Skip to main content
Erschienen in: Journal of Materials Science 9/2019

24.01.2019 | Energy materials

Ultrathin nitrogen-doping graphene films for flexible and stretchable EMI shielding materials

verfasst von: Shaofeng Lin, Su Ju, Gang Shi, Jianwei Zhang, Yonglyu He, Dazhi Jiang

Erschienen in: Journal of Materials Science | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ultrathin, flexible and highly conductive materials that possess excellent electromagnetic interference (EMI) shielding performance are greatly needed, especially for the fabrication of stretchable shielding materials in practical applications such as wearable and foldable electronics. Graphene oxide (GO) sheets are modified with ethylenediamine to prepare cross-linked graphene films using a pressure-assisted self-assembly technique. FTIR and XPS results demonstrate that amine monomers are chemically bonded to GO sheets, with simultaneous reduction of GO sheets. After thermal annealing and followed with compression, the 6.6-μm-thick nitrogen-doping graphene film (rGO-EDA-2) is obtained with ultrahigh electrical conductivity of 8796 S cm−1. The excellent electrical conductivity is mainly attributed to nitrogen-doping effect, defects repair during chemical functionalization and removal of oxygenated groups. Ultrahigh electrical conductivity, multilayer structure and modified electronic structure with nitrogen doping lead to outstanding shielding performance for the rGO-EDA-2 film, with excellent shielding effectiveness (SE) of 58.5 dB and the specific SE/thickness of 43902 dB cm2 g−1, respectively. By fixing the rGO-EDA-2 film on the pre-stretched wavy substrate, the stretchable shielding composite is obtained, with constant EMI SE of 56.3 dB after repeated stretching. The pre-stretched wavy substrate allows the multilayer graphene film to achieve wavy structure after strain release, which is capable of bearing tensile strain up to 32.6%. This study could be significant in the applications of stretchable and wearable electronic devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300CrossRef Chen Z, Xu C, Ma C, Ren W, Cheng HM (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25(9):1296–1300CrossRef
2.
Zurück zum Zitat Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26(31):5480–5487CrossRef Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26(31):5480–5487CrossRef
3.
Zurück zum Zitat Gupta TK, Singh BP, Singh VN, Teotia S, Singh AP, Elizabeth I et al (2014) MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J Mater Chem A 2(12):4256CrossRef Gupta TK, Singh BP, Singh VN, Teotia S, Singh AP, Elizabeth I et al (2014) MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J Mater Chem A 2(12):4256CrossRef
4.
Zurück zum Zitat Shahzad F, Alhabeb M, Hatter CB, Anasori Babak, Hong SM, Koo CM et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304):1137–1140CrossRef Shahzad F, Alhabeb M, Hatter CB, Anasori Babak, Hong SM, Koo CM et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304):1137–1140CrossRef
5.
Zurück zum Zitat Chuang DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRef Chuang DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRef
6.
Zurück zum Zitat Umrao S, Gupta TK, Kumar S, Singh VK, Sultania MK, Jung JH et al (2015) Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band. ACS Appl Mater Interfaces 7(35):19831–19842CrossRef Umrao S, Gupta TK, Kumar S, Singh VK, Sultania MK, Jung JH et al (2015) Microwave-assisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band. ACS Appl Mater Interfaces 7(35):19831–19842CrossRef
7.
Zurück zum Zitat Kuester S, Merlini C, Barra GMO, Ferreira JC, Lucas A, de Souza AC et al (2016) Processing and characterization of conductive composites based on poly(styrene-b-ethylene-ran-butylene-b-styrene) (SEBS) and carbon additives: a comparative study of expanded graphite and carbon black. Compos Part B-Eng 84:236–247CrossRef Kuester S, Merlini C, Barra GMO, Ferreira JC, Lucas A, de Souza AC et al (2016) Processing and characterization of conductive composites based on poly(styrene-b-ethylene-ran-butylene-b-styrene) (SEBS) and carbon additives: a comparative study of expanded graphite and carbon black. Compos Part B-Eng 84:236–247CrossRef
8.
Zurück zum Zitat Ameli A, Jung PU, Park CB (2013) Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60:379–391CrossRef Ameli A, Jung PU, Park CB (2013) Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams. Carbon 60:379–391CrossRef
9.
Zurück zum Zitat Chaudhary A, Kumari S, Kumar R, Teotia S, Singh BP, Singh AP et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8(16):10600–10608CrossRef Chaudhary A, Kumari S, Kumar R, Teotia S, Singh BP, Singh AP et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8(16):10600–10608CrossRef
10.
