K). The Journal of Chemical Thermodynamics, 39, 275–278.CrossRef Róg, G., Kozlowska-Róg, A., & Dudek, M. (2007). The standard Gibbs free energy of formation of calcium chromium (III) oxide in the temperature range (1073 to 1273 K). The Journal of Chemical Thermodynamics, 39, 275–278.CrossRef
Zurück zum Zitat Ross, N. L., Angel, R. J., & Seifert, F. (2002). Compressibility of brownmillerite (Ca2Fe2O5): Effect of vacancies on the elastic properties of perovskite. Physics of the Earth and Planetary Interiors, 129, 145–151.CrossRef Ross, N. L., Angel, R. J., & Seifert, F. (2002). Compressibility of brownmillerite (Ca2Fe2O5): Effect of vacancies on the elastic properties of perovskite. Physics of the Earth and Planetary Interiors, 129, 145–151.CrossRef
Zurück zum Zitat Ryabchikov, I. D. (2011). Conditions of diamond formation in the Earth’s lower mantle. Doklady Earth Sciences, 438(2), 788–791.CrossRef Ryabchikov, I. D. (2011). Conditions of diamond formation in the Earth’s lower mantle. Doklady Earth Sciences, 438(2), 788–791.CrossRef
Zurück zum Zitat Ryabchikov, I. D., & Kaminsky, F. V. (2013a). The composition of the lower mantle: Evidence from mineral inclusions in diamonds. Doklady Earth Sciences, 453(2), 1246–1249.CrossRef Ryabchikov, I. D., & Kaminsky, F. V. (2013a). The composition of the lower mantle: Evidence from mineral inclusions in diamonds. Doklady Earth Sciences, 453(2), 1246–1249.CrossRef
Zurück zum Zitat Ryabchikov, I. D., & Kaminsky, F. V. (2014). Physico-chemical parameters of material in mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamonds. Geochemistry International, 52(11), 903–911. doi:10.1134/S001670291411007X CrossRef Ryabchikov, I. D., & Kaminsky, F. V. (2014). Physico-chemical parameters of material in mantle plumes: Evidence from the thermodynamic analysis of mineral inclusions in sublithospheric diamonds. Geochemistry International, 52(11), 903–911. doi:10.​1134/​S001670291411007​X CrossRef
Zurück zum Zitat Sakai, T., Ohtani, E., Terasaki, H., Sawada, N., Kobayashi, Y., Miyahara, M., et al. (2009). Fe–Mg partitioning between perovskite and ferropericlase in the lower mantle. American Mineralogist, 94, 921–925. doi:10.2138/am.2009.3123 CrossRef Sakai, T., Ohtani, E., Terasaki, H., Sawada, N., Kobayashi, Y., Miyahara, M., et al. (2009). Fe–Mg partitioning between perovskite and ferropericlase in the lower mantle. American Mineralogist, 94, 921–925. doi:10.​2138/​am.​2009.​3123 CrossRef
Zurück zum Zitat Saxena, S. K., Dubrovinsky, L. S., Lazor, P., Cerenius, Y., Haggkvist, P., Hanfland, M., et al. (1996). Stability of perovskite (MgSiO3) in the Earth’s mantle. Science, 274(5291), 1357–1359.CrossRef Saxena, S. K., Dubrovinsky, L. S., Lazor, P., Cerenius, Y., Haggkvist, P., Hanfland, M., et al. (1996). Stability of perovskite (MgSiO3) in the Earth’s mantle. Science, 274(5291), 1357–1359.CrossRef
Zurück zum Zitat Saxena, S. K., Dubrovinsky, L. S., Lazor, P., & Hu, J. Z. (1998). In situ X-ray study of perovskite (MgSiO3): Phase transition and dissociation at mantle conditions. European Journal of Mineralogy, 10, 1275–1281.CrossRef Saxena, S. K., Dubrovinsky, L. S., Lazor, P., & Hu, J. Z. (1998). In situ X-ray study of perovskite (MgSiO3): Phase transition and dissociation at mantle conditions. European Journal of Mineralogy, 10, 1275–1281.CrossRef
Zurück zum Zitat Scott Smith, B. H., Danchin, R. V., Harris, J. W., & Stracke, K. J. (1984). Kimberlites near Orroroo, South Australia. In J. Kornprobst (Ed.), Kimberlites I: Kimberlites and related rocks (pp. 121–142). Amsterdam: Elsevier.CrossRef Scott Smith, B. H., Danchin, R. V., Harris, J. W., & Stracke, K. J. (1984). Kimberlites near Orroroo, South Australia. In J. Kornprobst (Ed.), Kimberlites I: Kimberlites and related rocks (pp. 121–142). Amsterdam: Elsevier.CrossRef
Zurück zum Zitat Seagle, C. T., Heinz, D. L., Campbell, A. J., Prakapenka, V. B., & Wanless, S. T. (2008). Melting and thermal expansion in the Fe–FeO system at high pressure. Earth and Planetary Science Letters, 265, 655–665.CrossRef Seagle, C. T., Heinz, D. L., Campbell, A. J., Prakapenka, V. B., & Wanless, S. T. (2008). Melting and thermal expansion in the Fe–FeO system at high pressure. Earth and Planetary Science Letters, 265, 655–665.CrossRef
Zurück zum Zitat Serghiou, G., Zerr, A., & Boehler, R. (1998). (Mg, Fe)SiO3-perovskite stability under lower mantle conditions. Science, 280(5372), 2093–2095.CrossRef Serghiou, G., Zerr, A., & Boehler, R. (1998). (Mg, Fe)SiO3-perovskite stability under lower mantle conditions. Science, 280(5372), 2093–2095.CrossRef
Zurück zum Zitat Shannon, R. D., & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystallographica, B25, 925–946.CrossRef Shannon, R. D., & Prewitt, C. T. (1969). Effective ionic radii in oxides and fluorides. Acta Crystallographica, B25, 925–946.CrossRef
Zurück zum Zitat Sharp, T. G., El Goresy, A., Wopenka, B., & Chen, M. (1999). A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science, 284, 1511–1513.CrossRef Sharp, T. G., El Goresy, A., Wopenka, B., & Chen, M. (1999). A post-stishovite SiO2 polymorph in the meteorite Shergotty: Implications for impact events. Science, 284, 1511–1513.CrossRef
Zurück zum Zitat Sharygin, I. S., Litasov, K. D., Shatskiy, A., Safonov, O. G., Ohtani, E., & Pokhilenko, N. P. (2012) Interaction of orthopyroxene with carbonatite melts at 3 and 6.5 GPa: Implication for evolution of kimberlite magma. In G–COE Symposium 2012. Achievement of G–COE Program for Earth and Planetary Science, Sendai, Japan, 2012 (pp. 146–149). Sharygin, I. S., Litasov, K. D., Shatskiy, A., Safonov, O. G., Ohtani, E., & Pokhilenko, N. P. (2012) Interaction of orthopyroxene with carbonatite melts at 3 and 6.5 GPa: Implication for evolution of kimberlite magma. In G–COE Symposium 2012. Achievement of G–COE Program for Earth and Planetary Science, Sendai, Japan, 2012 (pp. 146–149).
