Skip to main content
Erschienen in: Wireless Personal Communications 2/2020

17.10.2019

Underlying and Persistence Fault Diagnosis in Wireless Sensor Networks Using Majority Neighbors Co-ordination Approach

verfasst von: Rakesh Ranjan Swain, Pabitra Mohan Khilar, Sourav Kumar Bhoi

Erschienen in: Wireless Personal Communications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The faults in wireless sensor network are classified according to the underlying causes, behavior, and persistence with respect to the observation time. Due to underlying causes, faults are classified as fail and stop, crash, omission, timing, and incorrect computation fault. Due to behavior, faults are classified as hard and soft fault. Due to persistence, faults are classified as permanent, intermittent, and transient fault. As the recent state-of-art fault diagnosis is a significant requirement for each application of wireless sensor network. In this research paper, we have proposed a fault diagnosis protocol using majority neighbors coordination based approach for wireless sensor network. Precisely, a multiple-hop data received technique, timeout period mechanism, timeout request and response message exchange, timeout early and delay message exchange, and degree of belongingness using Gaussian function mechanism are used for the detection of faults such as fail and stop, crash, omission, timing, and incorrect computation. The mean difference and standard error comparison with different threshold condition are used for soft (permanent, intermittent, and transient) fault detection, and timeout response mechanism with different threshold condition is used for hard (permanent, intermittent, and transient) fault detection. After fault detection, the actual fault status of the sensor node is confirmed by the one-hop majority neighbor sensor nodes. For validation of the proposed fault detection algorithms, simulation experiments are conducted by the network simulator NS-2.35. The experimental results show the substantially parameters performance such as fault detection accuracy, false alarm rate, false positive rate, and false classification rate with increasing the fault probability for different average degree of the sensor nodes in the network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRef
2.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.CrossRef
3.
Zurück zum Zitat Chessa, S., & Santi, P. (2002). Crash faults identification in wireless sensor networks. Computer Communications, 25(14), 1273–1282.CrossRef Chessa, S., & Santi, P. (2002). Crash faults identification in wireless sensor networks. Computer Communications, 25(14), 1273–1282.CrossRef
4.
Zurück zum Zitat Mahapatro, A., & Khilar, P. M. (2013). Fault diagnosis in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(4), 2000–2026.CrossRef Mahapatro, A., & Khilar, P. M. (2013). Fault diagnosis in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(4), 2000–2026.CrossRef
5.
Zurück zum Zitat Barooah, P., Chenji, H., Stoleru, R., & Kalmár-Nagy, T. (2012). Cut detection in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 483–490.CrossRef Barooah, P., Chenji, H., Stoleru, R., & Kalmár-Nagy, T. (2012). Cut detection in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 483–490.CrossRef
6.
Zurück zum Zitat Panda, M., & Khilar, P. M. (2015). Distributed Byzantine fault detection technique in wireless sensor networks based on hypothesis testing. Computers & Electrical Engineering, 48, 270–285.CrossRef Panda, M., & Khilar, P. M. (2015). Distributed Byzantine fault detection technique in wireless sensor networks based on hypothesis testing. Computers & Electrical Engineering, 48, 270–285.CrossRef
7.