Zurück zum Zitat Zhang L, Alvarez NT, Zhang M, Haase M, Malik R, Mast D et al (2015) Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82:353–359CrossRef Zhang L, Alvarez NT, Zhang M, Haase M, Malik R, Mast D et al (2015) Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82:353–359CrossRef
11.
Zurück zum Zitat Song WL, Guan XT, Fan LZ, Cao WQ, Wang CY, Cao MS (2015) Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 93:151–160CrossRef Song WL, Guan XT, Fan LZ, Cao WQ, Wang CY, Cao MS (2015) Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 93:151–160CrossRef
12.
Zurück zum Zitat Zeng Z, Jin H, Chen M, Li W, Zhou L, Zhang Z (2016) Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv Funct Mater 26(2):303–310CrossRef Zeng Z, Jin H, Chen M, Li W, Zhou L, Zhang Z (2016) Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv Funct Mater 26(2):303–310CrossRef
13.
Zurück zum Zitat Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925CrossRef Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925CrossRef
14.
Zurück zum Zitat Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG et al (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater 25(4):559–566CrossRef Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG et al (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater 25(4):559–566CrossRef
15.
Zurück zum Zitat Cao MS, Wang XX, Cao WQ, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3(26):6589–6599CrossRef Cao MS, Wang XX, Cao WQ, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3(26):6589–6599CrossRef
16.
Zurück zum Zitat Shen B, Zhai W, Zheng W (2014) Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater 24(28):4542–4548CrossRef Shen B, Zhai W, Zheng W (2014) Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater 24(28):4542–4548CrossRef
17.
Zurück zum Zitat Ye S, Chen B, Feng J (2015) Fracture mechanism and toughness optimization of macroscopic thick graphene oxide film. Sci Rep 5:13102CrossRef Ye S, Chen B, Feng J (2015) Fracture mechanism and toughness optimization of macroscopic thick graphene oxide film. Sci Rep 5:13102CrossRef
18.
Zurück zum Zitat Chen J, Li Y, Huang L, Jia N, Li C, Shi G (2015) Size fractionation of graphene oxide sheets via filtration through track-etched membranes. Adv Mater 27(24):3654–3660CrossRef Chen J, Li Y, Huang L, Jia N, Li C, Shi G (2015) Size fractionation of graphene oxide sheets via filtration through track-etched membranes. Adv Mater 27(24):3654–3660CrossRef
19.
Zurück zum Zitat Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST (2010) Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 22(8):892–896CrossRef Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST (2010) Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 22(8):892–896CrossRef
20.
Zurück zum Zitat Li WJ, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS et al (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 49(14):4724–4730CrossRef Li WJ, Tang XZ, Zhang HB, Jiang ZG, Yu ZZ, Du XS et al (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 49(14):4724–4730CrossRef
21.
Zurück zum Zitat Ma HL, Zhang HB, Hu QH, Li WJ, Jiang ZG, Yu ZZ et al (2012) Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites. ACS Appl Mater Interfaces 4(4):1948–1953CrossRef Ma HL, Zhang HB, Hu QH, Li WJ, Jiang ZG, Yu ZZ et al (2012) Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites. ACS Appl Mater Interfaces 4(4):1948–1953CrossRef
22.
Zurück zum Zitat Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43(1):291–312CrossRef Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43(1):291–312CrossRef
23.
Zurück zum Zitat Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115(23):11327–11335CrossRef Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115(23):11327–11335CrossRef
24.
Zurück zum Zitat Hung WS, Tsou CH, De Guzman M, An QF, Liu YL, Zhang YM et al (2014) Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem Mater 26(9):2983–2990CrossRef Hung WS, Tsou CH, De Guzman M, An QF, Liu YL, Zhang YM et al (2014) Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem Mater 26(9):2983–2990CrossRef
25.
Zurück zum Zitat Kim NH, Kuila T, Lee JH (2013) Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application. J Mater Chem A 1(4):1349–1358CrossRef Kim NH, Kuila T, Lee JH (2013) Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application. J Mater Chem A 1(4):1349–1358CrossRef
26.
Zurück zum Zitat Hu Y, Shen J, Li N, Shi M, Ma H, Yan B et al (2010) Amino-functionalization of graphene sheets and the fabrication of their nanocomposites. Polym Compos 31(12):1987–1994CrossRef Hu Y, Shen J, Li N, Shi M, Ma H, Yan B et al (2010) Amino-functionalization of graphene sheets and the fabrication of their nanocomposites. Polym Compos 31(12):1987–1994CrossRef
27.
Zurück zum Zitat Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C et al (2014) Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:5002CrossRef Wang Z, Dong Y, Li H, Zhao Z, Wu HB, Hao C et al (2014) Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:5002CrossRef
28.