Zurück zum Zitat Sherman, D. M. (1989). The nature of pressure-induced metallization of FeO and its implications to the core-mantle boundary. Geophysical Research Letters, 16, 515–518.CrossRef Sherman, D. M. (1989). The nature of pressure-induced metallization of FeO and its implications to the core-mantle boundary. Geophysical Research Letters, 16, 515–518.CrossRef
Zurück zum Zitat Sherman, D. M., & Jansen, H. J. F. (1995). First-principles predictions of the high pressure phase transition and electronic structure of FeO: Implications for the chemistry of the lower mantle and core. Geophysical Research Letters, 22, 1001–1004.CrossRef Sherman, D. M., & Jansen, H. J. F. (1995). First-principles predictions of the high pressure phase transition and electronic structure of FeO: Implications for the chemistry of the lower mantle and core. Geophysical Research Letters, 22, 1001–1004.CrossRef
Zurück zum Zitat Shieh, S. R., Duffy, T. S., & Shen, G. (2005). XRD study of phase stability in SiO2 at deep mantle conditions. Earth and Planetary Science Letters, 235, 273–282.CrossRef Shieh, S. R., Duffy, T. S., & Shen, G. (2005). XRD study of phase stability in SiO2 at deep mantle conditions. Earth and Planetary Science Letters, 235, 273–282.CrossRef
Zurück zum Zitat Shim, S.-H., Duffy, T. S., & Shen, G. (2000a). The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. Journal of Geophysical Research, 106(B11), 25955–25968.CrossRef Shim, S.-H., Duffy, T. S., & Shen, G. (2000a). The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. Journal of Geophysical Research, 106(B11), 25955–25968.CrossRef
Zurück zum Zitat Shim, S. H., Duffy, T., & Shen, G. (2000b). The equation of state of CaSiO3 perovskite to 108 GPa at 300 K. Physics of the Earth and Planetary Interiors, 120, 327–338.CrossRef Shim, S. H., Duffy, T., & Shen, G. (2000b). The equation of state of CaSiO3 perovskite to 108 GPa at 300 K. Physics of the Earth and Planetary Interiors, 120, 327–338.CrossRef
Zurück zum Zitat Shim, S. H., Duffy, T. S., & Shen, G. (2001). Stability and structure of MgSiO3 perovskite to 2300-kilometer depth in Earth’s mantle. Science, 293(5539), 2437–2440.CrossRef Shim, S. H., Duffy, T. S., & Shen, G. (2001). Stability and structure of MgSiO3 perovskite to 2300-kilometer depth in Earth’s mantle. Science, 293(5539), 2437–2440.CrossRef
Zurück zum Zitat Shu, J., Mao, H. K., Hu, J., Fei, Y., & Hemley, R. J. (1998). Single-crystal XRD of wüstite to 30 GPa hydrostatic pressure. Neues Jahrbuch für Mineralogie Abhandlungen, 172, 309–323. Shu, J., Mao, H. K., Hu, J., Fei, Y., & Hemley, R. J. (1998). Single-crystal XRD of wüstite to 30 GPa hydrostatic pressure. Neues Jahrbuch für Mineralogie Abhandlungen, 172, 309–323.
Zurück zum Zitat Shukla, G., Wu, Z., Hsu, H., Floris, A., Cococcioni, M., & Wentzcovitch, R. M. (2015). Thermoelasticity of Fe2+-bearing bridgmanite. Geophysical Research Letters, 42, 1741–1749.CrossRef Shukla, G., Wu, Z., Hsu, H., Floris, A., Cococcioni, M., & Wentzcovitch, R. M. (2015). Thermoelasticity of Fe2+-bearing bridgmanite. Geophysical Research Letters, 42, 1741–1749.CrossRef
Zurück zum Zitat Sidorin, I., Michael, G., & Helmberger, D. V. (1999). Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286, 1326–1331.CrossRef Sidorin, I., Michael, G., & Helmberger, D. V. (1999). Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286, 1326–1331.CrossRef
Zurück zum Zitat Simpson, E. S. (1929). Contributions to the mineralogy of Western Australia. Journal of the Royal Society of Western Australia, 15, 99–113. Simpson, E. S. (1929). Contributions to the mineralogy of Western Australia. Journal of the Royal Society of Western Australia, 15, 99–113.
Zurück zum Zitat Sinmyo, R., Bykova, E., McCammon, C., Kupenko, I., Potapkin, V., & Dubrovinsky, L. (2014). Crystal chemistry of Fe3+-bearing (Mg, Fe)SiO3 perovskite: a single-crystal X-ray diffraction study. Physics and Chemistry of Minerals, 41, 409–417.CrossRef Sinmyo, R., Bykova, E., McCammon, C., Kupenko, I., Potapkin, V., & Dubrovinsky, L. (2014). Crystal chemistry of Fe3+-bearing (Mg, Fe)SiO3 perovskite: a single-crystal X-ray diffraction study. Physics and Chemistry of Minerals, 41, 409–417.CrossRef
Zurück zum Zitat Sinogeikin, S. V., Zhang, J., & Bass, J. D. (2004). Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy. Geophysical Research Letters, 31, L06620. doi:10.1029/2004GL019559 CrossRef Sinogeikin, S. V., Zhang, J., & Bass, J. D. (2004). Elasticity of single crystal and polycrystalline MgSiO3 perovskite by Brillouin spectroscopy. Geophysical Research Letters, 31, L06620. doi:10.​1029/​2004GL019559 CrossRef
Zurück zum Zitat Snetsinger, K. G. (1969). Manganoan ilmenite from a Sierran adamellite. American Mineralogist, 54(4), 431–435. Snetsinger, K. G. (1969). Manganoan ilmenite from a Sierran adamellite. American Mineralogist, 54(4), 431–435.
