Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.11.2017 | Original Paper | Ausgabe 10/2017

Clean Technologies and Environmental Policy 10/2017

Uncertain supply chain network design considering carbon footprint and social factors using two-stage approach

Zeitschrift:
Clean Technologies and Environmental Policy > Ausgabe 10/2017
Autoren:
Rakhi Das, Krishnendu Shaw

Abstract

Sustainable development has become one of the leading global issues over the period of time. Currently, implementation of sustainability in supply chain has been continuously in center of attention due to introducing stringent legislations regarding environmental pollution by various governments and increasing stakeholders’ concerns toward social injustice. Unfortunately, literature is still scarce on studies considering all three dimensions (economical, environmental and social) of sustainability for the supply chain. An effective supply chain network design (SCND) is very important to implement sustainability in supply chain. This study proposes an uncertain SCND model that minimizes the total supply chain-oriented cost and determines the opening of plants, warehouses and flow of materials across the supply chain network by considering various carbon emissions and social factors. In this study, a new AHP and fuzzy TOPSIS-based methodology is proposed to transform qualitative social factors into quantitative social index, which is subsequently used in chance-constrained SCND model with an aim at reducing negative social impact. Further, the carbon emission of supply chain is estimated by considering a composite emission that consists of raw material, production, transportation and handling emissions. In the model, a carbon emission cap is imposed on total supply chain to reduce the carbon footprint of supply chain. To solve the proposed model, a code is developed in AMPL software using a nonlinear solver SNOPT. The applicability of the proposed model is illustrated with a numerical example. The sensitivity analysis examines the effects of reducing carbon footprint cap, negative social impacts and varying probability on the total cost of the supply chain. It is observed that a stricter carbon cap over supply chain network leads to opening of more plants across the supply chain. In addition, carbon footprint of supply chain is found to be decreased in certain extent with the reduction in negative social impacts from suppliers. The carbon footprint of the supply chain is found to be reduced with increasing certainty of material supply from the suppliers. The total supply chain cost is observed to be augmented with increasing probability.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2017

Clean Technologies and Environmental Policy 10/2017 Zur Ausgabe