Zurück zum Zitat Lv R, Li Q, Botello-Mendez AR, Hayashi T, Wang B, Berkdemir A et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586CrossRef Lv R, Li Q, Botello-Mendez AR, Hayashi T, Wang B, Berkdemir A et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586CrossRef
29.
Zurück zum Zitat Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J et al (2015) Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349(6246):400–404CrossRef Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J et al (2015) Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science 349(6246):400–404CrossRef
30.
Zurück zum Zitat Wang R, Jiang N, Su J, Yin Q, Zhang Y, Liu Z et al (2017) A Bi-sheath fiber sensor for giant tensile and torsional displacements. Adv Funct Mater 27(35):1702134CrossRef Wang R, Jiang N, Su J, Yin Q, Zhang Y, Liu Z et al (2017) A Bi-sheath fiber sensor for giant tensile and torsional displacements. Adv Funct Mater 27(35):1702134CrossRef
31.
Zurück zum Zitat Jung J, Lee H, Ha I, Cho H, Kim KK, Kwon J et al (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces 9(51):44609–44616CrossRef Jung J, Lee H, Ha I, Cho H, Kim KK, Kwon J et al (2017) Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl Mater Interfaces 9(51):44609–44616CrossRef
32.
Zurück zum Zitat Wang H, Liu Z, Ding J, Lepro X, Fang S, Jiang N et al (2016) Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv Mater 28(25):4998–5007CrossRef Wang H, Liu Z, Ding J, Lepro X, Fang S, Jiang N et al (2016) Downsized sheath-core conducting fibers for weavable superelastic wires, biosensors, supercapacitors, and strain sensors. Adv Mater 28(25):4998–5007CrossRef
33.
Zurück zum Zitat Qi D, Liu Z, Liu Y, Leow WR, Zhu B, Yang H et al (2015) Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv Mater 27(37):5559–5566CrossRef Qi D, Liu Z, Liu Y, Leow WR, Zhu B, Yang H et al (2015) Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv Mater 27(37):5559–5566CrossRef
34.
Zurück zum Zitat Hong JY, Kim W, Choi D, Kong J, Park HS (2016) Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10(10):9446–9455CrossRef Hong JY, Kim W, Choi D, Kong J, Park HS (2016) Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano 10(10):9446–9455CrossRef
35.
Zurück zum Zitat Xi J, Li Y, Zhou E, Liu Y, Gao W, Guo Y et al (2018) Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 135:44–51CrossRef Xi J, Li Y, Zhou E, Liu Y, Gao W, Guo Y et al (2018) Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 135:44–51CrossRef
36.
Zurück zum Zitat Lee JU, Lee W, Yi JW, Yoon SS, Lee SB, Jung BM et al (2013) Preparation of highly stacked graphene papers via site-selective functionalization of graphene oxide. J Mater Chem A 1(41):12893CrossRef Lee JU, Lee W, Yi JW, Yoon SS, Lee SB, Jung BM et al (2013) Preparation of highly stacked graphene papers via site-selective functionalization of graphene oxide. J Mater Chem A 1(41):12893CrossRef
38.
Zurück zum Zitat Yang S (2006) Electromagnetic shielding theory and the practice. National Defense Industry Press, Beijing Yang S (2006) Electromagnetic shielding theory and the practice. National Defense Industry Press, Beijing
39.
Zurück zum Zitat Huang Y, Li N, Ma Y, Du F, Li F, He X et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8):1614–1621CrossRef Huang Y, Li N, Ma Y, Du F, Li F, He X et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8):1614–1621CrossRef
40.
Zurück zum Zitat Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924CrossRef Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3(3):918–924CrossRef
41.
Zurück zum Zitat Yan D-X, Ren P-G, Pang H, Fu Q, Yang M-B, Li Z-M (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22:18772–18774CrossRef Yan D-X, Ren P-G, Pang H, Fu Q, Yang M-B, Li Z-M (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22:18772–18774CrossRef
42.
Zurück zum Zitat Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng W (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684CrossRef Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng W (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5(7):2677–2684CrossRef
43.
Zurück zum Zitat Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5(21):11383–11391CrossRef Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5(21):11383–11391CrossRef
44.
Zurück zum Zitat Crespo M, González M, Elías AL, Pulickal Rajukumar L, Baselga J, Terrones M et al (2014) Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys Status Solidi-R 8(8):698–704CrossRef Crespo M, González M, Elías AL, Pulickal Rajukumar L, Baselga J, Terrones M et al (2014) Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Phys Status Solidi-R 8(8):698–704CrossRef
45.
Zurück zum Zitat Ji K, Zhao H, Zhang J, Chen J, Dai Z (2014) Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl Surf Sci 311(9):351–356CrossRef Ji K, Zhao H, Zhang J, Chen J, Dai Z (2014) Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl Surf Sci 311(9):351–356CrossRef
46.