Zurück zum Zitat Sobolev, N. V., Yefimova, E. S., Channer, D. M. D., Anderson, P. F. N., & Barron, K. M. (1998). Unusual upper mantle beneath Guaniamo, Guyana shield, Venezuela: Evidence from diamond inclusions. Geology, 26(11), 971–974.CrossRef Sobolev, N. V., Yefimova, E. S., Channer, D. M. D., Anderson, P. F. N., & Barron, K. M. (1998). Unusual upper mantle beneath Guaniamo, Guyana shield, Venezuela: Evidence from diamond inclusions. Geology, 26(11), 971–974.CrossRef
Zurück zum Zitat Speziale, S., Milner, A., Lee, V. E., Clark, S. M., Pasternak, M. P., & Jeanloz, R. (2005). Iron spin transition in Earth’s mantle. Proceedings of the National Academy of the U.S.A., 102, 17918–17922. doi:10.1073/pnas.0508919102 CrossRef Speziale, S., Milner, A., Lee, V. E., Clark, S. M., Pasternak, M. P., & Jeanloz, R. (2005). Iron spin transition in Earth’s mantle. Proceedings of the National Academy of the U.S.A., 102, 17918–17922. doi:10.​1073/​pnas.​0508919102 CrossRef
Zurück zum Zitat Stachel, T., Harris, J. W., Brey, G. P., & Joswig, W. (2000). Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140(1), 16–27.CrossRef Stachel, T., Harris, J. W., Brey, G. P., & Joswig, W. (2000). Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140(1), 16–27.CrossRef
Zurück zum Zitat Stebbins, J. F., Kroeker, S., & Andrault, D. (2001). The mechanism of solution of aluminum oxide in MgSiO3 perovskite. Geophysical Research Letters, 28, 615–618.CrossRef Stebbins, J. F., Kroeker, S., & Andrault, D. (2001). The mechanism of solution of aluminum oxide in MgSiO3 perovskite. Geophysical Research Letters, 28, 615–618.CrossRef
Zurück zum Zitat Stishov, S. M., & Belov, N. V. (1962). Crystal structure of a new dense modification of silica SiO2. Doklady Akademii Nauk SSSR, 143(4), 951. Stishov, S. M., & Belov, N. V. (1962). Crystal structure of a new dense modification of silica SiO2. Doklady Akademii Nauk SSSR, 143(4), 951.
Zurück zum Zitat Stishov, S. M., & Popova, S. V. (1961). A new dense modification of silica. Geochemistry (USSR), 10, 923–926. Stishov, S. M., & Popova, S. V. (1961). A new dense modification of silica. Geochemistry (USSR), 10, 923–926.
Zurück zum Zitat Stixrude, L., & Cohen, R. E. (1993). Stability of orthorhombic MgSiO3 perovskite in the Earth’s lower mantle. Nature, 364(6438), 613–616.CrossRef Stixrude, L., & Cohen, R. E. (1993). Stability of orthorhombic MgSiO3 perovskite in the Earth’s lower mantle. Nature, 364(6438), 613–616.CrossRef
Zurück zum Zitat Stixrude, L., Cohen, R. E., Yu, R., & Krakauer, H. (1996). Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. American Mineralogist, 81, 1293–1296. Stixrude, L., Cohen, R. E., Yu, R., & Krakauer, H. (1996). Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. American Mineralogist, 81, 1293–1296.
Zurück zum Zitat Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., & Fumagalli, P. (2007). Phase stability and shear softening in CaSiO3 perovskite at high pressure. Physical Review B, 75, 024108.CrossRef Stixrude, L., Lithgow-Bertelloni, C., Kiefer, B., & Fumagalli, P. (2007). Phase stability and shear softening in CaSiO3 perovskite at high pressure. Physical Review B, 75, 024108.CrossRef
Zurück zum Zitat Sugahara, M., Yoshiasa, A., Komatsu, Y., Yamanaka, T., Bolfan-Kasanova, N., Nakatsuka, A., et al. (2006). Reinvestigation of the MgSiO3 perovskite structure at high pressure. American Mineralogist, 91, 533–536.CrossRef Sugahara, M., Yoshiasa, A., Komatsu, Y., Yamanaka, T., Bolfan-Kasanova, N., Nakatsuka, A., et al. (2006). Reinvestigation of the MgSiO3 perovskite structure at high pressure. American Mineralogist, 91, 533–536.CrossRef
Zurück zum Zitat Sun, N., Mao, Z., Yan, S., Lin, J. F., Wu, X., & Prakapenka, V. B. (2016). Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3-perovskite. Journal of Geophysical Research, 121(7), 4876–4892. doi:10.1002/2016JB013062 Sun, N., Mao, Z., Yan, S., Lin, J. F., Wu, X., & Prakapenka, V. B. (2016). Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3-perovskite. Journal of Geophysical Research, 121(7), 4876–4892. doi:10.​1002/​2016JB013062
Zurück zum Zitat Takafuji, N., Yagi, T., Miyajima, N., & Sumita, T. (2002). Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature. Physics and Chemistry of Minerals, 29, 532–537. doi:10.1007/s00269-002-0271-5 CrossRef Takafuji, N., Yagi, T., Miyajima, N., & Sumita, T. (2002). Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature. Physics and Chemistry of Minerals, 29, 532–537. doi:10.​1007/​s00269-002-0271-5 CrossRef
Zurück zum Zitat Tange, Y., Takahashi, E., Nishihara, Y., Funakoshi, K., & Sata, N. (2009). Phase relations in the system MgO-FeO-SiO2 to 50 GPa and 2000°C: An application of experimental techniques using multianvil apparatus with sintered diamond anvils. Journal of Geophysical Research, 114(B02), 214. Tange, Y., Takahashi, E., Nishihara, Y., Funakoshi, K., & Sata, N. (2009). Phase relations in the system MgO-FeO-SiO2 to 50 GPa and 2000°C: An application of experimental techniques using multianvil apparatus with sintered diamond anvils. Journal of Geophysical Research, 114(B02), 214.