Zurück zum Zitat Panda, M., & Khilar, P. M. (2015). Distributed self fault diagnosis algorithm for large scale wireless sensor networks using modified three sigma edit test. Ad Hoc Networks, 25, 170–184.CrossRef Panda, M., & Khilar, P. M. (2015). Distributed self fault diagnosis algorithm for large scale wireless sensor networks using modified three sigma edit test. Ad Hoc Networks, 25, 170–184.CrossRef
8.
Zurück zum Zitat Swain, R. R., Khilar, P. M., & Bhoi, S. K. (2018). Heterogeneous fault diagnosis for wireless sensor networks. Ad Hoc Networks, 69, 15–37.CrossRef Swain, R. R., Khilar, P. M., & Bhoi, S. K. (2018). Heterogeneous fault diagnosis for wireless sensor networks. Ad Hoc Networks, 69, 15–37.CrossRef
9.
Zurück zum Zitat Artail, H., Ajami, A., Saouma, T., & Charaf, M. (2016). A faulty node detection scheme for wireless sensor networks that use data aggregation for transport. Wireless Communications and Mobile Computing, 16(14), 1956–1971.CrossRef Artail, H., Ajami, A., Saouma, T., & Charaf, M. (2016). A faulty node detection scheme for wireless sensor networks that use data aggregation for transport. Wireless Communications and Mobile Computing, 16(14), 1956–1971.CrossRef
10.
Zurück zum Zitat Tang, P., & Chow, T. W. (2016). Wireless sensor-networks conditions monitoring and fault diagnosis using neighborhood hidden conditional random field. IEEE Transactions on Industrial Informatics, 12(3), 933–940.CrossRef Tang, P., & Chow, T. W. (2016). Wireless sensor-networks conditions monitoring and fault diagnosis using neighborhood hidden conditional random field. IEEE Transactions on Industrial Informatics, 12(3), 933–940.CrossRef
11.
Zurück zum Zitat Zhao, M., Tian, Z., & Chow, T. W. (2018). Fault diagnosis on wireless sensor network using the neighborhood kernel density estimation. Neural Computing and Applications, 31(8), 4019–4030.CrossRef Zhao, M., Tian, Z., & Chow, T. W. (2018). Fault diagnosis on wireless sensor network using the neighborhood kernel density estimation. Neural Computing and Applications, 31(8), 4019–4030.CrossRef
12.
Zurück zum Zitat Kamal, A. R. M., Bleakley, C. J., & Dobson, S. (2014). Failure detection in wireless sensor networks: A sequence-based dynamic approach. ACM Transactions on Sensor Networks (TOSN), 10(2), 35.CrossRef Kamal, A. R. M., Bleakley, C. J., & Dobson, S. (2014). Failure detection in wireless sensor networks: A sequence-based dynamic approach. ACM Transactions on Sensor Networks (TOSN), 10(2), 35.CrossRef
13.
Zurück zum Zitat Chanak, P., Banerjee, I., & Sherratt, R. S. (2016). Mobile sink based fault diagnosis scheme for wireless sensor networks. Journal of Systems and Software, 119, 45–57.CrossRef Chanak, P., Banerjee, I., & Sherratt, R. S. (2016). Mobile sink based fault diagnosis scheme for wireless sensor networks. Journal of Systems and Software, 119, 45–57.CrossRef
15.
Zurück zum Zitat Sahoo, M. N., & Khilar, P. M. (2014). Diagnosis of wireless sensor networks in presence of permanent and intermittent faults. Wireless Personal Communications, 78(2), 1571–1591.CrossRef Sahoo, M. N., & Khilar, P. M. (2014). Diagnosis of wireless sensor networks in presence of permanent and intermittent faults. Wireless Personal Communications, 78(2), 1571–1591.CrossRef
16.
Zurück zum Zitat Mahapatro, A., & Khilar, P. M. (2013). Online distributed fault diagnosis in wireless sensor networks. Wireless Personal Communications, 71(3), 1931–1960.CrossRef Mahapatro, A., & Khilar, P. M. (2013). Online distributed fault diagnosis in wireless sensor networks. Wireless Personal Communications, 71(3), 1931–1960.CrossRef
17.
