Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

Unconventional Applications and New Approaches for Flow Control

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article consists of a review of unconventional applications of flow control interspersed with new techniques for actuation. The flow control studies are aimed at solving a broad set of aerodynamic and propulsion flow problems targeting commercial and military applications. The applications range from aerodynamic performance improvements, up to solutions to airplane operational issues. The flow control techniques are used for reducing drag, controlling flow separation, as well as manipulating vortical flow structures for achieving a desired objective. An important driver for the development of the new techniques is a result of particular focus on issues of practical integration, where actuation input is within available resources onboard. A systematic approach based on computational simulations is used to provide insight into the flow problem, facilitate root cause analyses, and develop flow control approaches. Both fluidic actuation and morphing structures are considered. Actuator concepts and aspects of system integration are also introduced.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wygnanski, I.: The variables affecting the control of separation by periodic excitation, AIAA Paper 2004–2505 (2004) Wygnanski, I.: The variables affecting the control of separation by periodic excitation, AIAA Paper 2004–2505 (2004)
2.
Zurück zum Zitat McVeigh, M.A., Nagib, H., Wood, T., Wygnanski, I.: Full-scale flight tests of active flow control to reduce tiltrotor aircraft download. J. Aircraft 48(3), 786–796 (2011)CrossRef McVeigh, M.A., Nagib, H., Wood, T., Wygnanski, I.: Full-scale flight tests of active flow control to reduce tiltrotor aircraft download. J. Aircraft 48(3), 786–796 (2011)CrossRef
3.
Zurück zum Zitat Whalen, E., Shmilovich, A., Spoor, M., Tran, J., Vijgen, P., Lin, C.J., Andino, M.: Full-scale flight test of an active flow control enhanced vertical tail. AIAA J. 56(9), 3393–3398 (2018)CrossRef Whalen, E., Shmilovich, A., Spoor, M., Tran, J., Vijgen, P., Lin, C.J., Andino, M.: Full-scale flight test of an active flow control enhanced vertical tail. AIAA J. 56(9), 3393–3398 (2018)CrossRef
4.
Zurück zum Zitat Buning, P.G., Chiu, I.T., Obayash, S., Rizk, Y.M., Steger, J.L.: Numerical simulation of the integrated space shuttle vehicle in ascent. AIAA Paper 1988–4359 (1988) Buning, P.G., Chiu, I.T., Obayash, S., Rizk, Y.M., Steger, J.L.: Numerical simulation of the integrated space shuttle vehicle in ascent. AIAA Paper 1988–4359 (1988)
5.
Zurück zum Zitat Ciobaca, V., Wild, J.: Active flow control for an outer wing model of a take-off transport aircraft configuration—A numerical study, AIAA Paper 2014–2403 (2014) Ciobaca, V., Wild, J.: Active flow control for an outer wing model of a take-off transport aircraft configuration—A numerical study, AIAA Paper 2014–2403 (2014)
6.
Zurück zum Zitat Bauer, M., Grund, T., Nitsche, W.: Experiments on active drag reduction on a complex outer wing model. AIAA J. 53(7), 1774–1783 (2015)CrossRef Bauer, M., Grund, T., Nitsche, W.: Experiments on active drag reduction on a complex outer wing model. AIAA J. 53(7), 1774–1783 (2015)CrossRef
7.
Zurück zum Zitat Schloesser, P., Soudakov, V., Bauer, M., Wild, J.: Active separation control of the pylon-wing junction of a real-scale model. AIAA J. 57(1), 132–141 (2019)CrossRef Schloesser, P., Soudakov, V., Bauer, M., Wild, J.: Active separation control of the pylon-wing junction of a real-scale model. AIAA J. 57(1), 132–141 (2019)CrossRef
8.
Zurück zum Zitat Warsop, C., Forster, M., Crowther, W.: NATO AVT-239 task group: supercritical coanda based circulation control and fluidic thrust vectoring, AIAA Paper 2019–0044 (2019) Warsop, C., Forster, M., Crowther, W.: NATO AVT-239 task group: supercritical coanda based circulation control and fluidic thrust vectoring, AIAA Paper 2019–0044 (2019)
9.
Zurück zum Zitat Shmilovich, A., Yadlin, Y., Whalen, E.: Active flow control computations: from a single actuator to a complete airplane. AIAA J. 56(12), 4730–4740 (2018)CrossRef Shmilovich, A., Yadlin, Y., Whalen, E.: Active flow control computations: from a single actuator to a complete airplane. AIAA J. 56(12), 4730–4740 (2018)CrossRef
10.
Zurück zum Zitat Seele, R., Graff, E., Lin, J., Wygnanski, I.: Performance enhancement of a vertical tail model with sweeping jet actuators, AIAA Paper 2013–411 (2013) Seele, R., Graff, E., Lin, J., Wygnanski, I.: Performance enhancement of a vertical tail model with sweeping jet actuators, AIAA Paper 2013–411 (2013)
11.
