Skip to main content
Erschienen in: Journal of Scientific Computing 3/2017

18.02.2017

Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation

verfasst von: Dongyang Shi, Junjun Wang

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A linearized Crank–Nicolson Galerkin finite element method with bilinear element for nonlinear Schrödinger equation is studied. By splitting the error into two parts which are called the temporal error and the spatial error, the unconditional superconvergence result is deduced. On one hand, the regularity for a time-discrete system is presented based on the proof of the temporal error. On the other hand, the classical Ritz projection is applied to get the spatial error with order \(O(h^2)\) in \(L^2\)-norm, which plays an important role in getting rid of the restriction of \(\tau \). Then the superclose estimates of order \(O(h^2+\tau ^2)\) in \(H^1\)-norm is arrived at based on the relationship between the Ritz projection and the interpolated operator. At the same time, global superconvergence property is arrived at by the interpolated postprocessing technique. At last, three numerical examples are provided to confirm the theoretical analysis. Here, h is the subdivision parameter and \(\tau \) is the time step.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)MathSciNetMATHCrossRef Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)MathSciNetMATHCrossRef Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Shi, D.Y., Liao, X., Wang, L.L.: Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation. Appl. Math. Comput. 289, 298–310 (2016)MathSciNet Shi, D.Y., Liao, X., Wang, L.L.: Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation. Appl. Math. Comput. 289, 298–310 (2016)MathSciNet
4.
Zurück zum Zitat Shi, D.Y., Wang, P.L., Zhao, Y.M.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett. 38, 129–134 (2014)MathSciNetMATHCrossRef Shi, D.Y., Wang, P.L., Zhao, Y.M.: Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation. Appl. Math. Lett. 38, 129–134 (2014)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Dehghan, M., Mirzaei, D.: Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)MATHCrossRef Dehghan, M., Mirzaei, D.: Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)MATHCrossRef
6.
Zurück zum Zitat Wu, L.: Two-grid mixed finite-element methods for nonlinear Schrödinger equations. Numer. Methods Part. Diff. Equ. 28(1), 63–73 (2012)MATHCrossRef Wu, L.: Two-grid mixed finite-element methods for nonlinear Schrödinger equations. Numer. Methods Part. Diff. Equ. 28(1), 63–73 (2012)MATHCrossRef
7.
Zurück zum Zitat Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–77 (2005)MathSciNetMATHCrossRef Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–77 (2005)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67(222), 479–499 (1998)MathSciNetMATHCrossRef Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67(222), 479–499 (1998)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Chang, Q.S., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)MathSciNetMATHCrossRef Chang, Q.S., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Dehghan, M., Taleei, A.: A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput. Phys. Comm. 181, 43–51 (2010)MathSciNetMATHCrossRef Dehghan, M., Taleei, A.: A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients. Comput. Phys. Comm. 181, 43–51 (2010)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)MathSciNetMATHCrossRef Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50, 492–521 (2012)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Zhang, L.M., Chang, Q.S.: A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 220(1–2), 240–256 (2008) Zhang, L.M., Chang, Q.S.: A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator. Appl. Math. Comput. 220(1–2), 240–256 (2008)
13.
Zurück zum Zitat Lai, X., Yuan, Y.: Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems. Comput. Math. Appl. 57(3), 384–403 (2009)MathSciNetMATHCrossRef Lai, X., Yuan, Y.: Galerkin alternating-direction method for a kind of three-dimensional nonlinear hyperbolic problems. Comput. Math. Appl. 57(3), 384–403 (2009)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Chen, Y., Huang, Y.: The full-discrete mixed finite element methods for nonlinear hyperbolic equations. Commun. Nonlinear Sci. Numer. Simul. 3(3), 152–155 (1998)MathSciNetMATHCrossRef Chen, Y., Huang, Y.: The full-discrete mixed finite element methods for nonlinear hyperbolic equations. Commun. Nonlinear Sci. Numer. Simul. 3(3), 152–155 (1998)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Rachford Jr., H.H.: Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations. SIAM J. Numer. Anal. 10(6), 1010–1026 (1973)MathSciNetMATHCrossRef Rachford Jr., H.H.: Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations. SIAM J. Numer. Anal. 10(6), 1010–1026 (1973)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16(2), 284–299 (1979)MathSciNetMATHCrossRef Luskin, M.: A Galerkin method for nonlinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 16(2), 284–299 (1979)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics. Springer, Sweden (2000) Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics. Springer, Sweden (2000)
18.
Zurück zum Zitat Shi, D.Y., Wang, J.J., Yan, F.N.: Superconvergence analysis for nonlinear parabolic equation with \(EQ^{rot}_1\) nonconforming finite element. Comput. Appl. Math. (2016). doi:10.1007/s40314-016-0344-6 Shi, D.Y., Wang, J.J., Yan, F.N.: Superconvergence analysis for nonlinear parabolic equation with \(EQ^{rot}_1\) nonconforming finite element. Comput. Appl. Math. (2016). doi:10.​1007/​s40314-016-0344-6
19.