Zurück zum Zitat Chen, J., Kher, S., & Somani, A. (2006, September). Distributed fault detection of wireless sensor networks. In Proceedings of the 2006 workshop on dependability issues in wireless ad hoc networks and sensor networks (pp. 65–72). ACM. Chen, J., Kher, S., & Somani, A. (2006, September). Distributed fault detection of wireless sensor networks. In Proceedings of the 2006 workshop on dependability issues in wireless ad hoc networks and sensor networks (pp. 65–72). ACM.
18.
Zurück zum Zitat Xu, X., Chen, W., Wan, J., & Yu, R. (2008, November). Distributed fault diagnosis of wireless sensor networks. In 11th IEEE international conference on communication technology, 2008. ICCT 2008 (pp. 148–151). IEEE. Xu, X., Chen, W., Wan, J., & Yu, R. (2008, November). Distributed fault diagnosis of wireless sensor networks. In 11th IEEE international conference on communication technology, 2008. ICCT 2008 (pp. 148–151). IEEE.
19.
Zurück zum Zitat Saha, T., & Mahapatra, S. (2011, July). Distributed fault diagnosis in wireless sensor networks. In 2011 international conference on process automation, control and computing (PACC) (pp. 1–5). IEEE. Saha, T., & Mahapatra, S. (2011, July). Distributed fault diagnosis in wireless sensor networks. In 2011 international conference on process automation, control and computing (PACC) (pp. 1–5). IEEE.
20.
Zurück zum Zitat Yang, C., Liu, C., Zhang, X., Nepal, S., & Chen, J. (2015). A time efficient approach for detecting errors in big sensor data on cloud. IEEE Transactions on Parallel and Distributed Systems, 26(2), 329–339.CrossRef Yang, C., Liu, C., Zhang, X., Nepal, S., & Chen, J. (2015). A time efficient approach for detecting errors in big sensor data on cloud. IEEE Transactions on Parallel and Distributed Systems, 26(2), 329–339.CrossRef
21.
Zurück zum Zitat Nitesh, K., & Jana, P. K. (2016). Distributed fault detection and recovery algorithms in two-tier wireless sensor networks. International Journal of Communication Networks and Distributed Systems, 16(3), 281–296.CrossRef Nitesh, K., & Jana, P. K. (2016). Distributed fault detection and recovery algorithms in two-tier wireless sensor networks. International Journal of Communication Networks and Distributed Systems, 16(3), 281–296.CrossRef
22.
Zurück zum Zitat Khan, S. A., Daachi, B., & Djouani, K. (2012). Application of fuzzy inference systems to detection of faults in wireless sensor networks. Neurocomputing, 94, 111–120.CrossRef Khan, S. A., Daachi, B., & Djouani, K. (2012). Application of fuzzy inference systems to detection of faults in wireless sensor networks. Neurocomputing, 94, 111–120.CrossRef
23.
Zurück zum Zitat Mourad, E., & Nayak, A. (2012). Comparison-based system-level fault diagnosis: A neural network approach. IEEE Transactions on Parallel and Distributed Systems, 23(6), 1047–1059.CrossRef Mourad, E., & Nayak, A. (2012). Comparison-based system-level fault diagnosis: A neural network approach. IEEE Transactions on Parallel and Distributed Systems, 23(6), 1047–1059.CrossRef
24.
Zurück zum Zitat Ji, Z., Bing-shu, W., Yong-guang, M., Rong-hua, Z., & Jian, D. (2006, October). Fault diagnosis of sensor network using information fusion defined on different reference sets. In 2006 CIE international conference on radar (pp. 1–5). IEEE. Ji, Z., Bing-shu, W., Yong-guang, M., Rong-hua, Z., & Jian, D. (2006, October). Fault diagnosis of sensor network using information fusion defined on different reference sets. In 2006 CIE international conference on radar (pp. 1–5). IEEE.
25.
Zurück zum Zitat Jabbari, A., Jedermann, R., & Lang, W. (2007). Application of computational intelligence for sensor fault detection and isolation. World Academy of Science, Engineering and Technology, 33, 265–270. Jabbari, A., Jedermann, R., & Lang, W. (2007). Application of computational intelligence for sensor fault detection and isolation. World Academy of Science, Engineering and Technology, 33, 265–270.
26.