Zurück zum Zitat Andino, M., Lin, J., Washburn, A., Whalen, E., Graff, E., Wygnanski, I.: Flow separation control on a full-scale vertical tail model using sweeping jet actuators, AIAA Paper 2015–0785 (2015) Andino, M., Lin, J., Washburn, A., Whalen, E., Graff, E., Wygnanski, I.: Flow separation control on a full-scale vertical tail model using sweeping jet actuators, AIAA Paper 2015–0785 (2015)
12.
Zurück zum Zitat Hartwich, P., Camacho, P., El-Gohari, K., Gonzales, A., Lawson, E., Shmilovich, A.: System-level trade studies for transonic transports with active flow control (AFC) enhanced high-lift systems, AIAA Paper 2017–0321 (2017) Hartwich, P., Camacho, P., El-Gohari, K., Gonzales, A., Lawson, E., Shmilovich, A.: System-level trade studies for transonic transports with active flow control (AFC) enhanced high-lift systems, AIAA Paper 2017–0321 (2017)
13.
Zurück zum Zitat Shmilovich, A., Yadlin, Y., Dickey, E., Hartwich, P., Khodadoust, A.: Development of an active flow control technique for an airplane high-lift configuration, AIAA Paper 2017–0322 (2017) Shmilovich, A., Yadlin, Y., Dickey, E., Hartwich, P., Khodadoust, A.: Development of an active flow control technique for an airplane high-lift configuration, AIAA Paper 2017–0322 (2017)
14.
Zurück zum Zitat El Sayed, Y., Semaan, R., Radespiel, R: Sparse modeling of the lift gains of a high-lift configuration with periodic coanda blowing, AIAA Paper 2018–1054 (2018) El Sayed, Y., Semaan, R., Radespiel, R: Sparse modeling of the lift gains of a high-lift configuration with periodic coanda blowing, AIAA Paper 2018–1054 (2018)
15.
Zurück zum Zitat El Sayed, Y., Gomes de Paula, N.C., Sedlacek, D., Semaan, R., Radespiel, R.: Investigations into the effects of unsteady blowing on the wake of a coanda flap, AIAA Paper 2019–0587 (2019) El Sayed, Y., Gomes de Paula, N.C., Sedlacek, D., Semaan, R., Radespiel, R.: Investigations into the effects of unsteady blowing on the wake of a coanda flap, AIAA Paper 2019–0587 (2019)
16.
Zurück zum Zitat Radespiel, R., Heinze, W., Bertsch, L.: High-lift research for future transport aircraft, DLR report 450128 (2017) Radespiel, R., Heinze, W., Bertsch, L.: High-lift research for future transport aircraft, DLR report 450128 (2017)
17.
Zurück zum Zitat Johns, C.J.: The aircraft engine inlet vortex problem, AIAA Paper 2002-5894 (2002) Johns, C.J.: The aircraft engine inlet vortex problem, AIAA Paper 2002-5894 (2002)
18.
Zurück zum Zitat Shmilovich, A., Yadlin, Y.: Engine vortex flows and methods of vortex alleviation. In: Proceedings of the 3rd International Conference on Vortex Flows and Vortex Models, Yokohama, Japan (2005) Shmilovich, A., Yadlin, Y.: Engine vortex flows and methods of vortex alleviation. In: Proceedings of the 3rd International Conference on Vortex Flows and Vortex Models, Yokohama, Japan (2005)
19.
Zurück zum Zitat Yadlin, Y., Shmilovich, A.: Computational method for assessment of flow control techniques for airplane propulsion systems, AIAA Paper 2008–4084 (2008) Yadlin, Y., Shmilovich, A.: Computational method for assessment of flow control techniques for airplane propulsion systems, AIAA Paper 2008–4084 (2008)
20.
Zurück zum Zitat Crow, S.C., Bate, E.R.: Lifespan of trailing vortices in a turbulent atmosphere. J. Aircraft 13(7), 476–482 (1976)CrossRef Crow, S.C., Bate, E.R.: Lifespan of trailing vortices in a turbulent atmosphere. J. Aircraft 13(7), 476–482 (1976)CrossRef
21.
Zurück zum Zitat Crouch, J.D., Spalart, P.R.: Active-control system for breakup of airplane trailing vortices. AIAA J. 39(12), 2374–2381 (2001)CrossRef Crouch, J.D., Spalart, P.R.: Active-control system for breakup of airplane trailing vortices. AIAA J. 39(12), 2374–2381 (2001)CrossRef
22.
Zurück zum Zitat Greenblatt, D.: Fluidic control of a wing tip vortex. AIAA J. 50(2), 375–386 (2012)CrossRef Greenblatt, D.: Fluidic control of a wing tip vortex. AIAA J. 50(2), 375–386 (2012)CrossRef
23.