Zurück zum Zitat Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., & Wills, K. (2009a). The diamonds of South Australia. Lithos, 112S, 806–821.CrossRef Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., & Wills, K. (2009a). The diamonds of South Australia. Lithos, 112S, 806–821.CrossRef
Zurück zum Zitat Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., & Wills, K. (2009b). Deep mantle diamonds from South Australia: A record of Pacific subduction at the Gondwanan margin. Geology, 37(1), 43–46. doi:10.1130/G25055A.1 CrossRef Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., & Wills, K. (2009b). Deep mantle diamonds from South Australia: A record of Pacific subduction at the Gondwanan margin. Geology, 37(1), 43–46. doi:10.​1130/​G25055A.​1 CrossRef
Zurück zum Zitat Tappert, R., Stachel, T., Harris, J. W., Muehlenbachs, K., Ludwig, T., & Brey, G. (2005a). Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contributions to Mineralogy and Petrology, 150(5), 505–522.CrossRef Tappert, R., Stachel, T., Harris, J. W., Muehlenbachs, K., Ludwig, T., & Brey, G. (2005a). Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle. Contributions to Mineralogy and Petrology, 150(5), 505–522.CrossRef
Zurück zum Zitat Tappert, R., Stachel, T., Harris, J. W., Shimizu, N., & Brey, G. P. (2005b). Mineral inclusions in diamonds from the Slave Province, Canada. European Journal of Mineralogy, 17(3), 423–440.CrossRef Tappert, R., Stachel, T., Harris, J. W., Shimizu, N., & Brey, G. P. (2005b). Mineral inclusions in diamonds from the Slave Province, Canada. European Journal of Mineralogy, 17(3), 423–440.CrossRef
Zurück zum Zitat Tarrida, M., & Richet, P. (1989). Equation of state of CaSiO3 perovskite to 96 GPa. Geophysical Research Letters, 16, 1351–1354.CrossRef Tarrida, M., & Richet, P. (1989). Equation of state of CaSiO3 perovskite to 96 GPa. Geophysical Research Letters, 16, 1351–1354.CrossRef
Zurück zum Zitat Tateno, S., Hirose, K., & Ohishi, Y. (2014). Melting experiments on peridotite to lowermost mantle conditions. Journal of Geophysical Research: Solid Earth, 119, 4684–4694. doi:10.1002/2013JB010616 Tateno, S., Hirose, K., & Ohishi, Y. (2014). Melting experiments on peridotite to lowermost mantle conditions. Journal of Geophysical Research: Solid Earth, 119, 4684–4694. doi:10.​1002/​2013JB010616
Zurück zum Zitat Teter, D. M., Hemley, R. J., Kresse, G., & Hafner, J. (1998). High-pressure polymorphism in silica. Physical Review Letters, 80, 2145–2148.CrossRef Teter, D. M., Hemley, R. J., Kresse, G., & Hafner, J. (1998). High-pressure polymorphism in silica. Physical Review Letters, 80, 2145–2148.CrossRef
Zurück zum Zitat Thomson, A. R., Kohn, S. C., Bulanova, G. P., Smith, C. B., Araujo, D., & Walter, M. J. (2014). Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 168, 1081.CrossRef Thomson, A. R., Kohn, S. C., Bulanova, G. P., Smith, C. B., Araujo, D., & Walter, M. J. (2014). Origin of sub-lithospheric diamonds from the Juina-5 kimberlite (Brazil): Constraints from carbon isotopes and inclusion compositions. Contributions to Mineralogy and Petrology, 168, 1081.CrossRef
Zurück zum Zitat Thomson, A. R., Kohn, S. C., Bulanova, G. P., Smith, C. B., Araujo, D., & Walter, M. J. (2016). Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts. Lithos, 265, 108–124. doi:10.1016/j.lithos.2016.08.035 CrossRef Thomson, A. R., Kohn, S. C., Bulanova, G. P., Smith, C. B., Araujo, D., & Walter, M. J. (2016). Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts. Lithos, 265, 108–124. doi:10.​1016/​j.​lithos.​2016.​08.​035 CrossRef
Zurück zum Zitat Tomioka, N., & Fujino, K. (1997). Natural (Mg, Fe)SiO3-ilmenite and perovskite in the Tenham meteorite. Science, 277, 1084–1086.CrossRef Tomioka, N., & Fujino, K. (1997). Natural (Mg, Fe)SiO3-ilmenite and perovskite in the Tenham meteorite. Science, 277, 1084–1086.CrossRef
Zurück zum Zitat Tomioka, N., & Fujino, K. (1999). Akimotoite, (Mg, Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. American Mineralogist, 84, 267–271.CrossRef Tomioka, N., & Fujino, K. (1999). Akimotoite, (Mg, Fe)SiO3, a new silicate mineral of the ilmenite group in the Tenham chondrite. American Mineralogist, 84, 267–271.CrossRef
Zurück zum Zitat Townsend, J. P., Tsuchiya, J., Bina, C. R., & Jacobsen, S. D. (2016). Water partitioning between bridgmanite and postperovskite in the lowermost mantle. Earth and Planetary Science Letters, 454, 20–27. doi:10.1016/j.epsl.2016.08.009 CrossRef Townsend, J. P., Tsuchiya, J., Bina, C. R., & Jacobsen, S. D. (2016). Water partitioning between bridgmanite and postperovskite in the lowermost mantle. Earth and Planetary Science Letters, 454, 20–27. doi:10.​1016/​j.​epsl.​2016.​08.​009 CrossRef
Zurück zum Zitat Tschauner, O., Ma, Ch., Beckett, J. R., Prescher, C., Prakapenka, V. B., & Rossman, G. R. (2014). Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346(6213), 1100–1102.CrossRef Tschauner, O., Ma, Ch., Beckett, J. R., Prescher, C., Prakapenka, V. B., & Rossman, G. R. (2014). Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346(6213), 1100–1102.CrossRef
Zurück zum Zitat Tsuchida, Y., & Yagi, T. (1989). A new, post-stishovite high-pressure polymorph of silica. Nature, 340, 217–220.CrossRef Tsuchida, Y., & Yagi, T. (1989). A new, post-stishovite high-pressure polymorph of silica. Nature, 340, 217–220.CrossRef
Zurück zum Zitat Tsuchiya, T., & Kawai, K. (2013). Ab initio mineralogical model of the Earth’s lower mantle. In: S.-i. Karato (Ed.), Physics and Chemistry of the Deep Earth. John Wiley, Sons, pp. 213–243. Tsuchiya, T., & Kawai, K. (2013). Ab initio mineralogical model of the Earth’s lower mantle. In: S.-i. Karato (Ed.), Physics and Chemistry of the Deep Earth. John Wiley, Sons, pp. 213–243.