Zurück zum Zitat Shi, D.Y., Tang, Q.L., Gong, W.: A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term. Math. Comput. Simulat. 114, 25–36 (2015)MathSciNetCrossRef Shi, D.Y., Tang, Q.L., Gong, W.: A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term. Math. Comput. Simulat. 114, 25–36 (2015)MathSciNetCrossRef
20.
Zurück zum Zitat Gu, H.M.: Characteristic finite element methods for nonlinear Sobolev equations. Appl. Math. Comput. 102(1), 51–62 (1999)MathSciNet Gu, H.M.: Characteristic finite element methods for nonlinear Sobolev equations. Appl. Math. Comput. 102(1), 51–62 (1999)MathSciNet
21.
Zurück zum Zitat Liu, B.Y.: The analysis of a finite element method with streamline diffusion for the compressible Navier–Stokes equations. SIAM J. Numer. Anal. 38(1), 1–16 (2000)MathSciNetMATHCrossRef Liu, B.Y.: The analysis of a finite element method with streamline diffusion for the compressible Navier–Stokes equations. SIAM J. Numer. Anal. 38(1), 1–16 (2000)MathSciNetMATHCrossRef
22.
Zurück zum Zitat He, Y.N., Sun, W.W.: Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations. Math. Comput. 76(257), 115–136 (2006)MathSciNetMATHCrossRef He, Y.N., Sun, W.W.: Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations. Math. Comput. 76(257), 115–136 (2006)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Wang, J.L.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)MathSciNetMATHCrossRef Wang, J.L.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Wang, J.L., Si, Z.Y., Sun, W.W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52(6), 3000–3020 (2013)MathSciNetMATHCrossRef Wang, J.L., Si, Z.Y., Sun, W.W.: A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal. 52(6), 3000–3020 (2013)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51(4), 1959–1977 (2013)MathSciNetMATHCrossRef Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51(4), 1959–1977 (2013)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Gao, H.D.: Optimal error analysis of Galerkin FEMs for nonlinear Joule Heating equations. J. Sci. Comput. 58(3), 627–647 (2014)MathSciNetMATHCrossRef Gao, H.D.: Optimal error analysis of Galerkin FEMs for nonlinear Joule Heating equations. J. Sci. Comput. 58(3), 627–647 (2014)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estiamtes of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52(2), 933–954 (2014)MathSciNetMATHCrossRef Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estiamtes of a Crank–Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52(2), 933–954 (2014)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Gao, H.D.: Unconditional optimal error estiamtes of BDF-Galerkin FEMs for nonlinear thermistor equations. J. Sci. Comput. 66(2), 504–527 (2016)MathSciNetMATHCrossRef Gao, H.D.: Unconditional optimal error estiamtes of BDF-Galerkin FEMs for nonlinear thermistor equations. J. Sci. Comput. 66(2), 504–527 (2016)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Si, Z.Y., Wang, J.L., Sun, W.W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations. Numer. Math. 134(1), 139–161 (2016)MathSciNetMATHCrossRef Si, Z.Y., Wang, J.L., Sun, W.W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations. Numer. Math. 134(1), 139–161 (2016)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Shi, D.Y., Wang, J.J., Yan, F.N.: Unconditional Superconvergence analysis for nonlinear parabolic equation with \(EQ^{rot}_1\) nonconforming finite element. J. Sci. Comput. (2016). doi:10.1007/s10915-016-0243-4 Shi, D.Y., Wang, J.J., Yan, F.N.: Unconditional Superconvergence analysis for nonlinear parabolic equation with \(EQ^{rot}_1\) nonconforming finite element. J. Sci. Comput. (2016). doi:10.​1007/​s10915-016-0243-4
31.
Zurück zum Zitat Shi, D.Y., Yan, F.N., Wang, J.J.: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Appl. Math. Comput. 274(1), 182–194 (2016)MathSciNet Shi, D.Y., Yan, F.N., Wang, J.J.: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Appl. Math. Comput. 274(1), 182–194 (2016)MathSciNet
32.
Zurück zum Zitat Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers equation. J. Sci. Comput. 53, 102–128 (2012)MathSciNetMATHCrossRef Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers equation. J. Sci. Comput. 53, 102–128 (2012)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Cheng, K., Wang, C.: Long time stability of high order multiStep numerical schemes for two-dimensional incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 54(5), 3123–3144 (2016)MathSciNetMATHCrossRef Cheng, K., Wang, C.: Long time stability of high order multiStep numerical schemes for two-dimensional incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 54(5), 3123–3144 (2016)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Shi, D.Y., Wang, F.L., Fan, M.Z., Zhao, Y.M.: A new approach of the lowest order anisotropic mixed finite element high accuracy analysis for nonlinear Sine–Gordon equaitons. Math. Numer. Sin. 37(2), 148–161 (2015)MathSciNetMATH Shi, D.Y., Wang, F.L., Fan, M.Z., Zhao, Y.M.: A new approach of the lowest order anisotropic mixed finite element high accuracy analysis for nonlinear Sine–Gordon equaitons. Math. Numer. Sin. 37(2), 148–161 (2015)MathSciNetMATH
35.
Zurück zum Zitat Wang, H.: Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations. Appl. Math. Comput. 170(1), 17–35 (2005)MathSciNetMATH Wang, H.: Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations. Appl. Math. Comput. 170(1), 17–35 (2005)MathSciNetMATH
Metadaten
Titel
Unconditional Superconvergence Analysis of a Crank–Nicolson Galerkin FEM for Nonlinear Schrödinger Equation
verfasst von
Dongyang Shi
Junjun Wang
Publikationsdatum
18.02.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0390-2

Weitere Artikel der Ausgabe 3/2017

Journal of Scientific Computing 3/2017 Zur Ausgabe