Zurück zum Zitat Micheli D, Pastore R, Vricella A, Morles RB, Marchetti M, Delfini A et al (2014) Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band. Mater Sci Eng, B 188:119–129CrossRef Micheli D, Pastore R, Vricella A, Morles RB, Marchetti M, Delfini A et al (2014) Electromagnetic characterization and shielding effectiveness of concrete composite reinforced with carbon nanotubes in the mobile phones frequency band. Mater Sci Eng, B 188:119–129CrossRef
47.
Zurück zum Zitat Teotia S, Singh BP, Elizabeth I, Singh VN, Ravikumar R, Singh AP et al (2014) Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv 4(63):33168–33174CrossRef Teotia S, Singh BP, Elizabeth I, Singh VN, Ravikumar R, Singh AP et al (2014) Multifunctional, robust, light-weight, free-standing MWCNT/phenolic composite paper as anodes for lithium ion batteries and EMI shielding material. RSC Adv 4(63):33168–33174CrossRef
48.
Zurück zum Zitat Agnihotri N, Chakrabarti K, De A (2015) Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv 2015(5):43765–43771CrossRef Agnihotri N, Chakrabarti K, De A (2015) Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv 2015(5):43765–43771CrossRef
49.
Zurück zum Zitat Li Y, Pei X, Shen B, Zhai W, Zhang L, Zheng W (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5(31):24342–24351CrossRef Li Y, Pei X, Shen B, Zhai W, Zhang L, Zheng W (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5(31):24342–24351CrossRef
50.
Zurück zum Zitat Ma J, Wang K, Zhan M (2015) A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv 2015(5):65283–65296CrossRef Ma J, Wang K, Zhan M (2015) A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv 2015(5):65283–65296CrossRef
51.
Zurück zum Zitat Paliotta L, De Bellis G, Tamburrano A, Marra F, Rinaldi A, Balijepalli SK et al (2015) Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon 89:260–271CrossRef Paliotta L, De Bellis G, Tamburrano A, Marra F, Rinaldi A, Balijepalli SK et al (2015) Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon 89:260–271CrossRef
52.
Zurück zum Zitat Song WL, Guan XT, Fan LZ, Cao WQ, Wang CY, Zhao QL et al (2015) Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J Mater Chem A 3(5):2097–2107CrossRef Song WL, Guan XT, Fan LZ, Cao WQ, Wang CY, Zhao QL et al (2015) Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J Mater Chem A 3(5):2097–2107CrossRef
53.
Zurück zum Zitat Shen B, Li Y, Yi D, Zhai W, Wei X, Zheng W (2016) Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102:154–160CrossRef Shen B, Li Y, Yi D, Zhai W, Wei X, Zheng W (2016) Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102:154–160CrossRef
55.
Zurück zum Zitat Liu Y, Zeng J, Han D, Wu K, Yu B, Chai S et al (2018) Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 133:435–445CrossRef Liu Y, Zeng J, Han D, Wu K, Yu B, Chai S et al (2018) Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 133:435–445CrossRef
56.
Zurück zum Zitat Lu S, Shao J, Ma K, Chen D, Wang X, Zhang L et al (2018) Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon 136:387–394CrossRef Lu S, Shao J, Ma K, Chen D, Wang X, Zhang L et al (2018) Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon 136:387–394CrossRef
57.
Zurück zum Zitat Wu HY, Jia LC, Yan DX, Gao JF, Zhang XP, Ren PG et al (2018) Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol 156:87–94CrossRef Wu HY, Jia LC, Yan DX, Gao JF, Zhang XP, Ren PG et al (2018) Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol 156:87–94CrossRef
58.
Zurück zum Zitat Zhou E, Xi J, Guo Y, Liu Y, Xu Z, Peng L et al (2018) Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133:316–322CrossRef Zhou E, Xi J, Guo Y, Liu Y, Xu Z, Peng L et al (2018) Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133:316–322CrossRef
59.
Zurück zum Zitat Xu JS, Chen J, Zhang M, Hong JD, Shi GQ (2016) Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv Electron Mater 2(6):1600022CrossRef Xu JS, Chen J, Zhang M, Hong JD, Shi GQ (2016) Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv Electron Mater 2(6):1600022CrossRef
Metadaten
Titel
Ultrathin nitrogen-doping graphene films for flexible and stretchable EMI shielding materials
verfasst von
Shaofeng Lin
Su Ju
Gang Shi
Jianwei Zhang
Yonglyu He
Dazhi Jiang
Publikationsdatum
24.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03372-4

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Science 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.