Zurück zum Zitat Tsuchiya, T., Caracas, R., & Tsuchiya, J. (2004a). First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophysical Research Letters, 31, L11610. doi:10.1029/2004GL019649 Tsuchiya, T., Caracas, R., & Tsuchiya, J. (2004a). First principles determination of the phase boundaries of high-pressure polymorphs of silica. Geophysical Research Letters, 31, L11610. doi:10.​1029/​2004GL019649
Zurück zum Zitat Tsuchiya, T., Tsuchiya, J., Umemoto, K., & Wentzcovitch, R. M. (2004b). Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth and Planetary Science Letters, 224, 241–248.CrossRef Tsuchiya, T., Tsuchiya, J., Umemoto, K., & Wentzcovitch, R. M. (2004b). Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth and Planetary Science Letters, 224, 241–248.CrossRef
Zurück zum Zitat Tsuchiya, T., & Wang, X. (2013). Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. Journal of Geophysical Research, 118, 83–91. doi:10.1029/2012JB009696 Tsuchiya, T., & Wang, X. (2013). Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. Journal of Geophysical Research, 118, 83–91. doi:10.​1029/​2012JB009696
Zurück zum Zitat Van Aken, P. A., & Liebscher, B. (2002). Quantification of ferrous/ferric ratios in minerals: New evaluation schemes of Fe L23 electron energy-loss near-edge spectra. Physics and Chemistry of Minerals, 29(3), 188–200.CrossRef Van Aken, P. A., & Liebscher, B. (2002). Quantification of ferrous/ferric ratios in minerals: New evaluation schemes of Fe L23 electron energy-loss near-edge spectra. Physics and Chemistry of Minerals, 29(3), 188–200.CrossRef
Zurück zum Zitat Van Rythoven, A. D., & Schulze, D. J. (2009). In-situ analysis of diamonds and their inclusions from the Diavik Mine, Northwest Territories, Canada: Mapping diamond growth. Lithos, 112S, 870–879.CrossRef Van Rythoven, A. D., & Schulze, D. J. (2009). In-situ analysis of diamonds and their inclusions from the Diavik Mine, Northwest Territories, Canada: Mapping diamond growth. Lithos, 112S, 870–879.CrossRef
Zurück zum Zitat Vanpeteghem, C., Angel, R., Ross, N., Jacobsen, S., Dobson, D., Litasov, K., et al. (2006). Al, Fe substitution in the MgSiO3 perovskite structure: A single-crystal X-ray diffraction study. Physics of the Earth and Planetary Interiors, 155(1–2), 96–103.CrossRef Vanpeteghem, C., Angel, R., Ross, N., Jacobsen, S., Dobson, D., Litasov, K., et al. (2006). Al, Fe substitution in the MgSiO3 perovskite structure: A single-crystal X-ray diffraction study. Physics of the Earth and Planetary Interiors, 155(1–2), 96–103.CrossRef
Zurück zum Zitat Vincent, E. A., & Phillips, R. (1954). Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland. Geochimica et Cosmochimica Acta, 6(1), 1–34.CrossRef Vincent, E. A., & Phillips, R. (1954). Iron-titanium oxide minerals in layered gabbros of the Skaergaard intrusion, East Greenland. Geochimica et Cosmochimica Acta, 6(1), 1–34.CrossRef
Zurück zum Zitat Wadhawan, V. K. (1982). Ferroelasticitay and related properties of crystals. Phase Transitions, 3, 3–103.CrossRef Wadhawan, V. K. (1982). Ferroelasticitay and related properties of crystals. Phase Transitions, 3, 3–103.CrossRef
Zurück zum Zitat Walter, M. J., Kubo, A., Yoshino, T., Brodholt, J., Koga, K. T., & Ohishi, Y. (2004a). Phase relations and equation-of-state of aluminous Mg-silicate perovskite and implications for Earth’s lower mantle. Earth and Planetary Science Letters, 222(2), 501–516.CrossRef Walter, M. J., Kubo, A., Yoshino, T., Brodholt, J., Koga, K. T., & Ohishi, Y. (2004a). Phase relations and equation-of-state of aluminous Mg-silicate perovskite and implications for Earth’s lower mantle. Earth and Planetary Science Letters, 222(2), 501–516.CrossRef
Zurück zum Zitat Walter, M. J., Nakamura, E., Tronnes, R. G., & Frost, D. J. (2004b). Experimental constraints on crystallization differentiation in a deep magma ocean. Geochimica et Cosmochimica Acta, 68, 4267–4284.CrossRef Walter, M. J., Nakamura, E., Tronnes, R. G., & Frost, D. J. (2004b). Experimental constraints on crystallization differentiation in a deep magma ocean. Geochimica et Cosmochimica Acta, 68, 4267–4284.CrossRef
Zurück zum Zitat Wang, W., Gasparik, T., & Rapp, R. (2000). Partitioning of rare earth elements between CaSiO3 perovskite and coexisting phases: Constraints on the formation of CaSiO3 inclusions in diamond. Earth and Planetary Science Letters, 181(3), 291–300.CrossRef Wang, W., Gasparik, T., & Rapp, R. (2000). Partitioning of rare earth elements between CaSiO3 perovskite and coexisting phases: Constraints on the formation of CaSiO3 inclusions in diamond. Earth and Planetary Science Letters, 181(3), 291–300.CrossRef
Zurück zum Zitat Wang, Y. B., & Weidner, D. J. (1994). Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophysical Research Letters, 21, 895–898.CrossRef Wang, Y. B., & Weidner, D. J. (1994). Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophysical Research Letters, 21, 895–898.CrossRef
Zurück zum Zitat Warren, M. C., Ackland, G. J., Karki, B. B., & Clark, S. J. (1998). Phase transitions in silicate perovskites from first principles. Mineralogical Magazine, 62(5), 585–598.CrossRef Warren, M. C., Ackland, G. J., Karki, B. B., & Clark, S. J. (1998). Phase transitions in silicate perovskites from first principles. Mineralogical Magazine, 62(5), 585–598.CrossRef
Zurück zum Zitat Wentzcovitch, R. M., Ross, N. L., & Price, G. D. (1995). Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures. Physics of the Earth and Planetary Interiors, 90, 101–112.CrossRef Wentzcovitch, R. M., Ross, N. L., & Price, G. D. (1995). Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures. Physics of the Earth and Planetary Interiors, 90, 101–112.CrossRef
Zurück zum Zitat Wicks, J. K., & Duffy, T. S. (2016). Crystal structures of minerals in the lower mantle. In H. Terasaki & R. A. Fischer (Eds.), Deep Earth: Physics and Chemistry of the Lower Mantle and Core: Vol. 217. Geophysical monograph (pp. 69–87). Wicks, J. K., & Duffy, T. S. (2016). Crystal structures of minerals in the lower mantle. In H. Terasaki & R. A. Fischer (Eds.), Deep Earth: Physics and Chemistry of the Lower Mantle and Core: Vol. 217. Geophysical monograph (pp. 69–87).