Zurück zum Zitat Shmilovich, A., Yadlin, Y.: Flow control of airplane trailing wakes. In: Proceedings of the 4th International Conference on Vortex Flows and Vortex Models, Daejeon, S. Korea (2008) Shmilovich, A., Yadlin, Y.: Flow control of airplane trailing wakes. In: Proceedings of the 4th International Conference on Vortex Flows and Vortex Models, Daejeon, S. Korea (2008)
24.
Zurück zum Zitat Shmilovich, A., Yadlin, Y.: Flow control techniques for transport aircraft. AIAA J. 49(3), 489–502 (2011)CrossRef Shmilovich, A., Yadlin, Y.: Flow control techniques for transport aircraft. AIAA J. 49(3), 489–502 (2011)CrossRef
25.
Zurück zum Zitat Yadlin, Y., Shmilovich, A., Narducci, P.R.: A method and applications for tracking airplane trailing wakes, AIAA Paper 2010-0324 (2010) Yadlin, Y., Shmilovich, A., Narducci, P.R.: A method and applications for tracking airplane trailing wakes, AIAA Paper 2010-0324 (2010)
26.
Zurück zum Zitat Shmilovich, A., Yadlin, Y.: Traverse actuation method, AIAA Paper 2016-3309 (2016) Shmilovich, A., Yadlin, Y.: Traverse actuation method, AIAA Paper 2016-3309 (2016)
27.
Zurück zum Zitat Shmilovich, A., Yadlin, Y., Dickey, E., Gissen, A.N., Whalen, E.: Lift recovery for AFC-enabled high lift system. NASA Contractor Report, NASA-CR-2017–219636 (June 2017) Shmilovich, A., Yadlin, Y., Dickey, E., Gissen, A.N., Whalen, E.: Lift recovery for AFC-enabled high lift system. NASA Contractor Report, NASA-CR-2017–219636 (June 2017)
28.
Zurück zum Zitat Shmilovich, A., Yadlin, Y., Vijgen, P.: Active flow control systems and methods for aircraft, US Patent 10 308 350 (2019) Shmilovich, A., Yadlin, Y., Vijgen, P.: Active flow control systems and methods for aircraft, US Patent 10 308 350 (2019)
29.
Zurück zum Zitat Shmilovich, A., Whalen, E.: A technique for low input flow control actuation, AIAA Paper 2017–3040 (2017) Shmilovich, A., Whalen, E.: A technique for low input flow control actuation, AIAA Paper 2017–3040 (2017)
30.
Zurück zum Zitat Shmilovich, A., Whalen, E.: Strategies for practical implementations of low-input thermal flow control, AIAA Paper 2019-0886 (2019) Shmilovich, A., Whalen, E.: Strategies for practical implementations of low-input thermal flow control, AIAA Paper 2019-0886 (2019)
31.
Zurück zum Zitat Hirsch, D., Shmilovich, A., Whalen, E., Gharib, M.: A technique for enhanced flow control efficiency through thermal actuation. AIAA J. 52(9), 3399–3413 (2018)CrossRef Hirsch, D., Shmilovich, A., Whalen, E., Gharib, M.: A technique for enhanced flow control efficiency through thermal actuation. AIAA J. 52(9), 3399–3413 (2018)CrossRef
32.
Zurück zum Zitat Garner, P., Meredith, P., Stoner, R.: Areas for future CFD development as illustrated by transport aircraft applications. AIAA: 1991–1527 (1991) Garner, P., Meredith, P., Stoner, R.: Areas for future CFD development as illustrated by transport aircraft applications. AIAA: 1991–1527 (1991)
35.
Zurück zum Zitat Shmilovich, A., Yadlin, Y.: High-lift systems for enhanced takeoff performance. In: 28th International Congress of the Aeronautical Sciences, ICAS Paper #157 (2012) Shmilovich, A., Yadlin, Y.: High-lift systems for enhanced takeoff performance. In: 28th International Congress of the Aeronautical Sciences, ICAS Paper #157 (2012)
36.
Zurück zum Zitat Shmilovich, A., Yadlin, Y.: Flow control for enhanced airplane takeoff performance, AIAA Paper 2020-0784 (2020) Shmilovich, A., Yadlin, Y.: Flow control for enhanced airplane takeoff performance, AIAA Paper 2020-0784 (2020)
37.
Zurück zum Zitat Shmilovich, A., Yadlin, Y., Smith, M.D., Clark, W.R.: Integrated engine exhaust systems and methods for drag and thermal stress reduction, US Patent 7 669 785 (2010) Shmilovich, A., Yadlin, Y., Smith, M.D., Clark, W.R.: Integrated engine exhaust systems and methods for drag and thermal stress reduction, US Patent 7 669 785 (2010)
Metadaten
Titel
Unconventional Applications and New Approaches for Flow Control
verfasst von
Arvin Shmilovich
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-52429-6_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.