Zurück zum Zitat Moustapha, A. I., & Selmic, R. R. (2008). Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Transactions on Instrumentation and Measurement, 57(5), 981–988.CrossRef Moustapha, A. I., & Selmic, R. R. (2008). Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection. IEEE Transactions on Instrumentation and Measurement, 57(5), 981–988.CrossRef
27.
Zurück zum Zitat Zhu, D., Bai, J., & Yang, S. X. (2009). A multi-fault diagnosis method for sensor systems based on principle component analysis. Sensors, 10(1), 241–253.CrossRef Zhu, D., Bai, J., & Yang, S. X. (2009). A multi-fault diagnosis method for sensor systems based on principle component analysis. Sensors, 10(1), 241–253.CrossRef
29.
Zurück zum Zitat Swain, R. R., & Khilar, P. M. (2017). Composite fault diagnosis in wireless sensor networks using neural networks. Wireless Personal Communications, 95(3), 2507–2548.CrossRef Swain, R. R., & Khilar, P. M. (2017). Composite fault diagnosis in wireless sensor networks using neural networks. Wireless Personal Communications, 95(3), 2507–2548.CrossRef
30.
Zurück zum Zitat Swain, R. R., & Khilar, P. M. (2016, November). A fuzzy MLP approach for fault diagnosis in wireless sensor networks. In Region 10 conference (TENCON), 2016 IEEE (pp. 3183–3188). IEEE. Swain, R. R., & Khilar, P. M. (2016, November). A fuzzy MLP approach for fault diagnosis in wireless sensor networks. In Region 10 conference (TENCON), 2016 IEEE (pp. 3183–3188). IEEE.
31.
Zurück zum Zitat Barborak, M., Dahbura, A., & Malek, M. (1993). The consensus problem in fault-tolerant computing. ACM Computing Surveys (CSur), 25(2), 171–220.CrossRef Barborak, M., Dahbura, A., & Malek, M. (1993). The consensus problem in fault-tolerant computing. ACM Computing Surveys (CSur), 25(2), 171–220.CrossRef
32.
Zurück zum Zitat Swain, R. R., Mishra, S., Samal, T. K., & Kabat, M. R. (2017). An energy efficient advertisement based multichannel distributed MAC protocol for wireless sensor networks (Adv-MMAC). Wireless Personal Communications, 95(2), 655–682.CrossRef Swain, R. R., Mishra, S., Samal, T. K., & Kabat, M. R. (2017). An energy efficient advertisement based multichannel distributed MAC protocol for wireless sensor networks (Adv-MMAC). Wireless Personal Communications, 95(2), 655–682.CrossRef
33.
Zurück zum Zitat Reddy, P. N., Dambekodi, S. N., & Dash, T. (2017). Towards continuous monitoring of environment under uncertainty: A fuzzy granular decision tree approach. In DIAS/EDUDM@ ISEC. Reddy, P. N., Dambekodi, S. N., & Dash, T. (2017). Towards continuous monitoring of environment under uncertainty: A fuzzy granular decision tree approach. In DIAS/EDUDM@ ISEC.
34.
Zurück zum Zitat Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.CrossRef Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.CrossRef
35.
Zurück zum Zitat Issariyakul, T., & Hossain, E. (2011). Introduction to network simulator NS2. Berlin: Springer. Issariyakul, T., & Hossain, E. (2011). Introduction to network simulator NS2. Berlin: Springer.
36.
Zurück zum Zitat Ekbatanifard, G., & Monsefi, R. (2012). Queen-MAC: A quorum-based energy-efficient medium access control protocol for wireless sensor networks. Computer Networks, 56(8), 2221–2236.CrossRef Ekbatanifard, G., & Monsefi, R. (2012). Queen-MAC: A quorum-based energy-efficient medium access control protocol for wireless sensor networks. Computer Networks, 56(8), 2221–2236.CrossRef
Metadaten
Titel
Underlying and Persistence Fault Diagnosis in Wireless Sensor Networks Using Majority Neighbors Co-ordination Approach
verfasst von
Rakesh Ranjan Swain
Pabitra Mohan Khilar
Sourav Kumar Bhoi
Publikationsdatum
17.10.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06884-z

Weitere Artikel der Ausgabe 2/2020

Wireless Personal Communications 2/2020 Zur Ausgabe

Neuer Inhalt