Zurück zum Zitat Wicks, J. K., Jackson, J. M., Sturhahn, W., Zhuravlev, K. K., Tkachev, S. N., & Prakapenka, V. B. (2015). Thermal equation of state and stability of (Mg0.06Fe0.94)O. Physics of the Earth and Planetary Interiors, 249, 28–42.CrossRef Wicks, J. K., Jackson, J. M., Sturhahn, W., Zhuravlev, K. K., Tkachev, S. N., & Prakapenka, V. B. (2015). Thermal equation of state and stability of (Mg0.06Fe0.94)O. Physics of the Earth and Planetary Interiors, 249, 28–42.CrossRef
Zurück zum Zitat Wilding, M. C. (1990). A study of diamonds with syngenetic inclusions (Unpublished Ph.D. thesis). University of Edinburgh, UK, 281 pp. Wilding, M. C. (1990). A study of diamonds with syngenetic inclusions (Unpublished Ph.D. thesis). University of Edinburgh, UK, 281 pp.
Zurück zum Zitat Wilding, M. C., Harte, B., & Harris, J. W. (1991). Evidence for a deep origin for the Sao Luiz diamonds. In Fifth International Kimberlite Conference Extended Abstracts, Araxa, June 1991, pp. 456–458. Wilding, M. C., Harte, B., & Harris, J. W. (1991). Evidence for a deep origin for the Sao Luiz diamonds. In Fifth International Kimberlite Conference Extended Abstracts, Araxa, June 1991, pp. 456–458.
Zurück zum Zitat Williams, Q., & Knittle, E. (2005). The highly uncertain bulk composition of Earth’s mantle. In R. van der Hilst, J. Trampert, J. Bass, & J. Matas (Eds.), Structure, dynamics and properties of Earth’s Mantle (pp. 187–200). Washington, D.C.: AGU Press. Williams, Q., & Knittle, E. (2005). The highly uncertain bulk composition of Earth’s mantle. In R. van der Hilst, J. Trampert, J. Bass, & J. Matas (Eds.), Structure, dynamics and properties of Earth’s Mantle (pp. 187–200). Washington, D.C.: AGU Press.
Zurück zum Zitat Wirth, R., Dobrzhinetskaya, L., Harte, B., Schreiber, A., & Green, H. W. (2014). High-Fe (Mg, Fe)O inclusion in diamond apparently from the lowermost mantle. Earth and Planetary Science Letters, 404, 365–376.CrossRef Wirth, R., Dobrzhinetskaya, L., Harte, B., Schreiber, A., & Green, H. W. (2014). High-Fe (Mg, Fe)O inclusion in diamond apparently from the lowermost mantle. Earth and Planetary Science Letters, 404, 365–376.CrossRef
Zurück zum Zitat Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., & Kaminsky, F. (2007). Nanocrystalline hydrous aluminium silicate in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259(3–4), 384–399.CrossRef Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., & Kaminsky, F. (2007). Nanocrystalline hydrous aluminium silicate in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth and Planetary Science Letters, 259(3–4), 384–399.CrossRef
Zurück zum Zitat Wolf, G. H., & Jeanloz, R. (1985). Lattice dynamics and structural distortions of CaSiO3 and MgSiO3 perovskites. Geophysical Research Letters, 12(7), 413–416.CrossRef Wolf, G. H., & Jeanloz, R. (1985). Lattice dynamics and structural distortions of CaSiO3 and MgSiO3 perovskites. Geophysical Research Letters, 12(7), 413–416.CrossRef
Zurück zum Zitat Wood, B. J. (2000). Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth and Planetary Science Letters, 174(3–4), 341–354.CrossRef Wood, B. J. (2000). Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth and Planetary Science Letters, 174(3–4), 341–354.CrossRef
Zurück zum Zitat Wood, B. J., & Corgne, A. (2009). Mineralogy of the Earth—Trace elements and hydrogen in the Earth’s transition zone and lower mantle. In G. D. Price (Ed.), Treatise on geophysics. Mineral physics (pp. 63–89.). Elesevier. Wood, B. J., & Corgne, A. (2009). Mineralogy of the Earth—Trace elements and hydrogen in the Earth’s transition zone and lower mantle. In G. D. Price (Ed.), Treatise on geophysics. Mineral physics (pp. 63–89.). Elesevier.
Zurück zum Zitat Wu, Z., João, F., Justo, F., & Wentzcovitch, R. M. (2013). Elastic anomalies in a spin-crossover system: Ferropericlase at lower mantle conditions. Physical Review Letters, 110, 228501.CrossRef Wu, Z., João, F., Justo, F., & Wentzcovitch, R. M. (2013). Elastic anomalies in a spin-crossover system: Ferropericlase at lower mantle conditions. Physical Review Letters, 110, 228501.CrossRef
Zurück zum Zitat Wu, Z., & Wentzcovitch, R. M. (2014). Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proceedings of the National Academy of the U.S.A., 111, 10468–10472.CrossRef Wu, Z., & Wentzcovitch, R. M. (2014). Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proceedings of the National Academy of the U.S.A., 111, 10468–10472.CrossRef
Zurück zum Zitat Xu, S., Lin, J.-F., Morgan, D. (2017). Iron speciation induced chemical and seismic heterogeneities in the lower mantle. Journal of Geophysical Research. Solid Earth, 122. doi: 10.1002/2016JB013543. Xu, S., Lin, J.-F., Morgan, D. (2017). Iron speciation induced chemical and seismic heterogeneities in the lower mantle. Journal of Geophysical Research. Solid Earth, 122. doi: 10.​1002/​2016JB013543.
Zurück zum Zitat Xu, Y., McCammon, C., & Poe, B. T. (1998). The effect of alumina on the electrical conductivity of silicate perovskite. Science, 282, 922–924.CrossRef Xu, Y., McCammon, C., & Poe, B. T. (1998). The effect of alumina on the electrical conductivity of silicate perovskite. Science, 282, 922–924.CrossRef
Zurück zum Zitat Xu, S., Shim, S.-H., & Morgan, D. (2015). Origin of Fe3+ in Fe-containing, Al-free mantle silicate perovskite. Earth and Planetary Science Letters, 409, 319–328.CrossRef Xu, S., Shim, S.-H., & Morgan, D. (2015). Origin of Fe3+ in Fe-containing, Al-free mantle silicate perovskite. Earth and Planetary Science Letters, 409, 319–328.CrossRef
Zurück zum Zitat Yagi, T., Okabe, K., Nishiyama, N., Kubo, A., & Kikegawa, T. (2004). Complicated effects of aluminum on the compressibility of silicate perovskite. Physics of the Earth and Planetary Interiors, 143–144, 81–91.CrossRef Yagi, T., Okabe, K., Nishiyama, N., Kubo, A., & Kikegawa, T. (2004). Complicated effects of aluminum on the compressibility of silicate perovskite. Physics of the Earth and Planetary Interiors, 143–144, 81–91.CrossRef
Zurück zum Zitat Yagi, T., Suzuki, T., & Akimoto, S. (1985). Static compression of wüstite (Fe0.98)O to 120 GPa. Journal of Geophysical Research, 90, 8784–8788.CrossRef Yagi, T., Suzuki, T., & Akimoto, S. (1985). Static compression of wüstite (Fe0.98)O to 120 GPa. Journal of Geophysical Research, 90, 8784–8788.CrossRef
Zurück zum Zitat Yamamoto, T., Yuen, D. A., & Ebisuzaki, T. (2003). Substitution mechanism of Al ions in MgSiO3 perovskite under high pressure conditions from first-principles calculations. Earth and Planetary Science Letters, 206, 617–625.CrossRef Yamamoto, T., Yuen, D. A., & Ebisuzaki, T. (2003). Substitution mechanism of Al ions in MgSiO3 perovskite under high pressure conditions from first-principles calculations. Earth and Planetary Science Letters, 206, 617–625.CrossRef
Zurück zum Zitat Yamanaka, T., Uchida, A., & Nakamoto, Y. (2008). Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. American Mineralogist, 93, 1874–1881. doi:10.2138/am.2008.2934 CrossRef Yamanaka, T., Uchida, A., & Nakamoto, Y. (2008). Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. American Mineralogist, 93, 1874–1881. doi:10.​2138/​am.​2008.​2934 CrossRef
Zurück zum Zitat Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Guo, X., et al. (2014). Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Physics of the Earth and Planetary Interiors, 228, 262–267. doi:10.1016/j.pepi.2014.01.013 CrossRef Yamazaki, D., Ito, E., Yoshino, T., Tsujino, N., Yoneda, A., Guo, X., et al. (2014). Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Physics of the Earth and Planetary Interiors, 228, 262–267. doi:10.​1016/​j.​pepi.​2014.​01.​013 CrossRef
Zurück zum Zitat Yang, J., Tong, X., Lin, J.-F., Okuchi, T., & Tomioka, N. (2015). Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Scientific Reports, 5, 17188. doi:10.1038/srep17188 CrossRef Yang, J., Tong, X., Lin, J.-F., Okuchi, T., & Tomioka, N. (2015). Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle. Scientific Reports, 5, 17188. doi:10.​1038/​srep17188 CrossRef
Zurück zum Zitat Yeganeh-Haeri, A., Weidner, D. J., & Ito, E. (1989). Elasticity of MgSiO3 in the perovskite structure. Science, 243, 787–789.CrossRef Yeganeh-Haeri, A., Weidner, D. J., & Ito, E. (1989). Elasticity of MgSiO3 in the perovskite structure. Science, 243, 787–789.CrossRef
Zurück zum Zitat Yoshino, T., Kamada, S., Zhao, C., Ohtani, E., & Naohisa, H. (2016). Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 208–219.CrossRef Yoshino, T., Kamada, S., Zhao, C., Ohtani, E., & Naohisa, H. (2016). Electrical conductivity model of Al-bearing bridgmanite with implications for the electrical structure of the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 208–219.CrossRef
Zurück zum Zitat Yu, Y. G., Wentzcovitch, R. M., Vinograd, V. L., & Angel, R. J. (2011). Thermodynamic properties of MgSiO3 majorite and phase transitions near 660 km depth in MgSiO3 and Mg2SiO4: A first principles study. Journal of Geophysical Research, 116, B02208. doi:10.1029/2010JB007912 Yu, Y. G., Wentzcovitch, R. M., Vinograd, V. L., & Angel, R. J. (2011). Thermodynamic properties of MgSiO3 majorite and phase transitions near 660 km depth in MgSiO3 and Mg2SiO4: A first principles study. Journal of Geophysical Research, 116, B02208. doi:10.​1029/​2010JB007912
Zurück zum Zitat Zedgenizov, D. A., Kagi, H., Shatsky, V. S., & Ragozin, A. L. (2014a). Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 240(1–2), 114–124. doi:10.1016/j.chemgeo.2013.10.033 CrossRef Zedgenizov, D. A., Kagi, H., Shatsky, V. S., & Ragozin, A. L. (2014a). Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chemical Geology, 240(1–2), 114–124. doi:10.​1016/​j.​chemgeo.​2013.​10.​033 CrossRef
Zurück zum Zitat Zedgenizov, D. A., Ragozin, A. L., Kalininaa, V. V., & Kagi, H. (2016). The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochemistry International, 54(10), 890–900. doi:10.1134/S0016702916100116 CrossRef Zedgenizov, D. A., Ragozin, A. L., Kalininaa, V. V., & Kagi, H. (2016). The mineralogy of Ca-rich inclusions in sublithospheric diamonds. Geochemistry International, 54(10), 890–900. doi:10.​1134/​S001670291610011​6 CrossRef
Zurück zum Zitat Zedgenizov, D. A., Shatskiy, A., Ragozin, A. L., Kagi, H., & Shatsky, V. S. (2014b). Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment. American Mineralogist, 99, 547–550.CrossRef Zedgenizov, D. A., Shatskiy, A., Ragozin, A. L., Kagi, H., & Shatsky, V. S. (2014b). Merwinite in diamond from São Luiz, Brazil: A new mineral of the Ca-rich mantle environment. American Mineralogist, 99, 547–550.CrossRef
Zurück zum Zitat Zedgenizov, D. A., Shatsky, V. S., Panin, A. V., Evtushenko, O. V., Ragozin, A. L., & Kagi, H. (2015). Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit, Brazil. Russian Geology and Geophysics, 56(1), 296–305.CrossRef Zedgenizov, D. A., Shatsky, V. S., Panin, A. V., Evtushenko, O. V., Ragozin, A. L., & Kagi, H. (2015). Evidence for phase transitions in mineral inclusions in superdeep diamonds of the Sao Luiz deposit, Brazil. Russian Geology and Geophysics, 56(1), 296–305.CrossRef
Zurück zum Zitat Zerr, A., Serghiou, G., & Boehler, R. (1997). Melting of CaSiO3 perovskite to 430 kbar and first in situ measurements of lower mantle eutectic temperatures. Geophysical Research Letters, 12(24), 909–912.CrossRef Zerr, A., Serghiou, G., & Boehler, R. (1997). Melting of CaSiO3 perovskite to 430 kbar and first in situ measurements of lower mantle eutectic temperatures. Geophysical Research Letters, 12(24), 909–912.CrossRef
Zurück zum Zitat Zhai, S., Yin, Y., Shieh, S. R., Shan, S., Xue, W., Wang, C.-P., et al. (2016). High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4. Physics and Chemistry of Minerals, 43, 307–314. doi:10.1007/s00269-015-0795-0 CrossRef Zhai, S., Yin, Y., Shieh, S. R., Shan, S., Xue, W., Wang, C.-P., et al. (2016). High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4. Physics and Chemistry of Minerals, 43, 307–314. doi:10.​1007/​s00269-015-0795-0 CrossRef
Zurück zum Zitat Zhang, S., Cottaar, S., Liu, T., Stackhouse, S., & Militzera, B. (2016a). High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264–273.CrossRef Zhang, S., Cottaar, S., Liu, T., Stackhouse, S., & Militzera, B. (2016a). High-pressure, temperature elasticity of Fe-and Al-bearing MgSiO3: Implications for the Earth’s lower mantle. Earth and Planetary Science Letters, 434, 264–273.CrossRef
Zurück zum Zitat Zhang, J., Li, B., Utsumi, W., & Liebermann, R. C. (1996). In situ X-ray observations of the coesite-stishovite transition: Reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23, 1–10.CrossRef Zhang, J., Li, B., Utsumi, W., & Liebermann, R. C. (1996). In situ X-ray observations of the coesite-stishovite transition: Reversed phase boundary and kinetics. Physics and Chemistry of Minerals, 23, 1–10.CrossRef
Zurück zum Zitat Zhang, L., Meng, Y., Yang, W., Wang, L., Mao, W. L., Zeng, Q. S., et al. (2014). Disproportionation of (Mg, Fe)SiO3 perovskite in Earth’s deep lower mantle. Science, 344(6186), 877–882. doi:10.1126/science.1250274 CrossRef Zhang, L., Meng, Y., Yang, W., Wang, L., Mao, W. L., Zeng, Q. S., et al. (2014). Disproportionation of (Mg, Fe)SiO3 perovskite in Earth’s deep lower mantle. Science, 344(6186), 877–882. doi:10.​1126/​science.​1250274 CrossRef
Zurück zum Zitat Zhang, L., Popov, D., Meng, Y., Wang, J., Ji, C., Li, B., et al. (2016b). In situ crystal structure determination of seifertite SiO2 at 129 GPa: Studying a minor phase near Earth’s core–mantle boundary. American Mineralogist, 101, 231–234.CrossRef Zhang, L., Popov, D., Meng, Y., Wang, J., Ji, C., Li, B., et al. (2016b). In situ crystal structure determination of seifertite SiO2 at 129 GPa: Studying a minor phase near Earth’s core–mantle boundary. American Mineralogist, 101, 231–234.CrossRef
Zurück zum Zitat Zhang, J., & Weidner, D. J. (1999). Thermal equation of state of aluminum-enriched silicate perovskite. Science, 284, 782–784.CrossRef Zhang, J., & Weidner, D. J. (1999). Thermal equation of state of aluminum-enriched silicate perovskite. Science, 284, 782–784.CrossRef
Zurück zum Zitat Zhang, J., & Zhao, Y. (2005). Effects of defect and pressure on the thermal expansivity of FeXO. Physics and Chemistry of Minerals, 32, 241–247.CrossRef Zhang, J., & Zhao, Y. (2005). Effects of defect and pressure on the thermal expansivity of FeXO. Physics and Chemistry of Minerals, 32, 241–247.CrossRef
Zurück zum Zitat Zhu, Q., Oganov, A. R., & Lyakhov, A. O. (2013). Novel stable compounds in the Mg–O system under high pressure. Physical Chemistry Chemical Physics, 15, 7696–7700.CrossRef Zhu, Q., Oganov, A. R., & Lyakhov, A. O. (2013). Novel stable compounds in the Mg–O system under high pressure. Physical Chemistry Chemical Physics, 15, 7696–7700.CrossRef
Zurück zum Zitat Zou, G. T., Mao, H. K., Bell, P. M., & Virgo, D. (1980). High-pressure experiments on the iron oxide wüstite (Fe1−xO). Yearbook Carnegie Institution of Washington, 79, 374–376. Zou, G. T., Mao, H. K., Bell, P. M., & Virgo, D. (1980). High-pressure experiments on the iron oxide wüstite (Fe1−xO). Yearbook Carnegie Institution of Washington, 79, 374–376.
Metadaten
Titel
Ultramafic Lower-Mantle Mineral Association
verfasst von
Felix V. Kaminsky
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55684-0_4